VBBo-Ringanalyse-Auswertung

für Schwermetalle und organische Schadstoffe

nationale bodenbeobachtung observatoire national des sols osservatorio nazionale dei suoli swiss soil monitorina network

Impressum

Herausgeber Nationale Bodenbeobachtung (NABO), Agroscope, Zürich-Reckenholz

Autor Daniel Wächter

Ringanalysenleitung Daniel Wächter, Nationale Bodenbeobachtung (NABO), Agroscope

Email <u>ringanalyse@agroscope.admin.ch</u>

Telefon 058 468 74 22 Web <u>www.nabo.admin.ch</u>

Das Ringanalysenprogramm ist eine Serviceleistung im Rahmen der Nationalen Bodenbeobachtung (NABO),

welche von BAFU in Zusammenarbeit mit dem BLW betrieben wird (Art. 3 VBBo).

Titelbild Gabriela Brändle / Agroscope

Bezug Dieses Dokument nur als PDF-Download

Diese Publikation ist auch in französischer Sprache verfügbar. Siehe: <u>www.nabo.admin.ch</u> -> Service -> VBBo-Ringanalysen

Inhaltsverzeichnis

Zu	samm	enfassung	4
1	Öff	entliche Laborliste	5
	1.1	Zweck und Inhalt	5
	1.2	Kriterien zur Erstellung der Laborliste	5
	1.3	Praxisnahe Vergleichbarkeit der Labors	6
1.4 P		Publikation	6
	1.5	Andere Ringanalysenanbieter	6
2	VBE	3o-Ringanalysenprogramm	7
	2.1	Organisation und Ablauf	7
	2.2	Teilnahmebedingungen	8
3	Ana	alysenprogramm und –vorschriften	8
	3.1	Anorganische Schadstoffe (ISE-Programm)	8
	3.2	Organische Schadstoffe (SETOC-Programm)	8
	3.3	Andere Schadstoffe oder Bodenkennwerte	9
	3.4	Maximale Mindestbestimmungsgrenze	. 10
4	Aus	wertung und Beurteilung der Resultate	. 12
	4.1	Rahmenbedingungen und Kriterien zur Qualitätsbeurteilung	. 12
	4.2	Erwartungsstreuung	. 13
Da	nk		. 14
Lit	eratur	verzeichnis	. 15
Ar	nhang.		. 16
5	Erw	vartungswerte	. 16
	5.1	Schwermetalle	. 16
	5.2	Organische Schadstoffe	17

Zusammenfassung

Die Verordnung über Belastungen des Bodens (VBBo 1998) legt Richt-, Prüf- und Sanierungswerte für Schadstoffe im Boden fest. Damit die Analysenresultate verschiedener Labors, aber auch aus verschiedenen Jahren, vergleichbar sind, ist eine externe Qualitätssicherung unerlässlich. In Zusammenarbeit mit WEPAL führt die Nationale Bodenbeobachtung (NABO) deshalb im Auftrag des Bundesamtes für Umwelt (BAFU) regelmässig Ringanalysen durch (BUWAL 2001). Darauf basierend publiziert die NABO jährlich eine Laborliste, die Auskunft über die (erfolgreiche) Teilnahme am Ringversuch gibt, wobei die Nennung auf der Liste für die teilnehmenden Labors freiwillig ist. Diese Liste soll dem Auftraggeber von Bodenanalysen dienen, ein geeignetes Labor zu finden.

Per 2017 wurde die Auswertung der Ringanalyse überarbeitet. Sie orientiert sich künftig stärker an der Auswertung der beteiligten Partnerorganisation WEPAL. Gleichzeitig wurden auch die Kriterien für die Aufnahme in die Laborliste angepasst. Neu werden für die Bewertung die Leistungen der letzten beiden Kalenderjahre berücksichtigt. Die Teilnahmehäufigkeit ist auf zwei Quartale (1. und 3.) pro Jahr reduziert, was die Attraktivität für mittlere und kleine Labore erhöhen soll. Nebst der bisher geltenden Bewertung über den Z-Score, wird neu eine Analyt-spezifische Erwartungsstreuung berücksichtigt.

Dieser Bericht enthält die neu geltenden Methoden und Kriterien für die Auswertung der Ringanalyseresultate und die Erstellung der Laborliste. Er ersetzt die bisher jährlich erscheinenden Ringanalysenberichte. Die laborspezifischen Auswertungen sind nicht mehr enthalten, diese können den Jahres- und Quartalberichten des WEPAL entnommen werden. Die Laborliste wird weiterhin jährlich erscheinen, zukünftig ergänzt mit den Angaben zur Laborvergleichbarkeit.

1 Öffentliche Laborliste

1.1 Zweck und Inhalt

Die Laborliste gibt Hinweise über die Richtigkeit der Resultate eines Labors (Qualitätskriterium) und berücksichtigt die Resultate der letzten beiden Kalenderjahre. Die Laborliste ist eine Positivliste, d.h. es wird nur angegeben ob erfüllt wurde. Keine Angabe bedeutet entweder keine Teilnahme oder nicht erfüllt. Die einzelnen Laborresultate (Ausgangsdaten) und die laborspezifischen Auswertungen sind in den entsprechenden ISE- und SETOC-Quartalsberichten vom WEPAL zu finden und können bei den Labors angefragt werden. Auf weitere tabellarische oder graphische Auswertungen (wie sie in den Jahren 1995 - 2016 durch die NABO gemacht wurden, siehe Wächter (2016)) wird verzichtet.

1.2 Kriterien zur Erstellung der Laborliste

Die Bewertung der Qualität der eingereichten Laborresultate erfolgt nach Kap. 2.2 und wird für die Laborliste gemäss untenstehenden Kriterien zusammengefasst. Die Bewertung der einzelnen Resultate erfolgt jährlich und wird den Labors in anonymisierter Form zur Stellungnahme zugestellt. Die Nennung auf der Öffentlichen Laborliste ist freiwillig und muss jährlich schriftlich bestätigt werden.

- 1. In der Laborliste werden diejenigen Laboratorien aufgeführt, die mindestens ein gültiges Laborresultat eingeschickt haben.
- 2. <u>Beurteilbare Proben</u> sind jene, die in die Auswertung einbezogen wurden. Liegt der Sollwert (bei N>7: Mittelwert NDA, sonst Median) minus die Erwartungsstreuung (siehe Kap. 4.2) unter der maximalen Mindestbestimmungsgrenze (siehe Kap. 3.4), wird bei dieser Probe der entsprechende der Parameter aus der Bewertung ausgeschlossen.
- 3. Das <u>Qualitätskriterium (QK)</u> eines Parameters ist erfüllt, wenn mindestens 75 % der beurteilbaren Proben die qualitativen Anforderungen von Punkt 6 in Kap. 4.1 erfüllen und mind. 5 Teilnehmer verzeichnet sind.
 - Kann aufgrund mangelnder Daten das Qualitätskriterium nicht ermittelt werden, wird das Teilnahmekriterium in der Laborliste speziell gekennzeichnet.
- 4. Das <u>Teilnahmekriterium</u> ist erfüllt, wenn
 - Mind. 4 x teilgenommen in den letzten beiden Kalenderjahren (jeweils Quartal 1 und 3) und
 - 75 % aller Resultate des Datenkollektivs (siehe 4.1 Punkt 1) eingereicht wurden. Mehrmals verschicke Proben werden nur einmal berücksichtig (1. Messung)
 (TNK1)
 - Oder, das Qualitätskriterium im vergangenen Jahr erfüllt wurde und das Labor im aktuellen Jahr teilgenommen hat.
 (TNK2)

1.3 Praxisnahe Vergleichbarkeit der Labors

Die Laborvergleichbarkeit ist aus allen validierten Resultaten ohne grobe Ausreisser (**) berechnet. Auf diese Weise erhält man eine Vergleichbarkeit, welche die Unsicherheit von Routine-Schadstoffanalysen in Böden realitätsnahe wiedergibt. Die Vergleichbarkeit ist auf Richtwerthöhe für ca. 95 % der Laborresultate (±2 SD) ausgewiesen. Je geringer die relative Standardabweichung (CV) ist, desto besser ist die Vergleichbarkeit. Aus den Regressionsgleichungen lassen sich die relativen Streuungen der Laborresultate für verschiedene Konzentrationsniveaus berechnen, sofern es die Datenlage erlaubt.

Bis anhin wurden diese Angaben in den Jahresberichten der Ringanalyse publiziert (Wächter 2016). Neu sind diese Angaben Bestandteil der Laborliste.

1.4 Publikation

Die Öffentliche Laborliste wird jährlich aktualisiert und ist auf der Homepage der NABO einsehbar: www.nabo.admin.ch \rightarrow Service \rightarrow VBBo-Ringanalysen

1.5 Andere Ringanalysenanbieter

Labore können bei der Ringanalysenleitung beantragen, Resultate anderer Ringanalysenanbieter für die Öffentliche Laborliste einzureichen.

Voraussetzungen sind:

- Der Ringanalysenanbieter ist ISO/IEC 17043 zertifiziert
- Der Analyseparameter wird nicht bereits im VBBo-Ringanalyseprogramm statistisch ausgewertet
- Die Test-Matrix ist vergleichbar mit Boden oder Sediment
- Die Zusammenarbeit, der Datenaustausch, die Einreichfristen etc. werden vorgängig schriftlich mit der Ringanalysenleitung festgehalten

2 VBBo-Ringanalysenprogramm

2.1 Organisation und Ablauf

Die NABO organisiert das VBBo-Ringanalysenprogramm in Zusammenarbeit mit den "Wageningen Evaluating Programmes for Analytical Laboratories" (WEPAL, www.wepal.nl) der Universität Wageningen. Gegenstand sind die beiden Programme "International Soil-analytical Exchange" (ISE) und "International Sediment Exchange for Tests on Organic Contaminants" (SETOC). Anmeldungen sind jederzeit bei der Ringanalysenleitung und dem WEPAL möglich.

WEPAL verschickt für beide Programme (ISE/SETOC) in den Monaten Januar, April, Juli und Oktober je 4 repräsentative Proben. Die Resultate müssen für die Auswertung zu folgenden Terminen bei WEPAL vorliegen:

- 1. Quartal (Januar März): vor dem 1. April
- 2. Quartal (April Juni): vor dem 1. Juli (Teilnahme fakultativ)
- 3. Quartal (Juli September): vor dem 1. Oktober
- 4. Quartal (Oktober Dezember): vor dem 1. Januar (Teilnahme fakultativ)

<u>Für die Öffentliche Laborliste werden nur die Resultate der Quartale 1 und 3 berücksichtigt</u>. Fakultativ kann an den anderen Runden teilgenommen werden. Bei Neuzugängen können im ersten Jahr alle Quartale berücksichtig werden.

Hinweis: Die PCDD/F (SETOC-Programm) sind nur in den Proben des 1. Quartals zu analysieren.

Die fristgerecht eingetroffenen Laborresultate werden von WEPAL quartalsweise in Auswertungsberichten (ISE-/SETOC-Quarterly Reports) zusammengestellt und den Labors online zur Verfügung gestellt. Es ist die Aufgabe der Teilnehmer, die Resultate auf offensichtliche Fehler zu prüfen (z.B. Proben- oder Einheiten-Verwechslung). In den Jahresberichten (Annual Reports), welche im Mai oder Juni des folgenden Jahres erscheinen, werden nur offensichtliche Übermittlungsfehler eingegangener Resultate korrigiert.

Die NABO erstellt die provisorische Laborliste aus den WEPAL-Daten der letzten beiden Kalenderjahre. Das VBBo-Ringanalysenprogramm wird vertraulich unter Codierung der Laboratorien durchgeführt. Nur auf ausdrückliche Einwilligung der Teilnehmerlaboratorien werden diese unter Aufdeckung der Identität in die "Öffentliche Laborliste" (Eignungsprüfung) aufgenommen, welche jährlich aktualisiert wird. Schematisch ist die Organisation in der folgenden Abbildung zusammengefasst:

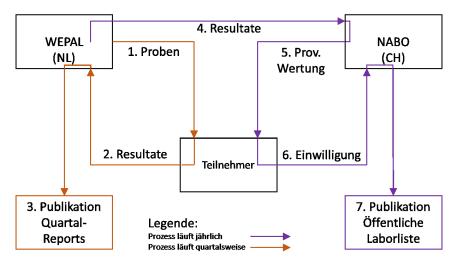


Abbildung 1: Schematische Darstellung der Akteure und dem Informationsfluss

2.2 Teilnahmebedingungen

Ausser Gebühren stellt WEPAL keinerlei Bedingungen. Das VBBo-Ringanalysenprogramm dagegen legt folgende Teilnahmebedingungen fest:

- Vorgehen nach den Referenzmethoden (siehe Kap. 3)
- Gleichbehandlung der VBBo-Ringanalysenproben wie die Routineproben (gleiche Lagerung, Probenvorbereitung, Analyse, Anzahl Wiederholungen, etc.)
- Einhaltung der maximalen Mindestbestimmungsgrenze (siehe Kap 3.4)

3 Analysenprogramm und –vorschriften

Die Parameter in der Laborliste umfassen nur einen Teil der ISE- und SETOC-Programme und beruhen weitgehend auf prioritären Bodenschadstoffen für welche im Anhang 1 und 2 der VBBo (1998) Richt-, Prüf- und Sanierungswerte festgelegt sind.

3.1 Anorganische Schadstoffe (ISE-Programm)

In der VBBo (1998) wird zwischen Totalgehalten und löslichen Gehalten unterschieden:

VBBo Totalgehalte:

Extraktion mit c(HNO₃) 2 mol/L: Cd, Co¹⁾, Cr, Cu, Hg, Mo, Ni, Pb, Tl, Zn

Aufschluss mit NaOH- Schmelze: F

VBBo lösliche Gehalte:

Extraktion mit c(NaNO₃) 0.1 mol/L: Cd, Cu, Ni, Pb, Zn

Extraktion mit Wasser: F

Die Extraktionsvorschriften sind in der aktuellsten Ausgabe der Schweizerischen Referenzmethoden der Eidg. landwirtschaftlichen Forschungsanstalten (Band 3) festgehalten (Bezugsquelle: Agroscope, Reckenholzstrasse 191, 8046 Zürich).

Die Messmethode der Extrakte ist nicht vorgeschrieben, die Wahl der Messgeräte ist frei. Beispielhaft ist auch hier auf die oben erwähnten Referenzmethoden verwiesen.

3.2 Organische Schadstoffe (SETOC-Programm)

PAK: 16 Leitsubstanzen gemäss der "EPA-priority pollutants list":

Naphthalin, Acenaphthylen, Acenaphthen, Fluoren, Phenanthren, Anthracen, Fluoranthen, Pyren, Benzo[a]anthracen, Chrysen, Benzo[b]fluoranthen, Benzo[k]fluoranthen, Benzo[a]pyren, Indeno[1,2,3-cd]pyren, Dibenzo[a,h]anthracen, Benzo[ghi]perylen und PAK Summe 16

PCB: 7 Isomere IUPAC-Nr.:

28, 52, 101, 118, 138, 153, 180 und PCB Summe 7

¹ Programmelemente der Vorgängerverordnung VSBo (1986)

PCDD/F: 17 humantoxische Kongenere der polychlorierten Dibenzo-*p*-dioxine und polychlorierten Dibenzofurane (BUWAL 1997: 127):

- 2,3,7,8,-Cl4DD	- CI8DD	- 1,2,3,6,7,8-Cl6DF
- 1,2,3,7,8-Cl5DD	- 2,3,7,8-Cl4DF	- 2,3,4,6,7,8-Cl6DF
- 1,2,3,4,7,8-Cl6DD	- 2,3,4,7,8-Cl5DF	- 1,2,3,4,6,7,8-Cl7DF
- 1,2,3,7,8,9-Cl6DD	- 1,2,3,7,8-Cl5DF	- 1,2,3,4,7,8,9,-Cl7DF
- 1,2,3,6,7,8-Cl6DD	- 1,2,3,4,7,8-Cl6DF	- CI8DF
- 1,2,3,4,6,7,8-Cl7DD	- 1,2,3,7,8,9-Cl6DF	

Für die Bestimmung der organischen Schadstoffe ist die Wahl der Analysenmethode frei. Auf der NABO-Homepage kann eine Beispielmethode für die Bestimmung von PAK und PCB heruntergeladen werden.

Die Beispielmethode kann hier heruntergeladen werden:

http://www.bafu.admin.ch/bodenschutz/10161/10178/index.html?lang=de&download=NHzLpZeg7t,lnp6I0NTU042I2Z6In1acy4Zn4Z2qZpn O2Yuq2Z6gpJCDfYJ gmym162epYbg2c JjKbNoKSn6A--

Für die Anforderungen an die Analysenvorschriften wird auf die vom BAFU herausgegebenen Wegleitungen verwiesen:

www.bafu.admin.ch → Publikationen

- Qualitätssicherungskonzept (Oehme 2005)
- Bestimmung PAK in Böden mittels GC/MS (Oehme 2001)
- Bestimmung von PCB in Böden mittels GC/MS (Oehme 2003)

3.3 Andere Schadstoffe oder Bodenkennwerte

Grundsätzlich ist es möglich, dass Schweiz-spezifische Bodenkennwerte oder Schadstoffe in das ISE oder SETOC-Programm angenommen werden. Bedingung ist eine genügend grosse Beteiligung, der Labors (mind. 7). Die neuen Parameter werden dann automatisch in den Berichten des WEPALs ausgewertet, sie werden jedoch nicht automatisch in die Öffentliche Laborliste aufgenommen. Neue Parameter können in Absprache mit der Ringanalysenleitung und dem WEPAL aufgenommen werden.

3.4 Maximale Mindestbestimmungsgrenze

In der Praxis ist es üblich, bei Proben mit sehr tiefen Gehalten, so genannte "kleiner als Werte" (kurz "< Werte") anzugeben. Diese Resultate sagen aus, dass der Gehalt der Probe unter der vom Labor angegebenen Bestimmungsgrenze liegt.

Die maximale Mindestbestimmungsgrenze für die einzelnen Analyte (früher als "maximal akzeptierte <°Werte" bezeichnet (Wächter 2016)) orientieren sich an den VBBo-Richtwerten und sind in den Tabelle 1 (Schwermetalle) und 2 (organische Schadstoffe) festgehalten. Für die Bewertung siehe Kap. 4.1 Punkt 4ff.

Tabelle 1: Schwermetalle: maximale Mindestbestimmungsgrenze im Vergleich zu tiefen natürlichen Gehalten und Richtwerten

		VBBo Totalgehalte	
Parameter	Maximale Mindest- bestimmungsgrenze	10 %-Quantile der NABO- Standorte (Meuli et al., 2014)	VBBo-Richtwert
	(mg/kg)	(mg/kg)	(mg/kg)
Cd-tot	0.05	0.14	0.8
Co-tot	0.5	4.2	25 ¹⁾
Cr-tot	5	13.8	50
Cu-tot	2.5	9.3	40
lg-tot	0.01	0.04	0.5
∕lo-tot	0.25	0.1	5
li-tot	2.5	13.0	50
b-tot	5	16.6	50
l-tot	0.05	0.06	1.0 ¹⁾
n-tot	5	37.1	150
-tot	25	262	700
		VBBo lösliche Gehalte	
Cd-sol	0.005	0.0005	0.02
Cu-sol	0.05	0.03	0.7
li-sol	0.025	0.005	0.2
b-sol	0.025	0.001	1.0 ¹⁾
'n-sol	0.05	0.01	0.5
-sol	2.5	2.0	20

¹⁾ Richtwert nach VSBo (1986)

 ${\it Tabelle~2: Organische~Schadstoffe: maximale~Mindestbestimmungsgrenze}$

Polyzyklische aromatische Kohlenwasserstoffe (PAK)		maximale Mindest- bestimmungsgrenze		10 %-Quantile der NABO-Standorte* μg/kg	VBBo-Richtwert μg/kg TS Böden bis 15 % Humus μg/dm³ für Böden über 15 % Humus		
PAK ∑16	PAK Summe	280	μg/kg	70.0	1000		
ANA	Acenaphten	20	μg/kg	1.0			
ANT	Anthracen	20	μg/kg	0.3			
ANY	Acenaphtylen	20	μg/kg	0.3			
BPE	Benzo[ghi]perylen	20	μg/kg	1.7			
BaA	Benzo(a)anthracen	10	μg/kg	2.9			
BaP	Benzo[a]pyren	10	μg/kg	3.2	200		
BbF	Benz[b]fluoranthen	20	μg/kg	1.6			
BkF	Benzo[k]fluoranthen	10	μg/kg	3.0			
CHR	Chrysen	10	μg/kg	2.8			
DBA	Dibenzo[a,h]anthrac	20	μg/kg	0.6			
FLT	Fluoranthen	20	μg/kg μg/kg	6.7			
FLU	Fluoren	20	μg/kg μg/kg	1.0			
IPY	Indeno[1,2,3-	20	μg/kg μg/kg	2.9			
NAP	Naphtalin	20	μg/kg μg/kg	6.5			
PHE	Phenantren	20		16.1			
PYR		20	μg/kg	4.3			
	Pyren rierte Biphenyle (PCB)	20	μg/kg	4.5			
PCB ∑ ₇	rierte biplieliyle (PCB)	13	ug/kg	0.65	100		
PCB 27 PCB-28		1	μg/kg μg/kg	0.05	100		
PCB-52		2	μg/kg μg/kg	0.09			
PCB-32 PCB-101		2		0.46			
			μg/kg	0.23			
PCB-118		2	μg/kg				
PCB-138		2	μg/kg	0.53			
PCB-153		2	μg/kg	0.54			
PCB-180	1.5 (2022/5)	2	μg/kg	0.32	Van nili		
Dioxine	und Furane (PCDD/F)		ale Mindest- mungsgrenze	10 %-Quantile ausge- wählter NABO- Standorte ² *	VBBo-Richtwert ng I-TEQ/kg für Böden bis 15 % Humus ³		
				ng/kg	ng I-TEQ /dm³ für Böden über 15 % Humus		
PCDD/F	Summe	85	ng/kg	80.0	5		
	,7,8-Cl ₇ DD	5	ng/kg	6.2			
1,2,3,4,7		5	ng/kg	0.28			
1,2,3,6,7		5	ng/kg	0.50			
1,2,3,7,8		5	ng/kg	0.42			
1,2,3,7,8		5	ng/kg	0.41			
2,3,7,8-C Cl ₈ DD	.I4UU	5 5	ng/kg ng/kg	0.11 33.0			
	7 8-Cl ₇ DF	5	ng/kg	2.8			
1,2,3,4,6,7,8-Cl ₇ DF 1,2,3,4,7,8,9-Cl ₇ DF		5	ng/kg	0.51			
1,2,3,4,7,8-Cl ₆ DF		5	ng/kg	0.64			
1,2,3,6,7,8-Cl ₆ DF		5	ng/kg	0.66			
1,2,3,7,8,9-Cl6DF		5	ng/kg	0.46			
1,2,3,7,8-Cl₅DF		5	ng/kg	0.16			
2,3,4,6,7,8-Cl ₆ DF		5	ng/kg	0.80			
2,3,4,7,8		5	ng/kg	0.54			
2,3,7,8-0	Cl ₄ DF	5	ng/kg	0.37			
Cl ₈ DF		5	ng/kg	4.7			

² berechnet aus Schmid et al. (2005), Desaules et al. (2008), Bucheli & Brändli (2006) und oder Gubler et al. (2015)

³ I-TEQ = Internationaler Toxizitätsäquivalente

4 Auswertung und Beurteilung der Resultate

Bei der Auswertung für die Öffentliche Laborliste handelt es sich um eine Folgeauswertung der ISEund SETOC-Jahresberichten von WEPAL. Die Grundsätze und Kriterien sind in den folgenden Kapiteln erläutert.

4.1 Rahmenbedingungen und Kriterien zur Qualitätsbeurteilung

- 1. Als Datenkollektiv werden die Quartale 1 & 3 der vergangenen beiden Kalenderjahre berücksichtigt.
 - Bei Neuzugängen können alle vier Quartale des ersten Jahres berücksichtigt werden.
- Die Kenngrössen Median, robuster Mittelwert (NDA), robuste Standardabweichung und der Z-Wert (Z-Score) werden von WEPAL übernommen.
 Für Details zur robusten Auswertung siehe Cofino (2000) oder die Erläuterungen in den Berichten von WEPAL.
- 3. Mehrmals verschickte Proben werden nur einmal (im ersten Durchgang) bewertet.
- 4. Bewertung der Parameter nach:
 - <u>Z-Score</u>; wenn die Anzahl der eingegangenen Resultate mindestens 8 beträgt (N>7).
 - <u>Erwartungsstreuung</u> (siehe Kap. 4.2); bei 3 bis 6 Resultaten kann nur die Abweichung vom Median berechnet werden.
- 5. Ein Laborresultat erfüllt die qualitativen Anforderungen:
 - wenn die Abweichung vom Sollwert (Mittelwert NDA) nicht mehr als ± 2 Z-Score ist.
 - oder die relative Abweichung vom Sollwert (bei N>7: Mittelwert NDA, sonst Median) innerhalb der Erwartungsstreuung liegt (siehe Kap. 4.2).

4.2 Erwartungsstreuung

Die Erfahrung hat gezeigt, dass die Z-Score-Wertung aufgrund der kleinen Standardabweichung (basierend auf der Statistik nach Cofino 2000) zum Teil sehr streng ist (Wächter 2016). Um dem entgegenzuwirken, wird neben dem Z-Score zusätzlich die Erfahrungsstreuung der vergangenen Jahre (vgl. Tabelle 3) betrachtet. Liegt das angegebene Laborresultat innerhalb der aufgeführten Streuung vom Median, so wird es als positiv gewertet (d. h. Qualitätskriterium erfüllt), selbst wenn der Betrag des Z-Scores über 2 liegt. Die maximal akzeptierte Abweichung vom Sollwert basiert auf den Erfahrungswerten aus den Ringversuchen der Jahren 1995 – 2015. Grundsätzlich gilt, dass die Streuung konzentrationsabhängig ist (Horwitz 2006). Wenn der Unterschied der maximalen Abweichung zwischen den Bezugs- respektive Schwellenwerten kleiner als 10 % ist, wurden die Wertebereiche zusammengefasst. Die detaillierten Ergebnisse sind im Anhang 5 zu finden.

Tabelle 3: Erwartungsstreuung für die Beurteilung

Element	Wertebereich	max. Abweichung
VBBo-Totalgehalte Schwermetalle	mg/kg	%
Cd-tot	allg.	15
Co-tot	allg.	10
Cr-tot	allg.	10
Cu-tot	allg.	10
Hg-tot	allg.	15
Mo-tot	allg.	10
Ni-tot	allg.	10
Pb-tot	allg.	10
TI-tot	allg.	30
Zn-tot	allg.	10
F-tot	allg.	15
VBBo lösliche Gehalte Schwermetalle	mg/kg	%
Cd-sol	< 0.1	25
	≥ 0.1	15
Cu-sol	allg.	20
Ni-sol	allg.	25
Pb-sol	allg.	15
Zn-sol	< 5	20
	≥ 5	10
F-sol	allg.	20
Polizyklische aromatische Kohlenwasserstoffe (PAK)	mg/kg	%
Summe PAK [EPA-16]	allg.	35
	μg/kg	%
Benzo[a]pyren	< 200	55
	≥ 200	45
Polychlorierte Biphenyle (PCB)	μg/kg	%
Summe PCB [7 Isomere IUPAC]	allg.	45
Dioxine & Furane (PCDD/F)	ng/kg	%
Summe PCDD/F	allg.	130

Die Erwartungsstreuung für Dioxin und Furane (PCDD/F) nach Horwitz (2006) ermittelt, da die Datengrundlage der Ringversuche nicht ausreichte.

Dank

Bedanken möchte ich mich bei Rico Ryser (Umweltanalytik, Kt. BE) und Christian Balsiger und seinem Team (AWEL, Kt. ZH) für die Diskussionen und den Input.

Ein Dankeschön gebührt der Sektion Boden der Abteilung Boden und Biotechnologie des Bundesamtes für Umwelt (BAFU) für die Unterstützung und das Vertrauen in diese Arbeit.

Literaturverzeichnis

BUWAL, 1997. Dioxine und Furane. Schriftenreihe Umwelt Nr. 290. Bundesamt für Umwelt, Wald und Landschaft (Hrsg.). 3003 Bern.

BUWAL, 2001. Erläuterungen zur Verordnung über Belastungen des Bodens (VBBo). VU-4809-D. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern.

COFINO, W.P. et al., 2000. A new model for the inference of population characteristics from experimental data using uncertainties.

Desaules, A., Ammann, S., Blum, F., Brandli, R.C., Bucheli, T.D., Keller, A., 2008. PAH and PCB in soils of Switzerland - status and critical review. Journal of Environmental Monitoring 10, 1265-1277.

Gubler, A., Wächter, D., Blum, F., Bucheli, T.D., 2015. Remarkably constant PAH concentrations in Swiss soils over the last 30 years. Environmental Science-Processes & Impacts 17, 1816-1828.

Horwitz, W., Kamps, L.R. & Boyer, K.W., 1980. Quality Assurance in the Analysis of Foods for Trace Constituents. J. Assoc. Off. Anal. Chem., 63(6): pp. 1344-1354.

Horwitz, W. & Albert, R., 2006. The Horwitz Ratio (HorRat): A useful index of method performance with respect to precision. J. AOAC Int., 89: pp. 1095-1109.

Keller, T. & Desaules, A., 2001. Böden der Schweiz – Schadstoffgehalte und Orientierungswerte (1990-1996). Umwelt-Materialien Nr. 139. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), CH-3003 Bern. 115 pp.

Meuli, R.G., Schwab, P., Wächter, D., Ammann, S., 2014. Ergebnisse der Nationalen Bodenbeobachtung (NABO). Zustand und Entwicklung 1985 – 2004. Bundesamt für Umwelt (BAFU), Umwelt-Wissen Nr 1409: 94 S.

Oehme, M., 2001. Wegleitung Bestimmung von polyzyklischen aromatischen Kohlenwasserstoffen in Böden mittels GC/MS - Methodenempfehlung. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), 3003 Bern. 27 pp.

Oehme, M., 2003. Wegleitung Bestimmung von polychlorierten Biphenylen in Böden mittels GC/MS - Methodenempfehlung. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), 3003 Bern. 26 pp.

Oehme, M., 2005. Quality Assurance Concept - Analysis of PAH, PCB and Dioxins in Soil. Swiss Agency for Environment, Forests and Landscape SAFEL (ed.), 3003 Bern. 35 pp.

Schmid, P., Gujer, E., Zennegg, M., Bucheli, T.D., Desaules, A., 2005. Correlation of PCDD/F and PCB concentrations in soil samples from the Swiss soil monitoring network (NABO) to specific parameters of the observation sites. Chemosphere 58, 227-234.

VBBo, 1998. Verordnung über Belastungen des Bodens (VBBo) vom 1. Juli 1998, Stand 12.04.2016,. SR 814.12.

VSBo, 1986. Verordnung vom 9. Juni 1986 über Schadstoffe im Boden. SR 814.12. (aufgehoben).

Wächter, D. (2016). VBBo-Ringanalysenbericht 2015. Zürich, Agroscope, Nr. 212

Anhang

5 Erwartungswerte

5.1 Schwermetalle

Tabelle 4: Erwartungswerte für Schwermetalle

Element	Scl	hwellenwert	Ringver- suche 1995 - 2015	Horwitz (2006)			max. Abweichung vom
			2 CV	Hor*0.5	Horw	Horw *2	Mittelwert
		mg/kg TS	%	%	%	%	%
Cd-tot	RW	0.8	15.7	8.2	16.4	32.9	15.0
	PW	2	11.1	7.2	14.3	28.6	10.0
	sw	30	4.0	4.8	9.5	19.1	5.0
Co-tot	RW	25	8.9	4.9	9.8	19.6	10.0
Cr-tot	RW	50	11.3	4.4	8.8	17.7	10.0
Cu-tot	RW	40	9.0	4.6	9.1	18.3	10.0
	PW	150	6.7	3.7	7.5	15.0	5.0
	SW	1000	4.3	2.8	5.6	11.3	5.0
Hg-tot	RW	0.5	13.8	8.8	17.6	35.3	15.0
Mo-tot	RW	5	8.9	6.2	12.5	25.0	10.0
Ni-tot	RW	50	9.9	4.4	8.8	17.7	10.0
Pb-tot	RW	50	11.1	4.4	8.8	17.7	10.0
	PW	200	8.3	3.6	7.2	14.4	10.0
	SW	2000	5.1	2.5	5.1	10.2	5.0
TI-tot	RW	1	34.2	7.9	15.9	31.8	35.0
Zn-tot	RW	150	9.2	3.7	7.5	15.0	10.0
	PW	200	8.6	3.6	7.2	14.4	10.0
	SW	2000	5.0	2.5	5.1	10.2	5.0
F-tot	RW	700	13.0	3.0	5.9	11.9	15.0
Cd-sol	RW	0.02	23.2	14.3	28.6	57.1	25.0
	SW	0.1	17.0	11.2	22.4	44.9	15.0
Cu-sol	RW	0.7	17.8	8.4	16.8	33.5	20.0
	SW	0.4	21.2	9.1	18.2	36.5	20.0
Ni-sol	RW	0.2	26.0	10.1	20.2	40.4	25.0
Pb-sol	RW	1	16.0	7.9	15.9	31.8	15.0
Zn-sol	RW	0.5	22.0	8.8	17.6	35.3	20.0
	PW	5	10.1	6.2	12.5	25.0	10.0
F-sol	RW	20	19.0	5.1	10.1	20.3	20.0

5.2 Organische Schadstoffe

Tabelle 5: Erwartungswerte für organische Schadstoffe

Parameter	Bezugswert	Ringver- suche 1995 - 2015	Horwitz (2006)			max. Abweichung vom
		2 CV	Hor*0.5	Horw	Horw *2	
Polizyklische aromatis	che Kohlenw	vasse rstoffe	(PAK)			
	mg/kg	%				
Summe PAK	1	33.7	7.9	15.9	31.8	35
	20	36	5.1	10.1	20.3	35
	100	38	4.0	8.0	15.9	40
	μg/kg	%				
Acenaphten	200	83	10.1	20.2	40.4	85
Acenaphtylen	200	141	10.1	20.2	40.4	140
Anthracen	200	69	10.1	20.2	40.4	70
Benz[b]fluoranthen	200	72	10.1	20.2	40.4	70
Benzo[a]anthracen	100	55	11.2	22.4	44.9	55
Benzo[a]pyren	200	57	10.1	20.2	40.4	55
	2'000	51	7.2	14.3	28.6	50
	10'000	47	5.6	11.2	22.5	45
Benzo[g,h,i]perylen	200	66	10.1	20.2	40.4	65
Benzo[k]fluoranthen	100	71	11.2	22.4	44.9	70
Chrysen	100	60	11.2	22.4	44.9	60
Dibenzo[a,h]anthracen	200	89	10.1	20.2	40.4	90
Fluoranthen	200	53	10.1	20.2	40.4	55
Fluoren	200	71	10.1	20.2	40.4	70
Indeno[1,2,3-cd]pyren	200	72	10.1	20.2	40.4	70
Naphtalin	200	95	10.1	20.2	40.4	95
Phenantren	200	57	10.1	20.2	40.4	55
Pyren	200	50	10.1	20.2	40.4	50
Polychlorierte Biphen	yle (PCB)					
	μg/kg	%				
Summe PCB	200	45	10.1	20.2	40.4	45
	1'000	44	7.9	15.9	31.8	45
PCB 028	20	85	14.3	28.6	57.1	85
PCB 052	20	90	14.3	28.6	57.1	90
PCB 101	20	80	14.3	28.6	57.1	80
PCB 118	20	76	14.3	28.6	57.1	75
PCB 138	20	88	14.3	28.6	57.1	90
PCB 153	20	80	14.3	28.6	57.1	80
PCB 180	20	80	14.3	28.6	57.1	80
Dioxine und Furane (P	PCDD/F)					
	ng/kg			_		
Summe PCDD/F	85		32	65	130	130

