Impact of herbage proportion, animal breed, lactation stage and season on the fatty acid and protein composition of milk

Cornelia Bär, Michael Sutter, Christoph Kopp, Patrick Neuhaus, Reto Portmann, Lotti Egger, Beat Reidy, Walter Bisig

PII: S0958-6946(20)30155-2

DOI: https://doi.org/10.1016/j.idairyj.2020.104785

Reference: INDA 104785

To appear in: International Dairy Journal

Received Date: 10 December 2019

Revised Date: 22 May 2020

Accepted Date: 23 May 2020

Please cite this article as: Bär, C., Sutter, M., Kopp, C., Neuhaus, P., Portmann, R., Egger, L., Reidy, B., Bisig, W., Impact of herbage proportion, animal breed, lactation stage and season on the fatty acid and protein composition of milk, *International Dairy Journal*, https://doi.org/10.1016/j.idairyj.2020.104785.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

1	Impact of herbage proportion, animal breed, lactation stage and season on the fatty acid and
2	protein composition of milk
3	
4	
5	
6	
7	
8	Cornelia Bär ^{a#} *, Michael Sutter ^{b#} , Christoph Kopp ^b , Patrick Neuhaus ^a , Reto Portmann ^a , Lotti Egger ^a ,
9	Beat Reidy ^b , Walter Bisig ^a
10	
11	
12	
13	
14	
15	^a Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
16	^b HAFL, Länggasse 85, 3052 Zollikofen, Switzerland
17	[#] These authors contributed equally to this work.
18	
19	
20	
21	
22	
23	*Corresponding author. Tel.: +41 58 462 59 58
24	E-mail address: cornelia.baer@agroscope.admin.ch (C. Bär)
25	

	Journal Pre-proof
26	
27	ABSTRACT
28	
29	Impact of herbage proportion, breed, average days in lactation (ADiL), and season on bulk milk
30	composition of 12 dairy farms were investigated over a year using a mixed effect model approach. A
31	higher proportion of herbage led to higher contents of omega 3 (n-3) fatty acids (FAs), conjugated
32	linoleic acids (CLA), vaccenic acid, and branched chain FAs (+0.08, +0.08, +0.19, +0.05 g 100 g $^{-1}$ fat,
33	respectively). Breed influenced n-3 FAs and CLA (+0.31, +0.17 g 100 g^{-1} fat, respectively), κ -casein,
34	lipoprotein lipase, β -lactoglobulin, total whey protein, fatty acid synthase, and glycoprotein-2, resulting
35	in +0.96, -0.019, -0.83, -1.12, +0.009, and +0.01 g 100 g ⁻¹ measured proteins, respectively, in Brown
36	Swiss milk. ADiL influenced lactoferrin and crude protein; season affected all FAs and proteins
37	examined. The identification of these quantitative relationships allow predictions that provide new
38	insights for the production, processing and commercialisation of grassland-based dairy products.
39	
40	

41 1. Introduction

42

43 In grassland dominated regions fresh or conserved herbage provides an important feed 44 resource for ruminants (Lüscher et al., 2019). Swiss dairy farms traditionally have a high proportion of 45 herbage in the diet of cows - 85% for dairy farms and 62% for mixed farms with milk production and 46 arable farming (Schmid & Lanz, 2013). Utilisation of herbage for dairy production has a number of 47 important advantages, as this promotes the utilisation of locally available resources (Winkler, Cutullic, 48 & Aeby, 2012), contributes to animal welfare (Peyraud, Delaby, Delagarde, & Pavie, 2014), reduces 49 feed-food competition (Ertl, Klocker, Hörtenhuber, Knaus, & Zollitsch, 2015) and can improve the 50 nutritional quality of the products (Bisig et al., 2008).

51 Concomitant with increasing consumer demands for more sustainable and animal friendly 52 food, in several countries, including Switzerland, commercial milk produced with a higher-than-53 average proportion of herbage is therefore marketed successfully. However, so far, studies on the 54 impact of herbage on milk composition of different cow breeds, particularly comprehensive analysis 55 that includes the influence of the breed, lactation stage or season, as well as the quantification of 56 minor proteins, have been lacking. Over the last five decades, various studies have been published 57 on the influence of cows' diet on fatty acids (FAs) in milk fat. Increased proportions of herbage in the 58 diet reduce the amount of saturated FAs (SFAs) in milk fat (Bisig et al., 2008; Collomb et al., 2008a; 59 Couvreur, Hurtaud, Lopez, Delaby, & Peyraud, 2006; Ferlay et al., 2008; Leiber, Kreuzer, Wettstein, & 60 Scheeder, 2005). In the past, SFAs of dairy origin were generally associated with cardiovascular 61 disease (CVD) in humans. However, more recent scientific evidence indicates that the consumption of 62 regular fat dairy products does not increase the risk of CVD and that it is inversely correlated with 63 weight gain and the risk of obesity (Astrup et al., 2016; Drouin-Chartier et al., 2016). The levels of 64 polyunsaturated FAs (PUFAs) in milk fat increase with an increased proportion of herbage (Bisig et 65 al., 2008; Collomb et al., 2008a; Couvreur et al., 2006; Leiber et al., 2005; O'Callaghan et al., 2016). 66 This is favourable as the two FAs linoleic acid (LA, C18:2 n-6) and α -linoleic acid (ALA, C18:3 n-3), 67 that are essential from a nutritional point of view, as they cannot be synthesised by humans, are part 68 of this group, along with other favourable FAs such as conjugated linoleic acids (CLAs; Fuke & 69 Nornberg, 2017) and long-chain PUFAs (Sanders, 2009). Moreover, the content of branched chain 70 FAs (BCFAs) also increases with increasing proportions of herbage (Collomb et al., 2008a, Couvreur

et al., 2006, Hurtaud, Agabriel, Dutreuil, & Rouille, 2010). This is especially interesting, as it has been
reported that BCFAs introduce apoptosis of human breast cancer cells, inhibit tumour growth in a
mouse model and in cultured cells, and may be important for the development and maintenance of
the human microbiota (Ran-Ressler, Bae, Lawrence, Wang, & Brenna, 2014). Furthermore, they also
increase pancreatic β-cell function (Bainbridge, Cersosimo, Wright, & Kraft, 2016).

76 In contrast to the numerous studies on the influence of feed on milk fat composition, surveys 77 examining the correlation between the composition of cows' diet and the content of individual milk 78 proteins are sparse. One possible reason for this might be either the fact that a straightforward 79 method for absolute quantification of the most abundant milk proteins was missing or that laboratory 80 tests are time-consuming and, therefore, past studies focused only on a few major milk proteins 81 (Brodziak, Barłowska, Król, & Litwińczuk, 2012; Gellrich, Meyer, & Wiedemann, 2014; Heck, van 82 Valenberg, Dijkstra, & van Hooijdonk, 2009; Król, Litwińczuk, Brodziak, & Sawicka-Zugaj, 2010; 83 Schwendel et al., 2017). Another reason for the scarce studies on detailed milk protein composition 84 might be that the protein content in milk depends on numerous aspects such as breed, feed, milking 85 technique, lactation, lactation stage, and season (Kukovics & Németh, 2013), to name the most 86 important. Therefore, the interpretation of results requires an extensive data framework (Schwendel et 87 al., 2015; Stergiadis et al., 2015). Moreover, the content of individual milk proteins appears less 88 influenced by the feed (Schwendel et al., 2012; Walker, Dunshea, & Doyle, 2004). Nevertheless, 89 Brodziak et al. (2012) and Król et al. (2010) found higher absolute contents of the bioactive whey 90 proteins lactoferrin, α-lactalbumin, and β-lactoglobulin in the milk of cows that received higher 91 proportions of grass in their diet than in the milk of cows kept in a total mixed ration (TMR) system. 92 Furthermore, Brodziak et al. (2012) found a higher content of bovine serum albumin (BSA) and 93 lysozyme in the milk of those grass-fed cows.

In the present study, we investigated the influence of herbage proportion, cattle breed,
lactation stage, and season on the composition of the bulk milk produced on 12 farms during one year
by determining over 70 FAs and 19 key milk proteins, resulting in 119 FAs, FA groups, proteins, and
protein groups. For protein analysis, a newly developed multiple reaction monitoring (MRM) method
was used, thereby enabling the simultaneous quantification of not only the main caseins and whey
proteins but also 9 minor proteins associated with the milk fat globule membrane (Bär et al., 2019).
Further, the influence of the statistically significant contributing factors on the 119 measured

	Journal Fic-pioor
101	parameters was quantified with mixed effect models. As a result, it is possible for the first time to
102	make quantitative statements on the relationship between herbage content, breed, lactation stage and
103	season on the detailed milk composition.
104	
105	2. Methods
106	
107	2.1. Selection of farms, sampling, and feed ration surveys
108	
109	Twelve dairy farms, located in the central lowland of Switzerland, were selected for
110	contrasting proportions of fresh and conserved herbage in feed rations (Table 1) and different cattle
111	breeds (Table 2). The farms were not subject to seasonal calving and the calving time was not
112	synchronised (Table 2). Feed rations were determined on the basis of a combined approach of an on-
113	farm survey counterchecked with an energy/protein balance, taking into account the energy and
114	protein requirements of the herd depending on the production level, feed intake, energy, and protein
115	requirements of the herds were calculated for each month and farm, based on Jans, Kessler, Münger,
116	Schori, and Schlegel (2016), with additional data available from breeding associations and the
117	national animal traffic database (i.e., lactation stage, parity, and conformation traits). The calculated
118	ration composition was checked for plausibility with the purchased and on-farm produced feed during
119	a farm visit. The available energy and protein for the on-farm produced feed was estimated, using
120	standard values according to the Swiss Feed Database (Agroscope, 2018).
121	Most of the on-farm produced meadow fodder came from natural meadows consisting of
122	grasses, legumes and herbs. The artificial meadows were mainly composed of perennial ryegrass,
123	annual ryegrass, meadow fescue, timothy, buttercup, red clover and white clover. In the case of
124	purchased feed, the manufacturer's declaration was used. All farms were members of a breeding
125	association, thereby ensuring that the milk quantity and content of each cow was measured monthly
126	over a year. Herbage was defined as fresh herbage (pasture and fresh herbage indoor feeding), hay
127	and silage. On an annual average, the diet of lactating dairy cows on the 12 farms contained 67%
128	herbage, with a considerable variation between the individual farms (Table 1). The annual average
129	corresponds well to values found by Ineichen, Sutter, and Reidy (2016) and Schmid and Lanz (2013)
130	for lowland farms. Average milk yield was 25.27 kg day ⁻¹ cow ⁻¹ . For classification according to breed,

		Journal Pre-proof
131	at leas	st 95% of the herd had to belong to this breed. Consequently, 9 farms were assigned to the
132	breed	group RED and 3 farms to the breed group BS. The composition of the individual herds is
133	specif	ied in Table 2.
134		
135	2.2.	Collection of samples
136		
137		For milk analysis, 2000 mL bulk milk samples were collected once a month and on the same
138	day af	ter morning milking and thorough mixing from the milk tank of the individual farms. Samples
139	were t	ransported refrigerated to the laboratory for FA and protein analysis within 48 h. Out of 144
140	sampl	es, 5 samples had to be excluded from the evaluation, resulting in 139 samples.
141		
142	2.3.	Fatty acid analysis
143		
144		Milk samples were prepared according to Collomb et al. (2008a). High-resolution gas
145	chrom	atography combined with flame ionisation detection and 54 reference FAs (Collomb & Bühler,
146	2000)	were used to determine the FA composition. Fourteen CLA isomers were determined by silver-
147	ion hig	ph-performance liquid chromatography (HPLC) combined with a photodiode array detector,
148	three	reference CLA isomers and synthesised CLA isomers (Collomb, Sieber, & Bütikofer, 2004). The
149	most a	abundant six isomers were evaluated. The total fat content was determined in accordance with
150	Roese	e-Gottlieb, ISO 1211:2010 /IDF 1 (ISO, 2010).
151		
152	2.4.	Protein analysis
153		
154		Milk samples were processed and analysed using MRM in accordance with Bär et al. (2019).
155	The sa	amples were analysed at different time intervals after the sampling was completed. When
156	compa	aring the results, we identified a temporal bias in our data, leading to an overall decrease of the
157	sum o	f all analysed proteins, which might be due to storage time before measurement. Therefore, to
158	elimin	ate this temporal bias, we restricted our analysis of the 19 measured proteins to relative values
159	only, i	e., for each farm the monthly values obtained for the 19 proteins were summed up and set to
160	100%	and the values for the individual proteins were given in g per 100 g measured proteins (g 100

g⁻¹). The crude protein content of milk samples was calculated by multiplying the total nitrogen content, determined in accordance with Kjeldahl, ISO 8968-3:2007/IDF 20-3 (ISO, 2007), by a conversion factor of 6.38.

164

165 2.5. Statistical methods

166

167 2.5.1. Basic model

168 A linear mixed effects model was fitted to several variables, as described below. As fixed 169 effects, herbage, breed, average days in lactation (ADiL), and the month (as a categorical variable) 170 were used, a random intercept was used to model farm effects. To account for residual temporal 171 autocorrelation (within each farm, residuals closer in time may be more highly correlated), a first-order 172 autoregressive AR(1) correlation structure was used. The need for temporal autocorrelation was 173 assessed by calculating a confidence interval for the autocorrelation parameter. The significance of 174 the fixed effects and the categorical variables was assessed with marginal F-tests. Model diagnostics 175 revealed problems with normality for certain models, which were mostly caused by outliers. Cook's D 176 was used to identify influential data points for each model and the results with and without these 177 points were compared. All statistical analyses were performed using R 3.5.3 (R Core Team, 2019) 178 and RStudio 1.2.1335 (RStudio Team, 2018) using the packages nlme 3.1-137 (Pinheiro et al. 2018) 179 and car 3.0-3 (Fox & Weisberg, 2019).

180

181 2.5.2. Variable selection approach

182 As a first step, the model described above was applied to 7 FA and protein variables which 183 had been selected a priori by research interest: n-3s, CLA, BCFAs, total casein, κ-casein, lactoferrin, 184 total whey protein. In the second step, the model was applied to all the 119 FA and protein variables 185 to screen for further interesting results. Results were pre-selected according to their p-values (for 186 herbage, breed, ADiL variables) that were adjusted for multiple testing by employing the Bonferroni-187 Holm adjustment. The variables with an adjusted *p*-value below 0.01 were further analysed. 188 Consequently, the following additional variables were analysed (in total 31): lauric acid C12; methyl-189 dodecanoic acid C13 iso; myristic acid C14; myristoleic acid C14:1 cis; methyl-tetradecanoic acid C15 190 iso; palmitic acid C16:0; trans-hexadecenoic acid C16:1 trans; methyl-hexadecanoic acid C17 iso;

191 stearic acid C18; VA C18:1 trans-11; ratio C18:1 trans-10/trans-11, C18:1 cis-9; octadecenoic acid 192 C18:1 cis-12; rumenic acid C18:2 cis-9,trans-11; octadecadienoic acid C18:2 cis-9,trans-12 and 193 cis,cis methylene interrupted diene (MID) and trans-8,cis-13; C18:2 trans-7,cis-9; C18:2 trans-11,cis-194 13; C18:2 trans-11,cis-13 and cis-9,cis-11; α-linolenic acid C18:3 cis-9,cis-12,cis-15; trans-total with 195 CLA trans; total C18:2 trans,trans non methylene interrupted diene (NMID); eicosatrienoic acid C20:3 196 (n-3); eicosapentaenoic acid C20:5 EPA (n-3); SFA; PUFA; α_{S1} -casein; β-casein; lipoprotein lipase; 197 crude protein; β-lactoglobulin; FAS and GP2.

- 198
- 199 3. Results and discussion
- 200

201 3.1. Fat content and fatty acids

202

203 3.1.1. Fat content

204 The monthly fat content of the milk from the farm with the lowest proportion of herbage 205 (32.5%) was found to be consistently higher in comparison with the milk of the farm with the highest 206 annual proportion of herbage (99.5%) — with the exception of October, in which they contained equal 207 amounts (Supplementary material Table S24). However, comparing the average fat content of the 208 milk of the 12 farms, this is attributable to an individual farm effect, which could be explained, for 209 example, by the different genetics of the animals. During the warm season, the total fat content 210 decreased in the milk of all farms. In the bulk milk from the farms with the highest proportion of 211 herbage, the fat content had a higher variability and was lowest in June (30.1 g kg⁻¹ milk) and highest 212 in April (39.9 g kg⁻¹ milk). Milk of other farms with comparable diets showed a similar behaviour in 213 relation to the variations. Herd management with a high proportion of herbage in the diet is more 214 complex, as nutrient content varied depending on weather conditions and the development stage of 215 grass and herbs. Especially young grass with little fibre can lead to milk fat depression, which could 216 explain these variations in total fat content (Rivero & Anrique, 2015).

217

218 3.1.2. Fatty acids

219 3.1.2.1. Seasonal variation of fatty acids

The content of several FAs in milk fat varied significantly over a year (Table 3). With a high proportion of herbage (99.5%), the n-3 FAs content steadily increased during the summer season,

8

222	with fresh grass and herbs being part of the feed from May to October (1.16–2.12 g 100 g^{-1} fat; Fig.
223	1A), confirming the results observed by Collomb et al. (2008b). A similar seasonal increase was also
224	observed for CLA (Fig. 1 B; Supplementary material Table S24). The sum of BCFAs in the milk
225	produced with a high proportion of herbage increased earlier in the year and reached maxima of 2.37
226	and 2.08 g 100 g ⁻¹ fat in April and October, respectively, and a minimum of 1.55 g 100 g ⁻¹ fat in
227	February (Supplementary material Table S24). With a low proportion of herbage (32.5%), the contents
228	of n-3 FAs varied less at a lower level — in a range from 0.59 g to 1.03 g 100 g^{-1} fat. A similar
229	behaviour was observed for CLA (Fig. 1B; Supplementary material Table S24). For BCFAs, also with
230	a low proportion of herbage, the content increased from 1.45 to 1.98 g 100 g^{-1} fat early in the year,
231	from February to April (Supplementary material Table S24).

232

233 3.1.2.2. Influence of herbage proportion on fatty acids

234 A significant influence of the proportion of herbage in the cow's diet was found for 20 FAs. 235 With an increase of the herbage proportion from 32.5% to 99.5% the content of n-3 FAs, CLA, and 236 BCFAs in the milk increased significantly (p < 0.001; Fig. 2 A and B; Table 3). For a 10%-points higher proportion of herbage in the cows' diet the model yielded an increase of n-3 FAs, CLA, and 237 BCFAs by 0.082, 0.084, and 0.053 g 100 g⁻¹ fat, respectively (Table 4). The contents of n-3 FAs and 238 CLA ranged from 0.46–2.12 g 100 g⁻¹ and 0.28–2.09 g 100 g⁻¹ fat (Table 3 and Supplementary 239 240 material Table S1), reaching the highest content with proportions of herbage up to 99.5%, similar to 241 Collomb et al. (2008b), Dhiman, Anand, Satter, and Pariza, (1999), and Hofstetter, Frey, Gazzarin, 242 Wyss, and Kunz (2014). Similar to the results of Collomb et al., (2008b), CLA isomer C18:2 trans-243 11, cis-13 was the second most abundant isomer (Table 3 and Supplementary material Table S1), but 244 different to their results it did not increase in content with a higher herbage proportion (Table 4). The content of BCFAs ranged from 1.22 to 2.37 g 100 g⁻¹ fat (Table 3 and Supplementary material Table 245 246 S1), which is in the range found by Collomb et al. (2008b) and Gomez-Cortes, Juarez, and de la 247 Fuente (2018). Milk fat contains BCFAs that mainly originate from membranes of ruminal bacteria 248 (Vlaeminck, Fievez, Cabrita, Fonseca & Dewhurst, 2006) and has been reported to play an essential 249 role in the human gut, especially in the intestine of a new-born baby, where they support the 250 colonisation of specific microorganisms in the gut microbiome (Ran-Ressler, Devapatla, Lawrence, &

251 Brenna, 2008). In addition, BCFAs may have other beneficial functions related to CVD, cancer,

252 obesity, and inflammation (Gomez-Cortes et al., 2018).

253 Conversely, Lauric acid (C12:0) and SSFAs decreased with increasing proportion of herbage 254 (Table 4). Moreover, there was a decrease in a minor monounsaturated FA (C18:1 cis-12), as well as 255 for C18:2 cis-9,trans-12 and cis,cis MID and trans-8,cis-13 (Table 4). The increasing individual FAs 256 were VA (C18:1 trans-11), rumenic acid (C18:2 cis-9,trans-11), ALA C18:3 cis-9,cis-12,cis-15 (n-3), 257 the long chain n-3 FA EPA (C20:5), a few minor trans-FAs, and FAs belonging to BCFAs and CLAs. 258 Since the isomerisation and hydrogenation of the α -linolenic acid contained in herbage to VA in the 259 rumen occurs very quickly, VA accumulates in the blood and milk. Therefore, VA increased the most, 10%-points more herbage led to 0.189 g 100 g⁻¹ fat more VA (Table 4). Various positive bioactivities 260 261 in humans, such as anti-inflammatory and anti-carcinogenic effects, have been described for VA 262 (Gomez-Cortes et al., 2018). A large increase was also found in the total PUFA (Table 4).

263

264 3.1.2.3. Influence of breed and average days in lactation on the composition of milk fat

Significant effects of the two breed groups RED and BS on the content of milk FAs were found. The contents of n-3 FAs and total CLA were 0.306 and 0.174 g 100 g⁻¹ fat higher respectively in milk from BS (Fig. 3A,B; Table 4), while the total BCFAs were not significantly different. In contrast to our results, Bainbridge et al. (2016) found no significant difference in total n-3 FAs and total CLA content in milk of Holstein, Jersey, and crossbreeds of the two, but a higher content of BCFAs in the milk of Jersey cows. The difference in those findings could be explained by the different breeds studied.

272 In the presented study, milk of the two breed groups showed also a significant difference in 273 the content of the CLA isomer C18:2 trans-11,cis-13 and a minor monounsaturated FA, C14:1 cis, which were 0.052 g 100 g⁻¹ fat and 0.100 g 100 g⁻¹ fat higher in milk of BS (Table 4). With CLA 18:2 274 275 trans-11,cis13, also the sum of this isomer and C18:2 cis-9,trans-11 was higher in BS milk. C14:1 cis-276 9 in milk is to 90% a product of Δ 9-desaturase activity (Shingfield, Bonnet, & Scollan, 2013). In 277 contrast to our results Soyeurt, Dehareng, Mayeres, Bertozzi, and Gengler (2006) found lower Δ 9-278 desaturase activity for BS and Jersey cows compared with Holstein. However, as in this study, they 279 also observed a slight increase of C14:1 over the lactation period. Per ADiL, the content of this FA in our study increased by 0.001 g 100 g⁻¹ fat, the content of the CLA isomer C18:2 trans-7,cis-9 280

10

increased by 0.00031 g 100 g⁻¹ fat and that of stearic acid C18:0 decreased by 0.007 g 100 g⁻¹ fat
(Table 4). Contrary to our findings, Stoop, Bovenhuis, Heck, and van Arendonk (2009) observed a
minimum in mid lactation for unsaturated FAs and a decrease from days 80 to 150 for C18:0
remaining stable afterwards, whereas Samková et al. (2018) found a minimum for C18:0 in mid
lactation. The differently described course of the C18:0 content in milk over lactation could be
explained by the fact that the results of the two studies are based on different breeds (Friesian
Holstein and Czech Fleckvieh, respectively).

288

289 3.2. Protein

290

291 3.2.1. Crude protein content

The crude protein content in the bulk milk from 12 farms with different ratios of herbage varied 292 between 29.10 and 38.15 g kg⁻¹ milk and followed a seasonal pattern (Supplementary material Table 293 294 S24; Fig. 1C), decreasing from winter to summer, with the lowest concentration from June to 295 September and the highest concentration from October until March. The urea concentrations were 296 lower in winter and higher in summer (Supplementary material Table S24). These results confirm the 297 findings of Křížová et al. (2014), who observed a decrease in the content of fat, crude protein, true 298 protein, casein, and whey protein in the milk of all investigated Czech Fleckvieh and Holstein herds in 299 summer and a simultaneous increase of non-protein-nitrogen (NPN). The breed influenced the fat, 300 crude protein, true protein, casein and NPN content, in favour for the milk of Czech Fleckvieh. 301 Concerning the type of feeding, the fat content was higher and the concentrations of lactose, urea and 302 all protein fractions were lower in the milk of the grazing herds compared with the non-grazing herds. 303 Similar results were found by Ozrenk and Selcuk Inci (2008). However, in this study, no significant 304 effect of the proportion of herbage in the fodder on the crude protein content was found (Fig. 2C; 305 Table 5). Moreover, no influence of the breed was found in this regard (Fig. 3C; Table 5). In contrast, 306 the ADiL significantly increased the average crude protein content by 0.014 g kg⁻¹ per day after 307 calving (Fig. 4C; Table 5). In good agreement with our findings, Auldist, Napper, and Kolver (2000) 308 observed that the seasonal variation of total protein content showed no significant difference in the 309 milk from pasture-fed cows and those fed with TMR.

310

11

311 3.2.2. Casein

312 Caseins are the major proteins in milk and function as important protein sources. They are 313 relevant for calcium transport and absorption (Holt, 2011) and serve as a source for a variety of 314 bioactive peptides that may influence human health in many different ways (Mohanty, Mohapatra, 315 Misra, & Sahu, 2016). Caseins determine the yield in cheese manufacturing, as only the casein is 316 coagulated by renneting. Hence, it is not surprising that the total casein content in the bulk milk from 317 the 12 farms followed a similar pattern as the crude protein content (Supplementary material Table 318 S24). However, the total casein content showed a stronger decrease from April until November and 319 December, respectively. Bernabucci et al. (2015) stated that the reduction of total casein 320 concentration is primarily responsible for the reduction in milk protein in summer, which is in 321 agreement with our findings. Apart from the season, no significant influence for the variables 322 examined (herbage, breed, ADiL) on the total casein content was found. Although the effect of 323 lactation stage for the full data set was significant, the elimination of three outliers resulted in a non-324 significant effect. Therefore, no clear-cut conclusion could be drawn with regard to the influence of the 325 lactation stage.

326 Examining the seasonal trend of the values, Gellrich et al. (2014) observed a comparable 327 pattern in the milk from Holstein-Friesian cows. Similar to the current study, the concentration of α -328 and κ -casein was found in tendency to be lower in summer. However, in contrast to our results, the 329 content of β -casein in the milk was found to be higher during summer.

330 The results presented here are also in good agreement with those of Bernabucci et al. (2015), 331 who were able to link the change in the coagulating properties of milk during the warm season to the 332 lower content of α -case in and β -case in. At the same time, they observed an increase in the content of 333 unidentified proteins. The observation that the rennet coagulation time and curd firmness are 334 dependent on the relative concentration in total case of α_{S1} -case β -case β , respectively, of κ -335 casein was previously described by Joudu, Henno, Kaart, Püssa, and Kärt (2008). Bonfatti et al. 336 (2011) found that the concentration of κ -casein is decisive for rennet coagulation time. However, κ -337 casein is not only important for stabilising the casein micelle and, therefore, for rennet coagulation 338 during cheese manufacturing, but also serves as an ion-carrier and precursor for bioactive peptides 339 (Holt, 2011; Korhonen, 2009; Mohanty et al., 2016; Möller, Scholz-Ahrens, Roos, & Schrezenmeir, 340 2008). Like the content of total casein, the concentration of K-casein varied highly between the herds

341 and over the year and was the lowest in summer (Fig. 1D; Supplementary material Table S24). No 342 significant correlation was found between the herbage proportion and the κ -casein content (Fig. 2D; 343 Table 5 and Supplementary material Table S11), while a significant influence of the breed was 344 observed (Fig. 3 D; Table 5 and Supplementary material Table S11) resulting in a 0.96 g 100 g⁻¹ 345 measured proteins higher content in the milk of BS than in the milk of RED. In BS populations the 346 allelic frequency of k-casein B is higher than in Holstein related breeds (Boettcher et al., 2004). As a 347 consequence, the production of κ -casein is higher in BS (Bonfatti et al., 2011). A significant influence 348 of the breed was also found for lipoprotein lipase, a protein which is loosely attached to the casein 349 micelles in fresh milk (Deeth, 2006, Table 5). In contrast to K-casein, the content of lipoprotein lipase was found to be -0.019 g 100 g⁻¹ measured proteins lower in the milk from BS than the milk of RED 350 351 (Table 5 and Supplementary material Table S23).

352

353 3.2.3. Whey proteins

The concentration of α -lactalbumin in milk varied over the season (Supplementary material Table S24), which confirmed the results of Heck et al. (2009). The statistical evaluation of the data revealed that not only the season had a significant impact on the sum of all investigated whey proteins, but also the breed and the days in lactation (Table 5 and Supplementary material Table S15). The effect of the days in lactation was negative with one additional day in lactation leading to a decrease of 0.007 g 100 g⁻¹ measured proteins of total whey protein in the milk. Furthermore, BS milk on average had 1.12 g 100 g⁻¹ measured proteins less total whey protein.

The content of β-lactoglobulin in the bulk milk varied considerably between the farms and over the year, and was lowest in February and September (Fig. 1E; Supplementary material Table S24). As illustrated in Fig. 3E, a significant effect was found between breed and the β-lactoglobulin concentration in the milk (–0.832 g 100 g⁻¹ measured proteins in the milk of BS, Fig. 3E; Table 5 and Supplementary material Table S17).

Similarly, the content of lactoferrin, a protein that is known for its antioxidant, bacteriostatic, anti-viral, and immunomodulatory properties as well as for the function of iron transfer and absorption (Korhonen, 2009; Korhonen & Marnila, 2011; Lönnerdal & Iyer, 1995; Tomita et al., 2009), varied over the course of the year (Fig. 1F; Supplementary material Table S24), with a higher content in the winter months and a lower concentration in the summer in the milk of all farms. The highest variation over

371 the year was observed in the milk of the cows fed with high herbage content in the ration, while the 372 lowest variation was found in the milk from the farms that fed low amounts of herbage (Fig. 2F). 373 Lactoferrin concentration in milk has been shown to positively correlate with the somatic cell count 374 (SCC) (Kuczynska et al., 2012; Litwińczuk, Król, Brodziak, & Barłowska, 2011; Turner, Williamson, 375 Thomson, Roche, & Kolver, 2003). Since an increased SCC in the milk of one cow has a greater 376 influence on the bulk milk on smaller farms, the management resulting in a consistent milk quality may 377 be more challenging for smaller farms producing milk under high herbage feeding conditions. 378 However, in our study no correlation was found, neither between the lactoferrin content and SCC in 379 the milk (Supplementary material Table S24), nor between the herbage proportion or the breed and 380 the content of lactoferrin in bulk milk (Figs. 2F and 3F; Table 5 and Supplementary material Table 381 S13). Yet, the lactation stage and the season had a significant effect on the lactoferrin content (Figs. 382 4F and 1F; Table 5 and Supplementary material Table S13). A correlation of the concentration of 383 lactoferrin with the season was also stated by Król et al. (2010). Contrasting the results shown, they 384 found that the milk from local Polish breeds had a higher content of lactoferrin (average 129.2 mg L⁻¹) 385 in summer than in winter.

386

387 3.2.4. Proteins associated with the milk fat globule membrane

388 In the case of the minor proteins associated with the milk fat globule membrane, a correlation 389 with breed was found for two proteins. One of these proteins is FAS, which is involved in the 390 biosynthesis of long-chain FAs (Roy et al., 2006). In the investigated bulk milk, the content of FAS 391 varied over the year (Supplementary material Table S24). The mixed model showed a significant month and breed effect (0.009 g 100 g⁻¹ measured proteins higher FAS content for BS milk than for 392 393 RED cows, Table 5 and Supplementary material Table S19), no significant effect of the lactation 394 stage or the herbage proportion on the FAS content could be found. In recent years, it was found that 395 the variability of the gene coding for FAS (FASN) is high, not only among different breeds but also 396 within the same breed (Ciecierska et al., 2013), which affects the milk fat composition, the total protein 397 and fat content of the milk, as well as the total milk yield. Similarly, the content of the GP2 — a protein 398 that binds to pathogens and might be protective against infections (Murgiano et al., 2009) — was not 399 found to be affected by the proportion of herbage or the ADiL (Table 5 and Supplementary material 400 Table S21). A significant breed effect on the average GP2 content was found (Table 5 and

Supplementary material Table S21). The milk of BS had a 0.011 g 100 g⁻¹ measured proteins higher average amount of GP2 than RED milk. The finding that the concentration of GP2 is breed-correlated is supported by Murgiano et al. (2009), who found that GP2 is overexpressed in milk from Holstein cattle compared with milk from Chianina cows. 405 406 4. Conclusions

408 The impact of higher proportions of herbage in the cows' diet on the detailed milk composition 409 and the interaction with breed, season and ADiL was so far only incompletely investigated. Owing to 410 the mixed model approach this study contributes to an increased knowledge on this matter. The 411 results for FAs not only showed that a higher proportion of herbage had an important positive 412 influence on FA composition, such as an increase in n-3 FAs, CLA, VA, and BCFAs, confirming 413 previous studies, but also provided information on the influencing parameters for six individual CLA 414 isomers and ten BCFAs. Unexpectedly, the proportion of herbage had no significant influence on the 415 content of the analysed 19 milk proteins.

416 However, the breed (RED compared with BS) influenced κ -casein levels (BS > 0.96 g 100 g⁻¹ 417 measured proteins), which is favourable for clotting properties during cheese-making. This effect is 418 even enhanced in animals with genotype BB for κ -casein, which is more frequent in BS than in 419 Holstein, thereby making the milk of BS cows highly suitable for cheese production. Furthermore, β-420 lactoglobulin (-0.83 g 100 g⁻¹ measured proteins) and total whey protein (-1.12 g 100 g⁻¹ measured 421 proteins) were lower in the milk from BS cows; nevertheless, this breed still had a higher crude protein 422 content compared with RED and a more favourable FA content with 30% more n-3s and 22% more 423 CLA. The ADiL led to a decrease of 13% in stearic acid C18:0 between 86 and 245 ADiL and an 424 increase of crude protein (+7%). The season had an influence on all the FAs; FA groups, all proteins, 425 protein groups as well as the total fat content and the crude protein.

Above all, the mixed model approach used in this study provided for the first time quantitative statements on the relationship of different influencing parameters, such as herbage proportion, cattle breed, lactation stage, and season and the bulk milk composition from 12 Swiss farms, described by 119 examined parameters, which was tracked over the course of one year. Furthermore, these quantitative relationships allows quantitative predictions on the content of nutritionally relevant milk

15

431	components, such as beneficial FAs, β -lactoglobulin, and total whey protein. Hence, an increase of
432	the herbage proportion from for example 40% to 90% leads predictably to an increase in n-3 FAs
433	content from approximately 0.95 to 1.36 g 100 g ⁻¹ fat (within the same breed and month). Therefore,
434	the applied mixed effect model has the potential to provide a highly valuable input for the dairy
435	industry in the future.
436	
437	Acknowledgements
438	
439	We thank the breeding associations Swissherdbook, Holstein Switzerland and Braunvieh
440	Schweiz for providing the data and Dominik Guggisberg, Stefan Irmler and Ernst Jakob for
441	constructive discussion. We are also grateful to IP-Suisse, Innosuisse, and the confederation of
442	Migros cooperatives for collaboration and funding (Grant number CTI 15703.2 PFLS-LS).
443	
444	References
445	
446	Agroscope (2018). Feedbase. The Swiss Feed Database, downloaded on 17 March 2018.
447	https://www.feedbase.ch/index.php.
448	Astrup, A., Rice Bradley, B. H., Brenna, J., Delplanque, B., Ferry, M., & Torres-Gonzale, M. (2016).
449	Regular-fat dairy and human health: A synopsis of symposia presented in Europe and North
450	America (2014–2015). Nutrients, 8, Article 463.
451	Auldist, M. J., Napper, A. R., & Kolver, E. S. (2000). Contribution of nutrition to seasonal variation of
452	milk composition in New Zealand Friesian and US Holstein dairy cows. Asian Australasian
453	Journal of Animal Sciences, 13, 513–516.
454	Bainbridge, M. L., Cersosimo, L. M., Wright, A. D. G., & Kraft, J. (2016). Content and composition of
455	branched-chain fatty acids in bovine milk are affected by lactation stage and breed of dairy
456	cow. PLoS ONE, 11, Article e0150386.
457	Bär, C., Mathis, D., Neuhaus, P., Dürr, D., Bisig, W., Egger, L., & Portmann, R. (2019). Protein profile
458	of dairy products: Simultaneous quantification of twenty bovine milk proteins. International
459	Dairy Journal, 97, 167–175.

- 460 Bernabucci, U., Basiricò, L., Morera, P., Dipasquale, D., Vitali, A., Piccioli Cappelli, F., et al. (2015).
- 461 Effect of summer season on milk protein fractions in Holstein cows. *Journal of Dairy Science*,
 462 98, 1815–1827.
- 463 Bisig, W., Collomb, M., Bütikofer, U., Sieber, R., Bregy, M., & Etter, L. (2008). Saisonale
- 464 Fettsäurezusammensetzung von Schweizer Bergmilch (Seasonal fatty acid composition of 465 milk from Swiss mountain regions). *Agrarforschung*, *15*, 38–43.
- Boettcher, P. J., Caroli, A., Stella, A., Chessa, S., Budelli, E., Canavesi, F., et al. (2004). Effects of
 casein haplotypes on milk production traits in Italian Holstein and Brown Swiss cattle. *Journal*of Dairy Science, 87, 4311–4317.
- Bonfatti, V., Cecchinato, A., Di Martino, G., De Marchi, M., Gallo, L., & Carnier, P. (2011). Effect of
 kappa-casein B relative content in bulk milk kappa-casein on Montasio, Asiago, and Caciotta
- 471 cheese yield using milk of similar protein composition. *Journal of Dairy Science*, *94*, 602–613.
- Brodziak, A., Barłowska, J., Król, J., & Litwińczuk, Z. (2012). Effect of breed and feeding system on
 content of selected whey proteins in cow's milk in spring-summer and autumn-winter
 seasons. *Annals of Animal Science, 12*, 261–269.
- 475 Ciecierska, D., Frost, A., Grzesiak, W., Proskura, W. S., Dybus, A., & Olszewski, A. (2013). The
 476 influence of fatty acid synthase polymorphism on milk production traits in Polish Holstein477 Friesian cattle. *Journal of Animal & Plant Sciences*, 23, 376–379.
- 478 Collomb, M., & Bühler. T. (2000). Analyse de la composition en acides gras de la graisse de lait, I.
- 479 Optimisation et validation d'une méthode générale à haute résolution. *Travaux de Chimie*480 *Alimentaire et d'Hygiène*, 91, 306–332.
- 481 Collomb, M., R. Sieber, & Bütikofer, U. (2004). CLA isomers in milk fat from cows fed diets with high
 482 levels of unsaturated fatty acids. *Lipids*, *39*, 355–364.
- Collomb, M., Bisig, W., Bütikofer, U., Sieber, R., Bregy, M., & Etter, L. (2008a). Fatty acid composition
 of mountain milk from Switzerland: Comparison of organic and integrated farming systems. *International Dairy Journal, 18*, 976–982.
- 486 Collomb, M., Bisig, W., Bütikofer, U., Sieber, R., Bregy, M., & Etter, L. (2008b). Seasonal variation in
 487 the fatty acid composition of milk supplied to dairies in the mountain regions of Switzerland.
 488 Dairy Science and Technology, 88, 631–647.

489	Couvreur, S., Hurtaud, C., Lopez, C., Delaby, L., & Peyraud, J. L. (2006). The linear relationship
490	between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter
491	properties. Journal of Dairy Science, 89, 1956–1969.
492	Deeth, H. C. (2006). Lipoprotein lipase and lipolysis in milk. International Dairy Journal, 16, 555–562.
493	Dhiman, T. R., Anand, G. R., Satter, L. D., & Pariza, M. W. (1999). Conjugated linoleic acid content of
494	milk from cows fed different diets. Journal of Dairy Science, 82, 2146–2156.
495	Drouin-Chartier, J. P., Côté, J. A., Labonté, M., Brassard, D., Tessier-Grenier, M., Desroches, S., et
496	al. (2016). Comprehensive review of the impact of dairy foods and dairy fat on
497	cardiometabolic risk. Advances in Nutrition, 7, 1041–1051.
498	Ertl, P., Klocker, H., Hörtenhuber, S., Knaus, W., & Zollitsch, W. (2015). The net contribution of dairy
499	production to human food supply: The case of Austrian dairy farms. Agricultural Systems,
500	137, 119–125.
501	Ferlay, A., Agabriel, C., Sibra, C., Journal, C., Martin, B., & Chilliard, Y. (2008). Tanker milk variability
502	in fatty acids according to farm feeding and husbandry practices in a French semi-mountain
503	area. Dairy Science and Technology, 88, 193–215.
504	Fox, J., & Weisberg, S. (2019). An R companion to applied regression (3rd edn.). Thousand Oaks, CA,
505	USA: Sage.
506	Fuke, G., & Nornberg. J. L. (2017). Systematic evaluation on the effectiveness of conjugated linoleic
507	acid in human health. Critical Reviews in Food Science and Nutrition, 57, 1–7.
508	Gellrich, K., Meyer, H. H. D., & Wiedemann, S. (2014). Composition of major proteins in cow milk
509	differing in mean protein concentration during the first 155 days of lactation and the influence
510	of season as well as short-term restricted feeding in early and mid-lactation. Czech Journal of
511	Animal Science, 59, 97–106.
512	Gomez-Cortes, P., Juarez, M., & de la Fuente, M. A. (2018). Milk fatty acids and potential health
513	benefits: An updated vision. Trends in Food Science and Technology, 81, 1–9.
514	Heck, J. M. L., van Valenberg, H. J. F., Dijkstra, J., & van Hooijdonk, A. C. M. (2009). Seasonal
515	variation in the Dutch bovine raw milk composition. Journal of Dairy Science, 92, 4745–4755.
516	Hofstetter, P., Frey, H. J., Gazzarin, C., Wyss, U., & Kunz, P. (2014). Dairy farming: indoor v. pasture-
517	based feeding. Journal of Agricultural Science, 152, 994–1011.

518 Holt, C. (2011). Milk salts - Interaction with caseins. In J. W. Fuguay, P. F. Fox, & P. L. H. McSweeney (Eds.), Encyclopaedia of dairy sciences (2nd edn., pp. 917-924). Amsterdam, the 519 520 Netherlands: Elsevier Science. 521 Hurtaud, C., Agabriel, C., Dutreuil, M., & Rouille, B. (2010). Caractérisation de la composition des laits 522 selon les pratiques d'alimentation dans les principales régions françaises. Rencontres de 523 Recherche Ruminants, 17, 381-384. 524 Ineichen, S., Sutter, M., & Reidy, B. (2016). Herbage based milk production. Assessment of the 525 present feeding practice and root-cause analysis of high and low milk yields from herbage 526 (Graslandbasierte Milchproduktion. Erhebung der aktuellen Fütterungspraxis und 527 Ursachenanalyse für hohe bzw. geringe Leistungen aus dem Wiesenfutter). Project report. 528 Unpublished. Bern University of Applied Sciences, Zollikofen, p. 108. 529 ISO. (2007). Milk - Determination of nitrogen content - Part 3: Block digestion method (semi-micro 530 rapid routine method). ISO 8968-3:2007/IDF 20-3:2007. Geneva, Switzerland: International

- 531 Standardisation Organisation.
- 532 ISO. (2010). Milk — Determination of fat content — Gravimetric method (Reference method). ISO 533 1211:2010 /IDF 1. Geneva, Switzerland: International Standardisation Organisation.
- 534 Jans, F., Kessler, J., Münger, A., Schori, F., & Schlegel, P. (2016). Feeding recommendations for
- 535 dairy cows (Fütterungsempfehlungen für die Milchkuh). In Agroscope: Fütterungsempfehlung 536 für Wiederkäuer (pp. 1–23). Posieux, Switzerland: Agroscope.
- 537 Joudu, I., Henno, M., Kaart, T., Püssa, T., & Kärt, O. (2008). The effect of milk protein contents on the 538 rennet coagulation properties of milk from individual dairy cows. International Dairy Journal, 539 18, 964-967.
- 540 Korhonen, H. J. (2009). Bioactive components in bovine milk. In Y. W. Park (Ed.), Bioactive components in milk and dairy products (1st edn., pp. 13-42). London, UK: Wiley-Blackwell. 541
- Korhonen, H. J., & Marnila, P. (2011). Milk proteins, lactoferrin. In J. W. Fuguay, P. F. Fox, & P. L. H. 542
- McSweeney (Eds.), Encyclopaedia of dairy sciences (2nd edn., pp. 801-806). Amsterdam, the 543 544 Netherlands: Elsevier Science.
- 545 Křížová, L., Hanuš, O., Hadrová, S., Kučera, J., Samková, E., Roubal, P., et al. (2014). Composition,
- 546 physical and technological properties of raw milk as affected by cattle breed, season and type 547 of diet. Annals of Animal Science, 14, 721-736.

- 548 Król, J., Litwińczuk, Z., Brodziak, A., & Sawicka-Zugaj, W. (2010). Bioactive protein content in milk 549 from local Breeds of cows included in the genetic resources conservation programme. Annals 550 of Animal Science, 10, 213–221. 551 Kuczynska, B., Puppel, K., Golebiewski, M., Metera, E., Sakowski, T., & Sloniewski, K. (2012). 552 Differences in whey protein content between cow's milk collected in late pasture and early 553 indoor feeding season from conventional and organic farms in Poland. Journal of the Science 554 of Food and Agriculture, 92, 2899–2904. 555 Kukovics, S., & Németh, T. (2013). Milk major and minor proteins, polymorphisms and non-protein 556 nitrogen. In Y. W. Park, & G. F. W. Haenlein (Eds.). Milk and dairy products in human 557 nutrition: Production, composition and health (1st edn., pp. 80–110). Chichester, UK: John 558 Wiley & Sons. 559 Leiber, F., Kreuzer, M., Nigg, D., Wettstein, H. R., & Scheeder, M. R. L. (2005). A study on the causes 560 for the elevated n-3 fatty acids in cows' milk of alpine origin. Lipids, 40, 191-202. 561 Litwińczuk, Z., Król, J., Brodziak, A., & Barłowska, J., (2011). Changes of protein content and its fractions in bovine milk from different breeds subject to somatic cell count. Journal of Dairy 562 563 Science, 94, 684-691. 564 Lönnerdal, B., & Iyer, S. (1995). Lactoferrin: Molecular structure and biological function. Annual 565 Review of Nutrition, 15, 93–110. 566 Lüscher, A., Grieder, C., Huguenin-Elie, O., Klaus, V. H., Reidy, B., Schneider, M. K., et al. (2019). 567 Grassland systems in Switzerland with a main focus on sown grasslands. In Improving sown 568 grasslands through breeding and management. Grassland Science in Europe, 24, 3–16. 569 Wageningen, Netherland: European Grassland Federation EGF, Wageningen Academic 570 Publishers. 571 Mohanty, D. P., Mohapatra, S., Misra, S., & Sahu, P. S. (2016). Milk-derived bioactive peptides and 572 their impact on human health. A review. Saudi Journal of Biological Sciences, 23, 577-583. 573 Möller, N. P., Scholz-Ahrens, K. E., Roos, N., & Schrezenmeir, J. (2008). Bioactive peptides and 574 proteins from foods: Indication for health effects. European Journal of Nutrition, 47, 171-182. 575 Murgiano, L., Timperio, A. M., Zolla, L., Bongiorni, S., Valentini, A., & Pariset, L. (2009). Comparison 576 of milk fat globule membrane (MFGM) Proteins of Chianina and Holstein cattle breed milk
- 577 samples through proteomics methods. *Nutrients*, *1*, 302–315.

578 O'Callaghan, T. F., Faulkner, H., McAuliffe, S., O'Sullivan, M. G., Hennessy, D., Dillon, P., et al. 579 (2016). Quality characteristics, chemical composition, and sensory properties of butter from 580 cows on pasture versus indoor feeding systems. Journal of Dairy Science, 99, 9441-9460. 581 Ozrenk, E., & Selcuk Inci, S. (2008). The effect of seasonal variation on the composition of cow milk in 582 Van Province. Pakistan Journal of Nutrition, 7, 161–164. 583 Peyraud, J. L., Delaby, L., Delagarde, R., & Pavie, J. (2014). Societal and agricultural benefits of 584 grassland. Fourrages, 218, 115-124. 585 Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D., R Core Team (2018). nlme: Linear and nonlinear 586 mixed effects models. R package version 3.1-137, URL: https://CRAN.R-587 project.org/package=nlme. 588 R Core Team (2019). R: A language and environment for statistical computing. R Foundation for 589 Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. 590 Ran-Ressler, R. R., Devapatla, S., Lawrence, P., & Brenna, J. T. (2008). Branched chain fatty acids 591 are constituents of the normal healthy newborn gastrointestinal tract. Pediatric Research, 64, 592 605-609. 593 Ran-Ressler, R. R., Bae, S., Lawrence, P., Wang, D. H., & Brenna, J. (2014). Branched-chain fatty 594 acid content of foods and estimated intake in the USA. British Journal of Nutrition, 112, 565-595 572. 596 Rivero, M., J., & Anrique, R. (2015). Milk fat depression syndrome and the particular case of grazing 597 cows: A review. Acta Agriculturae Scandinavica, Section A — Animal Science, 65, 42–54. 598 Roy, R., Ordovas, L., Zaragoza, P., Romero, A., Moreno, C., Altarriba, J., et al. (2006). Association of 599 polymorphisms in the bovine FASN gene with milk-fat content. Animal Genetics, 37, 215–218.

- RStudio Team, (2018). *RStudio: Integrated development environment for R*. Boston, MA, USA:
 RStudio, Inc.
- Samková, E., Koubová, J., Hasoňová, L., Hanuš, O., Kala, R., Kváč, M., et al. (2018). Joint effects of
 breed, parity, month of lactation, and cow individuality on the milk fatty acids composition. *Mljekarstvo*, *68*, 98–107.
- Sanders, T. A. B. (2009). DHA status of vegetarians. *Prostaglandins, Leukotrienes and Essential Fatty Acids, 81,* 137–141.

607 Schmid, D., & Lanz, S. (2013). Feed-ration composition on Swiss dairy farms (Die Zusammensetzung 608 der Futterration in der Milchviehhaltung der Schweiz). Agrarforschung Schweiz, 4, 184–191. 609 Schwendel, B. H., Morel, P. C. H., Wester, T. J., Tavendale, M. H., Deadman, C., Fong, B., et al. 610 (2012). Differentiation of organic from conventionally produced milk. Proceedings of the 5th 611 Australasian Dairy Science Symposium, 159–160. 612 Schwendel, B. H., Wester, T. J., Morel, P. C. H., Tavendale, M. H., Deadman, C., Shadboidt, N. M., et 613 al. (2015). Invited review: Organic and conventionally produced milk- An evaluation of 614 factors influencing milk composition. Journal of Dairy Science, 98, 721-746. 615 Schwendel, B. H., Wester, T. J., Morel, P. C. H., Fong, B., Tavendale, M. H., Deadman, C., et al. 616 (2017). Pasture feeding conventional cows removes differences between organic and 617 conventionally produced milk. Food Chemistry, 229, 805-813. 618 Shingfield, K. J., Bonnet, M., & Scollan, N. D. (2013). Recent developments in altering the fatty acid 619 composition of ruminant-derived foods. Animal, 7, 132-162. 620 Soyeurt, H., Dehareng, F., Mayeres, P., Bertozzi, C., & Gengler, N (2008). Variation of Δ9-desaturase 621 activity in dairy cattle. Journal of Dairy Science, 91, 3211-3224. 622 Stergiadis, S., Leifert, C., Seal, C. J., Eyre, M. D., Larsen, M. K., Slots, T., et al. (2015). A 2-year 623 study on milk quality from three pasture-based dairy systems of contrasting production 624 intensities in Wales. Journal of Agricultural Science, 153, 708-731. 625 Stoop, W. M., Bovenhuis, H., Heck, J. M. L., & van Arendonk, J. A. M. (2009). Effect of lactation stage 626 and energy status on milk fat composition of Holstein-Friesian cows. Journal of Dairy Science, 627 92, 1469–1478. 628 Tomita, M., Wakabayashi, H., Shin, K., Yamauchi, K., Yaeshima, T., & Iwatsuki, K. (2009). Twenty-629 five years of research on bovine lactoferrin applications. Biochimie, 91, 52-57. 630 Turner, S.-A., Williamson, J. H., Thomson, N. A., Roche, J. R., & Kolver, E. S. (2003). Diet and 631 genotype affect milk lactoferrin concentrations in late lactation. New Zealand Society of 632 Animal Production, 63, 87–90. 633 Vlaeminck, B., Fievez, V., Cabrita, A. R. J., Fonseca, A. J. M., & Dewhurst, R. J. (2006). Factors 634 affecting odd- and branched-chain fatty acids in milk: A review. Animal Feed Science and 635 Technology, 131, 389-417.

22

Journal Pre-proo

636	Walker, G. P., Dunshea, F. R., & Doyle, P.T. (2004). Effects of nutrition and management on the
637	production and composition of milk fat and protein: A review. Australian Journal of Agricultural
638	Research, 55, 1009–1028.
639	Winkler, L., Cutullic, E., & Aeby, P. (2012). Efficiency of forage surface area in dairy systems in the

- 640 canton of Fribourg, Switzerland. *Agarforschung Schweiz*, 2, 74–81.
- 641

Journal Pre-proof

Figure legends

Fig. 1. Content of (A) omega 3 fatty acids (n-3 FA, g 100 g⁻¹ fat), (B) conjugated linoleic acids (CLA, g 100 g⁻¹ fat), (C) crude protein (g kg⁻¹ milk), (D) κ-casein (g 100 g⁻¹ measured proteins) (E), β-lactoglobulin (g 100 g⁻¹ measured proteins) and (F) and lactoferrin (g 100 g⁻¹ measured proteins) in the bulk milk of the 12 farms analysed monthly over a year (n = 139).

Fig. 2. Content of (A) omega 3 fatty acids (n-3 FA, g 100 g⁻¹ fat), (B) conjugated linoleic acids (CLA, g 100 g⁻¹ fat), (C) crude protein (g kg⁻¹ milk), (D) κ-casein (g 100 g⁻¹ measured proteins), (E) β-lactoglobulin (g 100 g⁻¹ measured proteins), and (F) lactoferrin (g 100 g⁻¹ measured proteins) in the bulk milk of the 12 farms analysed monthly over a year (n = 139) as a function of the proportion of herbage.

Fig. 3. Relationship between the content of (A) omega 3 fatty acids (n-3 FA, g 100 g⁻¹ fat), (B) conjugated linoleic acids (CLA, g 100 g⁻¹ fat), (C) crude protein (g kg⁻¹ milk), (D) κ-casein (g 100 g⁻¹ measured proteins), (E) β-lactoglobulin (g 100 g⁻¹ measured proteins), and (F) lactoferrin (g 100 g⁻¹ measured proteins) and the breed [Red Holstein, Swiss Fleckvieh, Simmental cattle (RED) or Brown Swiss (BS)] in the bulk milk of the 12 farms (n = 139).

Fig. 4. Relationship between the content of (A) omega 3 fatty acids (n-3 FA, g 100 g⁻¹ fat), (B) conjugated linoleic acids (CLA, g 100 g⁻¹ fat), (C) crude protein (g kg⁻¹ milk), (D) κ-casein (g 100 g⁻¹ measured proteins), (E) β-lactoglobulin (g 100 g⁻¹ measured proteins), and (F) lactoferrin (g 100 g⁻¹ measured proteins) and the averaged days in lactation (ADiL) in the bulk milk of the 12 farms (n = 139).

Annual average of monthly ration shares per farm in 2014 and the mean value, standard deviation, minimum and maximum over all 12 farms (n = 139).

Ration (%)	Farm												Mean	SD	Min.	Max.
	1	2	3	4	5	6	7	8	9	10	11	12	-			
Total herbage	0.35	0.45	0.43	0.42	0.71	0.52	0.94	0.99	0.78	0.85	0.85	0.78	0.68	0.22	0.32	1.00
Monthly min.	0.32	0.43	0.40	0.38	0.66	0.50	0.88	0.96	0.71	0.74	0.62	0.65				
Monthly max.	0.39	0.48	0.53	0.47	0.75	0.55	0.96	1.00	0.90	0.98	0.95	0.93				
Herbage, fresh	0.09	0.02	0.07	0.08	0.21	0.12	0.57	0.69	0.39	0.48	0.48	0.42	0.31	0.36	0.00	0.99
Herbage, conserved (hay/silage)	0.26	0.43	0.35	0.34	0.50	0.40	0.37	0.30	0.40	0.37	0.38	0.36	0.37	0.28	0.00	1.00
Whole-crop maize	0.37	0.33	0.35	0.37	0.16	0.33	0.00	0.00	0.09	0.05	0.06	0.06	0.18	0.16	0.00	0.42
Other feedstuff	0.04	0.01	0.10	0.04	0.03	0.03	0.00	0.00	0.00	0.04	0.00	0.01	0.03	0.04	0.00	0.13
Concentrates	0.24	0.21	0.13	0.16	0.10	0.11	0.06	0.01	0.13	0.05	0.08	0.15	0.12	0.07	0.00	0.28

Annual average values per farm of monthly milk production in 2014, and the mean value, standard deviation, minimum and maximum over all 12 farms (n = 139).

а

Parameter	Farm												Mean	SD
	1	2	3	4	5	6	7	8	9	10	11	12	-	
Cows in milk (farm ⁻¹)	53	56	31	43	24	49	14	22	21	14	22	21	30	15
Brown Swiss (farm ⁻¹)							14	22	21					
RED* (farm ⁻¹)	53	56	31	43	24	49				14	22	21		
Calving	n. syn.													
Energy corrected milk (kg day ⁻¹ cow ⁻¹)	30.09	32.83	29.26	30.30	19.45	29.25	21.95	17.44	21.76	24.70	22.70	24.38	25.27	5.02
Fat (g kg ⁻¹ milk)	41.66	42.97	37.73	39.27	31.78	36.08	40.86	36.02	41.90	44.36	41.63	38.82	39.56	4.52
Protein (g kg ⁻¹ milk)	34.79	33.86	33.26	33.41	30.83	34.02	35.04	33.63	34.56	35.69	33.70	35.66	34.07	1.69

^a RED, Red Holstein, Swiss Fleckvieh or Simmental; n. syn., not synchronised.

Annual average values, standard deviation, minimum, and maximum of selected fatty acids and groups in bulk milk samples analysed monthly on 12 farms (n = 139). ^a

Fatty acid or group of FA (g 100 g ⁻¹ fat)	Mean	SD	Min.	Max.
C16:0 Palmitic acid	26.52	2.53	20.15	34.56
C18:0 Stearic acid	8.54	1.15	5.11	11.91
C18:1 t11 Vaccenic acid	1.68	0.81	0.65	3.74
C18:1 c9 Oleic acid	16.28	1.65	11.89	20.28
C18:2 c9,t11 (CLA) Rumenic acid	0.66	0.35	0.20	1.85
C18 :2 t11,c13 (CLA)	0.04	0.03	0.01	0.15
C18 :2 t7,c9 (CLA)	0.03	0.01	0.02	0.05
C18 :2 t9,t11 (CLA)	0.03	0.01	0.01	0.06
C18 :2 t11,c13 and c9,c11 (CLAs)	0.05	0.03	0.01	0.16
C18:2 c9,t11 and t8,c10 and t7c9 (CLAs)	0.70	0.36	0.22	1.91
∑SFA	60.54	2.53	52.51	66.38
ΣMUFA	23.59	2.07	18.16	28.73
ΣPUFA	3.82	0.73	2.35	6.15
∑n-3	1.02	0.35	0.46	2.12
∑n-6	2.07	0.36	1.47	2.97
ΣCLA	0.78	0.38	0.28	2.09
∑Branched-chain fatty acids	1.80	0.24	1.22	2.37

^a Abbreviations are: SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid. ∑CLA: (C18:2 c9t11+t8c10+t7c9), (C18:2 t11c13+c9c11), C18:2 t9t11;
∑Branched chain fatty acids: C13 iso+aiso, C14 iso, C15 iso+aiso, C16 iso, C17 iso+aiso, C18 iso+aiso. For definitions of further groups see Supplementary material Table S1. Single values are listed in Supplementary material Tables S1 (per farm) and S16 (per farm and month).

Influence of the factors herb, breed, average days in lactation and month on the content of selected

fatty acids	(FAs) and	groups of	FAs in t	the bulk mil	lk of 12 farms	$(n = 139).^{a}$
-------------	-----------	-----------	----------	--------------	----------------	------------------

Fatty acids	Intercept		Herbage		Breed	wise)	Average days	in	Month
	Est.	p	Est.	р	Est.	р	Est.	p	p range
C12:0 Lauric acid	3.389	<0.001	-0.537	0.026	-0.087	0.542	0.000	0.599	<0.001 –0.936
C13:0 iso (BCFA)	0.011	0.007	0.021	<0.000	-0.004	0.125	0.000	0.836	<0.001 –0.949
C14:0 Myristic acid	10.45	<0.001	-0.685	0.157	0.164	0.557	0.001	0.560	<0.001 –0.922
C14:1 cis	0.817	<0.001	-0.078	0.205	0.100	0.011	0.001	<0.001	<0.001 –0.317
C15:0 iso (BCFA)	0.119	<0.001	0.120	<0.001	-0.011	0.374	0.000	0.054	0.001 –0.913
C16:0 Palmitic acid	27.979	<0.001	-0.555	0.764	-0.660	0.541	0.005	0.408	<0.001 –0.677
C16:1 trans	0.032	0.240	0.156	<0.001	0.007	0.642	0.000	0.546	0.006 –0.799
C17:0 iso (BCFA)	0.115	<0.001	0.110	<0.001	0.004	0.712	0.000	0.952	<0.001 –0.160
C18:0 Stearic acid	8.817	<0.001	-0.154	0.839	-0.590	0.194	-0.007	0.006	<0.001 –0.745
C18:1 t11 Vaccenic acid	-0.041	0.898	1.887	<0.001	0.194	0.316	-0.001	0.620	<0.001 –0.974
C18:1 cis-9 (oleic acid)	15.622	<0.001	0.469	0.720	0.139	0.855	-0.006	0.092	<0.001 –0.629
C18:1 cis-12	0.377	<0.001	-0.170	<0.001	-0.011	0.575	0.000	0.995	<0.001 –0.257
C18:2 c9,t11 (CLA) Rumenic acid	-0.088	0.490	0.794	<0.001	0.138	0.074	0.000	0.761	<0.001 –0.746
C18:2 c9,t12 and c,c MID and t8,c13	0.306	<0.001	-0.130	<0.001	0.010	0.372	0.000	0.467	<0.001 –0.474
C18:2 t7,c9 (CLA)	0.037	<0.001	-0.004	0.473	0.000	0.983	3.1×10 ⁻⁵	0.036	<0.001 –0.255
C 18:2 t11,c13 (CLA)	0.005	0.764	0.014	0.524	0.052	0.004	0.000	0.625	0.004 –0.980
C18:2 t11,c13 and c9,c11 (CLAs)	0.006	0.707	0.029	0.164	0.045	0.004	0.000	0.512	0.003 –0.648
ΣCLA	-0.003	0.982	0.835	<0.001	0.174	0.048	0.000	0.776	<0.001 –0.523
C18:3 c9,c12,c15 α -Linolenic acid (n-3)	0.182	0.011	0.491	<0.001	0.184	0.002	0.000	0.620	0.008–0.815
∑ C 18:2 t with CLA t	0.551	0.016	1.031	<0.001	0.319	0.029	0.000	0.864	<0.001 –0.506
∑ trans with CLA t	2.313	<0.001	2.611	<0.001	0.558	0.124	-0.001	0.794	<0.001 –0.987
Σ C18:2 t,t NMID	0.015	0.459	0.105	<0.001	0.002	0.856	0.000	0.740	<0.001 –0.983
C20:3 (n-3)	0.003	0.575	0.022	<0.001	0.003	0.187	0.000	0.098	<0.001 –0.889
C20:5 EPA (n-3)	0.028	<0.001	0.040	<0.001	0.008	0.135	0.000	0.817	<0.001 –0.331
Σ n-3	0.378	0.002	0.822	<0.001	0.306	0.002	0.000	0.458	<0.001 –0.925
ΣSFA	63.934	<0.001	-3.012	0.031	-0.781	0.308	-0.002	0.717	<0.001 –0.927
ΣPUFA	2.784	<0.001	1.117	0.004	0.458	0.057	-0.001	0.299	<0.001 –0.964
Σ Branched chain FA	1.150	<0.001	0.525	<0.001	-0.026	0.688	0.001	0.120	<0.001 –0.124

^a Abbreviations are: BCFA, branched chain fatty acid; SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid c, cis; t, trans; c,c MID, cis methylene interrupted diene; t,t NMID, trans trans non methylene interrupted diene. For definition of groups see Table 3 and Supplementary material Table S1. Estimates at intercept are for 0% herbage, Red Holstein, Swiss Fleckvieh, Simmental, one average day in lactation and January 2014. Estimate for herbage quantifies the estimated increase in the content of the FAs or group of FAs in g 100 g⁻¹ fat compared with the intercept value if the proportion of herbage is 100%. Estimate for breed indicates how much the content of the FAs or group of FAs in g 100 g⁻¹ fat is higher in milk of Brown Swiss cows compared with Red Holstein, Swiss Fleckvieh or Simmental. Estimate for average days in lactation indicates the effect of one additional average day in lactation on the content of the FAs and groups of FAs compared with the intercept value. *p*-Values for the month effect vary from month to month and are indicated as a range. *p*-values in bold indicate a significant effect (*p* < 0.05).

Influence of the factors herb, breed, average days in lactation and month on the content of selected proteins and groups of proteins in the bulk milk of 12 farms (n = 139). ^a

Protein Intercept		Herbage		Breed (Brown Swiss)		Average days in lactation		Month	
	Est.	p	Est.	p	Èst.	́р	Est.	p	<i>p</i> -range
Crude protein	32.62	<0.001	-0.867	0.553	0.608	0.599	0.014	<0.001	0.003– 0.994
κ-casein	6.972	<0.001	0.596	0.273	0.955	0.012	0.001	0.394	<0.001 –0.211
Lipoprotein lipase	0.048	<0.001	-0.002	0.729	-0.019	<0.001	-0.000	0.781	<0.001– 0.679
Total whey proteins	10.541	<0.001	1.033	0.132	-1.122	0.011	-0.007	0.003	<0.001– 0.002
β-Lactoglobulin	8.710	<0.001	0.834	0.223	-0.832	0.045	-0.004	0.050	0.001 –0.860
Lactoferrin	0.105	0.047	0.093	0.146	-0.039	0.294	0.001	0.002	0.012 –0.863
Fatty acid synthase	0.028	<0.001	-0.002	0.704	0.009	0.002	-0.000	0.922	0.012 –0.246
Glycoprotein-2	0.021	<0.001	-0.003	0.699	0.011	0.018	-0.000	0.314	<0.001 –0.172

^a Estimates at intercept are for 0% herbage, Red Holstein, Swiss Fleckvieh or Simmental, one average day in lactation and January 2014. Estimates for herbage indicate the increase of the content of the protein or protein group compared with the intercept if the proportion of herbage is 100%. Estimates for breed indicate how much the content of the protein or group of proteins is higher or lower in the milk from Brown Swiss cows compared with that from the Red Holstein, Swiss Fleckvieh or Simmental group. Estimates for average days in lactation indicates the effect of an additional average day in lactation on the content of the proteins compared with the intercept value. Values for crude protein are g kg⁻¹ milk; values for individual proteins are in g 100 g⁻¹ measured proteins. *p*-Values for the monthly influence vary from month to month. A significant effect is indicated by a *p*-value in bold (*p* < 0.05).

