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Ecologically meaningful predictors are often neglected in plant distribution studies, 
resulting in incomplete niche quantification and low predictive power of species dis-
tribution models (SDMs). Because environmental data are rare and expensive to col-
lect, and because their relationship with local climatic and topographic conditions are 
complex, mapping them over large geographic extents and at high spatial resolution 
remains a major challenge.

Here, we propose to derive environmental data layers by mapping ecological indi-
cator values in space. We combined ~6 million plant occurrences with expert-based 
plant ecological indicator values (EIVs) of 3600 species in Switzerland. EIVs repre-
senting local soil properties (pH, moisture, moisture variability, aeration, humus and 
nutrients) and climatic conditions (continentality, light) were modelled at 93 m spatial 
resolution with the Random Forest algorithm and 16 predictors representing meso-
climate, land use, topography and geology. Models were evaluated and predictions of 
EIVs were compared with soil inventory data. We mapped each EIV separately and 
evaluated EIV importance in explaining the distribution of 500 plant species using 
SDMs with a set of 30 environmental predictors. Finally, we tested how they improve 
an ensemble of SDMs compared to a standard set of predictors for ca 60 plant species.

All EIV models showed excellent performance (|r| > 0.9) and predictions were cor-
related reasonably (|r| > 0.4) to soil properties measured in the field. Resulting EIV 
maps were among the most important predictors in SDMs. Also, in ensemble SDMs 
overall predictive performance increased, mainly through improved model specificity 
reducing species range overestimation.

Combining large citizen science databases to expert-based EIVs is a powerful and 
cost–effective approach for generalizing local edaphic and climatic conditions over 
large areas. Producing ecologically meaningful predictors is a first step for generating 
better predictions of species distribution which is of main importance for decision 
makers in conservation and environmental management projects.
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Introduction

Predicting the potential distribution of plants has become 
an important approach in conservation and biodiversity 
assessments (Guisan and Thuiller 2005, Guisan et al. 2013). 
So-called species distribution models (SDMs; Guisan and 
Zimmermann 2000, Guisan et al. 2017), which relate species 
occurrences or abundances to spatially explicit ecological vari-
ables, allow predicting the occurrence probability of a species 
at a given location across the landscape. The quality of such 
predictions depends on the input predictors, which should 
ideally reflect physiological constraints of a species (Guisan 
and Thuiller 2005, Soberón 2007, Thuiller 2013). So far, 
climate predictors, such as minimum temperature or grow-
ing degree-days, are widely used in plant distribution model-
ling, likely because of their high availability (Thuiller 2013), 
accuracy and relevance (Scherrer and Guisan 2019) as well as 
known direct effects on plant physiology (Woodward 1987, 
Körner 2003). Similarly, topographic predictors (from digi-
tal elevation models) are often used to approximate potential 
light availability (e.g. solar radiation, aspect) and potential 
moisture (e.g. topographic wetness index, curvature, slope) in 
plant distribution models (Zimmermann and Kienast 1999, 
Thuiller 2013). However, proxies are only surrogates of eco-
logical parameters and may only partially capture the factors 
relevant for the species’ ecological niche. There is a need for 
more complete and direct predictors enabling to capture a 
larger spectrum of the species’ ecological niche conditions 
(Austin and Meyers 1996).

Beyond topo-climatic predictors, soil properties strongly 
affect plant growth and distribution (Elmendorf and Moore 
2008, Dubuis  et  al. 2013). For instance, soils play a main 
role in driving the distribution of tree species in temperate 
forests (Walthert and Meier 2017) and ferns in Amazonian 
forests (Figueiredo  et  al. 2018). The inclusion of edaphic 
variables significantly improved the quality of predictions for 
single plant species as shown for Acer campestre L. in France 
(Coudun  et  al. 2006). Proxies for soil nutrients, such as 
soil C:N, were important for modelling the distribution of 
Vaccinium myrtillus L. (Coudun and Gégout 2007), or tree 
species in the Vosges Mountains (Pinto and Gégout 2005). 
Geochemical variables (pH and inorganic carbon) and water 
drainage indicator (volumetric soil water content) improved 
predictions of alpine plant species (Buri  et  al. 2020). 
Similarly, soil pH was the second most important predictor, 
after temperature, in describing the distribution of 154 
alpine plant species in SDMs (Buri et al. 2017). Therefore, 
considering only climate predictors might lead to incomplete 
niche quantification of a given species. At the same time, 
ecophysiologically meaningful variables such as microclimate 
and soil properties are rarely available (Mod  et  al. 2016). 
There is thus a strong need to generate more ecologically 
meaningful predictors that better reflect local edaphic and 
climatic conditions and allow better fine scale predictions 
of species distributions (Mod  et  al. 2016, Scherrer and  
Guisan 2019).

Studies investigating site properties at high spatial 
resolutions (i.e. < 100 m) mostly use parameters measured 
directly in the field (e.g. pH, moisture, nitrogen). Only few 
studies have tried to generalize these over large geographic 
extents (Piedallu et al. 2011, Buri et al. 2017, Hengl et al. 
2017), mostly by spatial interpolation (Schloeder  et  al. 
2001), statistical modelling (Häring et al. 2013, Buri et al. 
2017) or machine-learning techniques (Heung et al. 2016). 
In recent decades, great progress has been made to produce 
digital soil maps also known as digital soil mapping (DSM; 
Padarian  et  al. 2019). In DSM, an empirical quantitative 
relationship is established between soil properties and their 
spatially implicit soil forming factors such as geology, climate 
or topography. The methods to relate environmental data and 
soil properties are manifold and comprise ensemble models 
of (geo-) statistics, machine- or deep learning (Heung et al. 
2016, Nussbaum et al. 2018, Padarian et al. 2019). However, 
modelling site properties at high spatial resolution remains 
challenging for two reasons. First, the acquisition of high-
resolution climate properties (e.g. local climatic conditions) 
or soil properties derived in the laboratory from soil samples 
(e.g. soil pH, soil nutrients) is both time consuming and costly 
and therefore often leads to sparse datasets (Grunwald et al. 
2011, Häring  et  al. 2013, Carter  et  al. 2015, Mod  et  al. 
2016). Second, local conditions such as soil moisture and 
temperature can vary at a very fine spatial scale and are 
influenced by plants (Aalto  et  al. 2013, Zellweger  et  al. 
2020). Plants can strongly influence abiotic local conditions 
and, thus, site properties cannot be accurately predicted 
without considering the vegetation composition (Aalto et al. 
2013). Aalto  et  al. (2013) found that the inclusion of 
vegetation variables (i.e. biomass, vegetation volume, lichen 
and moss cover) strongly improved their models, although 
local topography and soil properties were the most influential 
predictors. Similarly, plants have been shown to affect 
microclimate through temperature buffering (Lenoir  et  al. 
2013), and soil biogeochemistry (i.e. soil acidity and fertility) 
through variation in the chemistry and quantity of their 
litterfall (Reich et al. 2005). Similarly, Sphagnum species can 
strongly influence soil moisture and soil pH in peatlands 
through the production and accumulation of decay-resistant 
litter (Rydin  et  al. 2006). Therefore, given the importance 
of vegetation for modelling local edaphic and climatic 
conditions, collecting and using large amounts of vegetation 
data to infer local site properties might provide new insights 
into generating accurate and ecological meaningful predictors 
of plants.

Expert-based ecological indicator values (EIVs) are often 
used in vegetation assessments to provide information on 
the local abiotic environment (Diekmann 1995, 2003, 
Wohlgemuth  et  al. 1999, Gégout  et  al. 2003, Smart  et  al. 
2003, Wamelink et al. 2005, Häring et al. 2013). In central 
Europe, local climate and soil properties of plots are often 
characterized by Ellenberg indicator values averaged among 
all species found in these plots (Ellenberg et al. 1992), or by 
Landolt indicator values in Switzerland and the European 
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Alps (Landolt et al. 2010). These two EIV systems represent 
subjective categorical assessments of the response of species 
to different environmental conditions, such as soil moisture, 
soil acidity (pH), soil nutrients (mainly nitrogen), light, 
temperature and continentality. While Ellenberg et al. (1992) 
derived those metrics for approximately 2700 species in 
Central Europe, Landolt et al. (2010) assessed EIVs for almost 
all plant species occurring in Switzerland (ca 3600 species). 
EIVs are often used as bioindicators of the site characteristics 
when plant inventories are available (Ter Braak and 
Barendregt 1986). For instance, Scherrer and Guisan (2019) 
used EIVs averaged at the plot level and found that ecological 
conditions reflecting light availability and soil conditions are, 
in complement to temperature, very important and should be 
included in SDMs. While predictions of EIVs at the plot scale 
are common practice, assessing the potential of combining 
large amounts of plant occurrences and EIVs to predict local 
soil and climate properties (derived from EIVs) over large 
areas at high spatial resolution (i.e. < 100 m) has only received 
limited consideration so far (Häring et al. 2013).

Here, we propose to combine plant occurrence databases 
with EIVs to predict local edaphic and climatic conditions 
over large geographic extents and at high spatial resolution 
(93 m). First, using two independent datasets of combined 
soil and plant inventories distributed in Switzerland, we 
investigated how averaged site EIVs across inventoried species 
relate to local values of measured soil properties (i.e. pH, Ca, 
total nitrogen content, organic carbon content, C:N, sum of 
basic cations, hydromorphy, modelled drought index). Then, 
we combined citizen science-based data of plant occurrences 
from Switzerland to expert-based EIVs for ca 3600 plant 
species and averaged EIVs at the grid cell level (93 m) over 
the entire landscape. We related site-averaged EIVs to 
topographic, mesoclimatic, landuse and geological predictors 
at more than 70 000 sites using Random Forest models and 
mapped them across Switzerland at a 93 m resolution. For 
comparison, we also modelled and mapped soil properties 
(pH, total nitrogen content, organic carbon content, C:N) 
with the same methodology. Finally, we investigated how the 
generated variables improved predictions of individual plant 
species in Switzerland using SDMs.

Material and methods

Study area

The study area encompasses Switzerland, a European country 
presenting a temperate climate and a complex topography, 
with an elevation gradient ranging from 190 m to ca 4500 m 
a.s.l., with diverse edaphic and climatic conditions from 
moist to dry environments and calcareous to acidic soils.

Plant ecological indicator values (EIVs)

We obtained plant EIVs for 3599 species from Flora 
Indicativa (Landolt et al. 2010). We retained 8 different EIVs 
to characterize the local edaphic and climatic conditions: soil 
pH (EIV-R), soil nutrients (EIV-N, i.e. mainly nitrogen), 
soil moisture (EIV-F), soil moisture variability (EIV-W), 
soil aeration (EIV-D), soil humus (EIV-H), continentality 
(EIV-K) and light (EIV-L). EIVs reflecting tolerance to salt 
(EIV-S) and heavy metal (EIV-M) were not considered. 
The temperature EIV (EIV-T) was also not considered, as 
it highly correlates with temperature from climate models 
(Scherrer and Guisan 2019). All 8 EIVs are ordinal variables 
consisting of 3–9 classes each (see Table 1 for a summarized 
description). Because EIV-R classes in the Flora Indicativa 
represent distinct pH ranges (e.g. pH 2.5–5.5 for class 1), 
we retained the median pH value for each class (classes 1–5 
correspond to pH values of 4, 5, 6, 7 and 7.5, respectively) to 
make this parameter more comparable to in-situ pH values. 
Plant species presenting undefined EIV or broad ecological 
preferences (‘–’ or ‘x’ in the Flora Indicativa) were not 
considered in further analyses (representing less than 0.84% 
of the species).

Plant distribution data

We used distribution data from three different datasets: 1) 
citizen–science based plant occurrence data, 2) a vegetation 
plot inventory and 3) a forest plant inventory.

First, the citizen science data containing ~6.7 million 
records of plant occurrences was obtained from the National 

Table 1. Description of the ecological indicator values (EIVs) used in this study. See Landolt  et  al. (2010) for a detailed description  
of the EIVs.

EIVs Description Ordinal classes Description of classes

EIV-R Soil pH 1, 2, 3, 4, 5 Gradient from acidic soils (1) to carbonate containing alkaline soils (5) 
EIV-N Soil nutrients 1, 2, 3, 4, 5 Gradient from nutrient-poor soils (1) to nutrient-rich soils (5), mainly nitrogen
EIV-F Soil moisture 1, 1.5, 2, 2.5, 3, 

3.5, 4, 4.5, 5
Gradient from very dry soils (1) to plants growing in water (5)

EIV-W Soil moisture variability 1, 2, 3 Gradient from low intraannual variability in soil moisture (1) to soils with a high 
intraannual variability in soil moisture (3)

EIV-D Soil aeration 1, 3, 5 Gradient from waterlogged/low aerated soils (1) to soils rich in rocks or sand with 
larger distance to the water table (5)

EIV-H Soil humus 1, 3, 5 Gradient from humus-poor soils (1) to humus-rich soils (5)
EIV-K Continentality 1, 2, 3, 4, 5 Gradient from atlantic climate (1; high mean air humidity, low variations in 

temperature and relatively mild winters) to continental climate (5; low mean air 
humidity, high variations in temperature and cold winters)

EIV-L Light 1, 2, 3, 4, 5 Gradient from shaded (1) to sunny areas (5) 
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Data and Information Center on the Swiss Flora (Info Flora: 
<www.infoflora.ch/>; data extracted in April 2019). We 
retained only geographically valid occurrences with a coor-
dinate precision <= 100 m, corresponding to ~5.1 million 
occurrences of 3981 species collected between years 1565–
2019 (< 1% records before 1956, 10th percentile = 1996, 
90th percentile = 2017). This database contains also infor-
mation on the type of observation. An observation can be 
opportunistic or part of an exhaustive plant inventory. These 
data serve as input to modelling EIVs and to modelling plant 
species distributions.

Second, vegetation plot inventories were performed in 
5-yr intervals between 2000 and 2018 on 1560 vegetation 
plots of 10 m2 at intersections of a 1 km grid placed over 
Switzerland within the Swiss Biodiversity Monitoring survey 
(BDM indicator Z9 ‘species diversity in habitats’, <www.
biodiversitymonitoring.ch>; Fig. 1). The BDM plant 
inventory dataset includes vegetation plots spanning different 
types of habitats from low to high elevation. We considered 
all recorded plants across all replicated inventories for each 
plot location. The BDM dataset was used as an independent 
dataset for validating the relationship between EIVs and soil 
properties, and for validating final SDMs.

Third, forest plot inventories were performed between 
1938 and 2014 (95% after 1993) on 1156 expert-selected 
forest vegetation plots of 100–500 m2 (avg. 200 m2) across 
Switzerland (Fig. 1), conducted by about 50 botanists at 
sites where soil inventories (see description below) were also 
performed by the Swiss Federal Inst. for Forest, Snow and 
Landscape Research (WSL). See Walthert and Meier (2017) 
for further details on the sampling methodology. These 
data were used as an independent dataset for validating the 
relationship between EIVs and soil properties.

Soil databases

Datasets on soil properties were derived from forest soil pro-
files sampled by WSL where forest plant inventories were also 
performed (hereafter called WSL soil database) and from a 
topsoil inventory performed on a subset of the BDM vegeta-
tion plots within the Swiss Soil Monitoring Network NABO 
(hereafter called NABO soil database).

The WSL soil database contains 1156 forest soil pro-
files that are, on average, 1.2 m deep and sampled across 
Switzerland between 1938 and 2014 (95% after 1993). Soil 
sampling as well as physical and chemical soil analyses were 

Figure 1. Overview of the main analyses, variables and databases used in the present study.
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performed in each soil horizon of the soil profiles and are 
described in detail in Walthert et al. (2013) and in Walthert 
and Meier (2017). Soil pH (pH CaCl2), total nitrogen con-
tent (g kg−1), organic carbon content (g kg−1), organic carbon 
to total nitrogen ratio (C:N), Ca content (mmolc kg−1) and 
sum of Ca, Mg, K and Na (basic cations; mmolc kg−1) were 
calculated as the average of all horizons between 0 and 25 cm 
soil depth including eventual organic topsoil horizons. For 
each soil profile, we estimated a drought index, a proxy of 
soil moisture availability and the soil hydromorphy, a proxy 
of soil aeration or periodic oxygen shortage (Supplementary 
material Appendix 1 Note A1). Note that the WSL soil data-
base contains, in total, 1204 forest soil profiles, but we kept 
only soil profiles which have both plant inventories and all 
soil properties available (n = 1156).

The NABO soil database was collected between 2011 and 
2015 on 1131 locations selected among the 1560 vegetation 
plots of the BDM vegetation database (BDM indicator Z9 
‘species diversity in habitats’). On each plot, 2–4 topsoil 
samples at levels down to 20 cm (including organic horizons) 
were collected in each corner around the central circular 
BDM vegetation plot (Meuli  et  al. 2017) for a description 
of the sampling). Soil pH (pH CaCl2), total nitrogen content 
(N; g kg−1), organic carbon content (C; g kg−1) and organic 
carbon to total nitrogen ratio (C:N) were measured on 
each sample, and averaged for each vegetation plot. Note 
that some soil properties were not measured on some sites  
(pH: n = 1130; organic carbon: n = 1103; nitrogen: n = 1114; 
C:N: n = 1103).

Environmental predictors

Environmental predictors are used for modelling distribution 
of EIVs across space, and for SDMs. We used a digital 
elevation model (DEM) at 93 m resolution (Robinson et al. 
2014) as a base map to derive different topographic, 
landuse, geological, remote sensing and climate properties 
calculated or extracted from various sources (Supplementary 
material Appendix 1 Table A1) and known to be important 
for plants (see Mod  et  al. 2016 and references therein). 
Predictors included aspect, topographic position index (TPI), 
topographic roughness index (TRI), topographic wetness 
index (TWI), distance to waters, distance to buildings, yearly 
sum of precipitation (Prec year), sum of winter precipitation 
(Prec 12–2), sum of summer precipitation (Prec 6–8), yearly 
temperature average (Tave year), winter temperature average 
(Tave 12–2), summer temperature average (Tave 6–8), 
growing degree days above 5.56°C (Gdd), yearly atmospheric 
moisture balance (Mind), yearly sum of global (direct and 
diffuse) potential solar radiation (Srad year), annual average 
site water balance (Swb), forest canopy height (Forest height), 
inner forest density (Forest height Q25), mean summer 
normalized difference vegetation index (NDVI mean), 
variability in summer normalized difference vegetation 
index (NDVI SD), x-coordinate, y-coordinate and bedrock 
geology. Detailed descriptions of these predictors can be 
found in Supplementary material Appendix 1 Note A2.

In-situ relationship between site-averaged EIVs of 
plant inventories and soil properties measured in 
the field

We analysed the in-situ relationship between site-averaged 
EIVs of plant inventories and soil properties measured in the 
field within the NABO and WSL soil databases (Fig. 1f ). To 
do so, we linked the species lists per site to EIVs (Landolt et al. 
2010) using the species’ taxonomic identity code (SIN, isfs 
number). We then calculated average EIV values for each site 
based on the plant inventory by considering only the pres-
ence of the species, meaning that we did not account for rela-
tive abundances of species. Average plot EIV and in-situ soil 
measures were compared by using Spearman’s rank correla-
tion test and adjusted R-square (R2) of a linear model includ-
ing linear and quadratic terms. Values of the coefficient of 
correlation r (positive or negative) above 0.70 are considered 
as strong, between 0.30 and 0.69 as moderate and below 
0.29 as weak (Fowler et al. 2013). We compared EIV-R to 
pH (NABO and WSL soil databases) and Ca (WSL), EIV-N 
to total nitrogen content and C:N (NABO and WSL) and 
sum of basic cations (WSL), EIV-H to organic carbon con-
tent (NABO and WSL), EIV-F to modelled drought index 
(WSL) and EIV-D to hydromorphy (WSL).

Mapping EIVs

We calibrated eight different EIV models for the different 
indicators (EIV-R, EIV-N, EIV-F, EIV-W, EIV-D, EIV-
H, EIV-K and EIV-L) and then mapped these EIVs across 
Switzerland (10 152 417 grid cells in total). To do so, we 
first combined the ~5.1 million InfoFlora plant occurrences 
to their EIVs (Landolt  et  al. 2010) using their taxonomic 
identity code (SIN, isfs number; Fig. 1a). Then, we averaged 
EIVs in each grid cell at 93 m resolution after removing 
duplicate observations of species occurring in the same grid 
cell. To ensure that our averaged cell EIVs are robust and 
representative of the edaphic and climatic conditions, we 
retained only cells with at least ten records of different plant 
species (~ 73 000 cells; Fig. 1b, Supplementary material 
Appendix 1 Fig. A1). We tested the robustness of species 
and site selection by testing thresholds of >= 5 and >= 20 
species, and by including only observations that are part of 
exhaustive plant inventories (n = 86 715 plant inventories). In 
addition, we checked how cell average EIVs are affected if we 
remove one single species (for 500 species; see Supplementary 
material Appendix 1 Table A2 for the species list) at a time 
by using a Spearman’s rank correlation test and calculated the 
number of cell loss (in %) resulting from lower number of 
cells with at least ten records of species. We then related cell 
averaged EIVs to a set of climatic, topographic, landscape 
and geological predictors (Supplementary material Appendix 
1 Table A1) and predicted EIVs over Switzerland (Fig. 1c). 
All selected predictors showed pairwise Pearson correlations 
|r| < 0.8 (Dormann  et  al. 2013). We used Random Forests 
(Breiman 2001) with 1000 trees and a node size of 20 to 
reduce computation time and avoid overfitting. We assessed 
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the contribution (in %) of each predictor in the EIV modelling 
by permutation importance. For this, we reshuffled randomly 
each predictor individually (keeping all other predictors 
unchanged), and measured the decrease in prediction 
accuracy on the reshuffled data with a Pearson correlation 
(Strobl et al. 2007). We repeated the reshuffling five times, 
transformed the average accuracy loss to % contribution, 
and report this value as a measure of variable importance. 
Because model extrapolation to novel covariates in space 
may be found in Switzerland due to the low environmental 
coverage of the calibration data, we quantified the level of 
extrapolation outside the univariate range (type 1 novelty) 
and novel covariate combinations within the univariate 
range of covariates (type 2 novelty) following Mesgaran et al. 
(2014). We calculated the percentage of cells affected by both 
types of extrapolation and determined the most influential 
covariates responsible for them.

EIV models were evaluated by five-fold split-sampling 
of the data (training set = 80%, evaluation set = 20%) and 
by five-fold spatial block cross-validation (Roberts  et  al. 
2017) using five strata assigned across 25 regional clusters in 
Switzerland (training set = 80%, evaluation set = 20%) and by 
using Spearman’s rank correlation tests (Fig. 1e).

Model predictions were also externally evaluated on the 
two independent datasets of in-situ soil properties (NABO 
and WSL soil databases) by calibrating the models without 
the cell grids containing soil inventories (Fig. 1e). Predictions 
and in-situ measures were compared by using Spearman’s 
rank correlation tests. We expected to find lower correlations 
but similar directions of correlations when using model-pre-
dicted than when using site-averaged EIVs of plant invento-
ries performed on the soil sampling location. Finally, we used 
the Swiss federal inventories (polygons) of wetlands (fens 
and bogs) and the Swiss federal inventories (polygons) of dry 
meadows and pastures (<www.bafu.admin.ch/>) to validate 
predictions of EIV-F, EIV-W and EIV-D over Switzerland. 
We averaged predicted EIV-F, EIV-W and EIV-D, as well 
as other proxies of moisture variability (distance to water, 
annual average site water balance and moisture index), for 
each polygon and compared wetlands and dry grasslands 
with a Welch two sample t-test. Because wetlands and dry 
grasslands both occur at different extremes of the moisture 
gradient, we expect to find non-overlapping mean ± SD of 
EIV’s between wet and dry polygon objects.

Mapping in-situ soil properties

To investigate if EIV maps reveal better predictive perfor-
mance than mapped in-situ soil properties in SDMs, we also 
mapped the in-situ soil properties of the NABO soil database 
(Fig. 1d). In-situ soil properties of the WSL database were 
not modelled because they only cover forest habitats. We 
used the same predictors as for mapping the EIVs, Random 
Forests (Breiman 2001) with 1000 trees and a node size of 1, 
and predicted the NABO in-situ properties over Switzerland 
(NABO-pH, NABO-N, NABO-C, NABO-C:N). We 
quantified the level of extrapolation in the same way as for 

mapping EIVs. NABO models were evaluated by five-fold 
split-sampling and by five-fold spatial block cross-validation.

EIV importance in species distribution models

We investigated the importance of 30 predictors (including 
the generated 8 EIV and 4 NABO maps; Supplementary 
material Appendix 1 Table A1) in explaining the distribution 
of 500 plant species in Switzerland by using generalized lin-
ear models (McCullagh 1983; Fig. 1g). The 500 species were 
selected to represent frequent native plant species with at least 
250 occurrences across Switzerland and to span different eco-
logical groups (see Supplementary material Appendix 1 Table 
A2 for the species list). We used geographically valid and 
precise (<= 100 m) occurrences from the InfoFlora database, 
which were thinned to 300 m to reduce spatial autocorrela-
tion in model residuals. Species’ occurrences were related to 
10 000 pseudo-absences that were sampled randomly across 
Switzerland and with the same spatial bias as observed plant 
distribution patterns (Phillips et al. 2009). We ran an inverse 
distance weighted spatial model by using the ‘geoIDW’ func-
tion in the ‘gstat’ package (Pebesma 2004), and by select-
ing randomly the same number of pseudo-absences as the 
number of occurrences of the modelled species. This geo-
graphic model informs on the probability of being close to an 
occurrence in the landscape by means of X and Y coordinates 
and has the advantage of being independent of a distance 
threshold. All probabilities < 0.1 were set to 0.1 to have a 
minimum 10% probability of sampling across the landscape. 
We then selected 10 000 pseudo-absences over this weighted 
probability map with a minimal distance of 300 m between 
pseudo-absences. Then, we ran generalized linear models 
with binomial distribution with all possible combinations of 
a maximum of five predictors including quadratic terms using 
the ‘dredge’ function in the 'MuMIn' package (Barton 2019), 
resulting in > 80 000 combinations per species. For compu-
tation time reasons, interactions between environmental pre-
dictors were not included. Models presenting pairs of highly 
correlated predictors (Pearson correlations: |r| > 0.8) were not 
included (Dormann  et  al. 2013). Variable importance was 
assessed as the percentage of time a variable was present in the 
5% best models ranked by their AICs (4042 out of 80 845 
models for every species). We compared the importance of 
each predictor for all species and between ecological groups 
from Flora Indicativa (Landolt et al. 2010).

Comparing species distribution models with and 
without EIV predictors

We assessed the potential distribution of 60 plant species at 
a 93 m spatial resolution in Switzerland by using ensemble 
SDMs (SDMs following Guisan and Zimmermann 2000) 
with five algorithms and five pseudo-absence iterations 
(Fig. 1g). For computational reason, we only selected 60 
plant species being a representative set of native plant species 
observed at least 150 times along the elevation gradient 
and presenting different ranges of ecological preferences 
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from dry to moist and acidic to alkaline soil conditions 
(see Supplementary material Appendix 1 Table A3 for the 
species list). SDMs either included or excluded EIVs. Spatial 
predictions were validated against BDM data using different 
performance measures (specificity, sensitivity, true skill 
statistic TSS; Allouche  et  al. 2006). Methodological details 
are provided in Supplementary material Appendix 1 Note A3. 
All analyses were performed in R ver. 3.5.1 (R Core Team).

Results

In-situ relationship between site-averaged EIVs of plant 
inventories and soil properties measured in the field

We found strong positive correlations and relationships 
between EIV-R and soil pH measured in the soil profiles in 
both independent soil databases (NABO: r = 0.768, n = 1103, 
R2 = 0.652; WSL: r = 0.819, n = 1156, R2 = 0.628; Fig. 2a, d). 
EIV-R and Ca were moderately positively correlated (WSL: 
r = 0.705, n = 1156, R2 = 0.438; Supplementary material 
Appendix 1 Fig. A2). EIV-N and C:N were moderately 
and negatively correlated both in the NABO (r = −0.637, 
n = 1079, R2 = 0.325; Fig. 2b) and WSL (r = −0.608; 
n = 1156, R2 = 0.393; Fig. 2e) soil databases. In contrast, 

we found only weak correlations and relationships between 
EIV-N and the total nitrogen content (NABO: r = −0.191, 
n = 1089, R2 = 0.038; WSL: r = −0.179, n = 1156, R2 = 0.034), 
as well as between EIV-N and the sum of basic cations (WSL: 
r = 0.163, n = 1156, R2 = 0.022). We found a moderate positive 
correlation between EIV-F and the modelled drought index 
(WSL: r = 0.393, n = 1139, R2 = 0.307; Fig. 2c), and a moderate 
negative correlation between EIV-D and hydromorphy 
(WSL: r = −0.439, n = 1156, R2 = 0.239, Fig. 2f ). We found a 
weak positive correlation between EIV-H and organic carbon 
content measured in the WSL soil profiles (WSL: r = 0.182, 
n = 1156, R2 = 0.045; Supplementary material Appendix 1 
Fig. A2), and a moderate positive correlation in the NABO 
soil database (NABO: r = 0.449, n = 1079, R2 = 0.202; 
Supplementary material Appendix 1 Fig. A2). Correlation 
coefficients are summarized in Table 2 (column ‘r site’).

EIV model evaluations

All EIV Random Forest models provided very good test 
statistics with strong positive correlations when evaluated 
by split sample testing (Spearman correlation: r > 0.918; 
Table 2) and block cross-validation (r > 0.904; Table 2). 
Overall, results were only marginally affected by the choice 
of the threshold for averaging EIVs on cells (Supplementary 

Figure 2. Relationships between site-averaged EIVs of plant inventories (y axis) and in-situ soil properties measured in the field (x axis) 
within the NABO (a–b) and WSL (c–f ) soil databases. Each dot represents a vegetation inventory where EIVs were averaged across all plant 
species and where in-situ soil properties were measured. The black lines represent the quadratic relationships and the grey areas span from 
the 5th to the 95th percentiles. The dotted red lines represent the linear relationships. Note that EIV-R classes were converted to the pH 
ranges described in the Flora Indicativa (Landolt et al. 2010) to make this parameter more comparable to in-situ pH values (see Method 
section). EIVs are described in Table 1 and correlation coefficients between site-averaged EIVs and in-situ soil properties are summarized in 
Table 2 (column ‘r site’).
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material Appendix 1 Table A4), and all cell averaged EIVs were 
robust against removing single species from the occurrence 
database (r > 0.999; cell loss: < 0.071%). The variable 
importance, measured as contribution of each predictor in the 
EIV modelling, varied between 0.2 and 40% (Supplementary 
material Appendix 1 Fig. A3). EIV model extrapolation into 
novel covariate space was low (type 1 novelty = ~0.9%; type 2 
novelty < 0.01%) and mostly concerned high elevation sites 
presenting temperatures below the range of the calibration 
data (> 3200 m; Supplementary material Appendix 1 Fig. 
A4, A5). The generated EIV maps are visualized in Fig. 3, 
Supplementary material Appendix 1 Fig. A6.

Evaluations of model predictions on the two independent 
datasets of in-situ soil properties presented moderate to strong 
positive correlations between EIV-R and pH (WSL: r = 0.607; 
NABO: r = 0.735), and a moderate positive correlation 

between EIV-R and Ca (WSL: r = 0.530). Evaluations of 
model predictions presented a moderate negative correlation 
between EIV-N and C:N (WSL: r = −0.348; NABO: 
r = −0.589), while, in contrast, correlations between EIV-N 
and total nitrogen content (WSL: r = −0.351; NABO: 
r = −0.230) or sum of basic cations (WSL: r = −0.201) were 
generally weak. Among soil moisture proxies, evaluations of 
model predictions presented a moderate positive correlation 
between EIV-F and modelled drought index (WSL: 
r = 0.411), and a moderate negative correlation between 
EIV-D and hydromorphy (WSL: r = −0.590). Evaluations 
between EIV-H and organic carbon content presented weak 
to moderate positive correlations (NABO: r = −0.001; WSL: 
r = 0.418). Correlations between EIV predictions and in-situ 
soil properties were generally lower (column ‘r model’ in 
Table 2) than between site-averaged EIVs of plant inventories 

Table 2. Spearman rank correlations between observed and predicted EIVs based on repeated split-sampling (Split) and five-fold block cross-
validation (CV) tests. Models were also evaluated by comparing in-situ soil properties measured on sites from two soil databases (NABO and 
WSL) to predicted EIVs (r model). Relationships between in-situ soil properties measured in the field (NABO and WSL) and site-averaged 
EIVs of exhaustive plant inventories at the same sites (r site) are also provided. EIVs are described in Table 1. Correlation coefficients |r| > 0.3 
are highlighted in bold.

EIVs

Split CV WSL soil database NABO soil database
r r

Soil properties r (model) r (site) Soil properties r (model) r (site)Mean SD Mean SD

EIV-R 0.924 0.001 0.904 0.000 pH 0.607 0.819 pH 0.735 0.768
Ca 0.530 0.705 – – –

EIV-N 0.938 0.001 0.939 0.000 Nitrogen −0.351 −0.179 Nitrogen −0.230 −0.191
C:N −0.348 −0.608 C:N −0.589 −0.637
Basic cations −0.201 0.163 – – –

EIV-F 0.946 0.001 0.941 0.000 Drought index 0.411 0.393 – – –
EIV-W 0.924 0.002 0.925 0.000 – – – – – –
EIV-D 0.936 0.001 0.939 0.000 Hydromorphy −0.590 −0.439 – – –
EIV-H 0.932 0.002 0.909 0.000 Organic carbon −0.001 0.182 Organic carbon 0.418 0.449
EIV-K 0.931 0.001 0.930 0.000 – – – – – –
EIV-L 0.918 0.001 0.926 0.000 – – – – – –

Figure 3. Maps of four EIVs (a–d) predicted across Switzerland. Cell-averaged EIVs were related to a set of climate, landuse, topographic 
and geological predictors using Random Forest models, and were predicted across the entire landscape. The focal region (box) represents a 
square of 30 km width, and illustrates predicted EIVs in more detail. Lakes and rivers are mapped in grey. EIVs are described in Table 1. 
Maps of all EIVs are presented in Supplementary material Appendix 1 Fig. A6.
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and soil properties measured in the field (column ‘r site’ in 
Table 2), but presented similar directions of correlations. 
Correlation coefficients are summarized in Table 2.

EIV-F, EIV-W and EIV-D models correctly predicted areas 
with wetlands (fens and bogs) and dry meadows in Switzerland 
(Supplementary material Appendix 1 Fig. A7). EIV-F and 
EIV-W were both significantly higher in wetlands than in dry 
grasslands with non-overlapping mean ± SD (mean ± SD; 
EIV-F: moist = 3.37 ± 0.24, dry = 2.63 ± 0.27, t = 153.04, 
df = 11089, p-value < 0.001; EIV-W: moist = 2.11 ± 0.21, 
dry = 1.71 ± 0.13, t = 127.11, df = 9942, p-value < 0.001; 
Supplementary material Appendix 1 Fig. A8). EIV-D was sig-
nificantly lower in wetlands than in dry grasslands with non-
overlapping mean ± SD (mean ± SD; moist = 1.78 ± 0.28, 
dry = 2.44 ± 0.27, t = −130.05, df = 11341, p-value < 0.001; 
Supplementary material Appendix 1 Fig. A8). In contrast, 
proxies of moisture gradients such as distance to water 
(Water), annual average site water balance (Swb) and mois-
ture index (Mind) also presented significant differences 
between wetlands and dry grasslands (p-value < 0.001), 
but with overlapping mean ± SD (Supplementary material 
Appendix 1 Fig. A8–A9).

Soil property model evaluations

All Random Forest models of the in-situ soil properties 
(NABO soil database) provided very good test statistics 
with strong positive correlations when evaluated by 
split-sample testing (spearman correlation r mean ± SD: 
NABO-pH = 0.977 ± 0.002, NABO-N = 0.962 ± 0.007, 
NABO-C = 0.944 ± 0.007, NABO-C:N = 0.968 ± 0.005) 
and block cross-validation (NABO-pH = 0.981 ± 0.001, 
NABO-N = 0.957 ± 0.001, NABO-C = 0.949 ± 0.001, 
NABO-C:N = 0.955 ± 0.001). However, compared to the 
EIV models, the extrapolation into novel covariate space was 
much higher (type 1 novelty = ~9.9%; type 2 novelty = ~0.79%; 
Supplementary material Appendix 1 Fig. A10) and mostly 
concerned alpine regions or lakes (Supplementary material 
Appendix 1 Fig. A10) due to the low representation of high 
elevation sites and lake borders in the calibration data. The 
generated NABO maps of in-situ soil properties are visualized 
in Supplementary material Appendix 1 Fig. A11.

EIV importance in SDMs

We found that NDVI mean, NDVI SD, forest height and 
EIV variables were among the most important predictors 
in five-variable model tests among 500 plant species. 
EIVs outperformed traditional climate predictors such as 
temperature or precipitation, as well as traditional proxies 
of moisture gradients (Swb, Mind and Water) and soil 
pH (bedrock geology), and were also more informative 
than in-situ soil properties modelled from the NABO soil 
database (Fig. 4). The importance of the EIV predictors 
for explaining the distribution of the species varied among 
ecological groups (Fig. 4). EIV-R was one of the most 
important predictors among all ecological groups (except for 

ruderal and nutrient-rich grassland plants) and constantly 
outperformed bedrock geology (Geology). Similarly, EIV-K 
showed high contributions in explaining plant distributions 
of almost all ecological groups, but especially of dry grassland 
plants. EIV-F was particularly important for explaining 
the distribution of dry grassland and ruderal plants, and 
strongly outperformed climate and land cover predictors 
reflecting moisture gradients (Prec, Swb, Mind and Water; 
Fig. 4). EIV-W and EIV-D were important for explaining the 
distribution of species growing in moist grassland habitats. 
EIV-N was important for ruderal and dry grassland plants, 
and EIV-L was important for plants growing in forests and 
nutrient-rich grasslands. EIV-H showed in general poor 
contribution for explaining plant distributions, but was 
more important for mountain and pioneer plants. Only few 
in-situ soil properties modelled from the NABO soil database 
showed better performances than EIVs. NABO-C:N was 
particularly important for explaining the distribution of 
plants growing in nutrient-rich grasslands and outperformed 
EIV-N. In contrast, NABO-pH was constantly outperformed 
by EIV-R. Beyond the aforementioned predictors, TRI 
was important for explaining the distribution of mountain 
plants, and NDVI variation (NDVI SD), a metric reflecting 
biomass related landuse changes, was particularly important 
for explaining the distribution of pioneer and ruderal plants.

Species distribution models with and without EIV 
predictors

Among the 60 plant species tested, SDMs calibrated 
without EIV predictors showed good predictive performance 
(TSS = 0.782 ± 0.083; sensitivity = 0.927 ± 0.037; 
specificity = 0.854 ± 0.061; Supplementary material 
Appendix 1 Table A3), and so did models including EIV 
predictors (TSS = 0.840 ± 0.080; sensitivity = 0.939 ± 0.039; 
specificity = 0.900 ± 0.058; Supplementary material 
Appendix 1 Table A3). Inclusion of EIV predictors improved 
SDM performance for a high proportion of species (90% for 
TSS, 66.7% for sensitivity and 90% for specificity; see Fig. 5 
for a few examples). The performance increased on average 
by 7.7 ± 6.3, 1.3 ± 3.1 and 5.5 ± 5.1% for TSS, sensitivity 
and specificity, respectively. All algorithms in the ensemble 
SDMs showed on average increased performance gains and 
we found no significant differences between them (anova: 
df = 4, F-value = 2.388, p-value = 0.051; Supplementary 
material Appendix 1 Table A5). The average performance 
gain (delta TSS = 0.058 ± 0.045) was mainly driven by an 
increase in model specificity (rate of true negatives; delta 
specificity = 0.046 ± 0.040) rather than model sensitivity 
(rate of true positives; delta sensitivity = 0.012 ± 0.02; 
Supplementary material Appendix 1 Fig. A12). Species with 
affinities for calcareous soils showed higher performance gains 
through inclusion of EIV predictors than species growing on 
acidic soils (Supplementary material Appendix 1 Fig. A12). 
Similarly, species growing under highly variable soil moisture 
conditions showed higher performance gains than species 
with affinities for soils with more constant soil moisture 
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Figure 4. Violin plots depicting the variable importance in different plant ecological groups estimated by testing all possible combinations 
of five variables with quadratic terms (excluding combinations with collinear variables) with generalized linear models. The variable impor-
tance was assessed for 500 species as the percentage of time a variable is present in the 5% best models ranked by their AICs (4042 out of 
80 845 models for every species). The three best variables (number one to three) based on their median values (white dot) are highlighted 
in red, and the next three best variables (number four to six) are highlighted in orange. See Supplementary material Appendix 1 Table A1, 
Note A2 for a description of the predictors. N-rich = nutrient-rich, Topo. = topography; Envi. = environment.
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(Supplementary material Appendix 1 Fig. A12). Also, species 
growing at the extremes of the soil moisture gradient showed 
higher gains than species preferring intermediate levels 
(Supplementary material Appendix 1 Fig. A12).

Discussion

We show that combining large occurrence databases with 
expert knowledge of plant EIVs is a powerful way for 
generating ecophysiologically meaningful predictors of local 
edaphic and climatic conditions at a high spatial resolution 
(93 m) over complex terrain. EIV models showed very 
high performances and their predictions were correlated to 
in-situ physico-chemical properties assessed in soil profiles, 
emphasizing the relevance of EIVs in reflecting ecological 
and physico-chemical properties. When used in SDMs, EIV 
variables outperformed mapped in-situ soil properties and 
some of the commonly used variables (Fig. 4), and improved 
the performance of SDMs by 7.7% on average by increasing 
model specificity and reducing over-predictions of species 
distributions (Fig. 5, Supplementary material Appendix 1 
Fig. A12). Together, our results suggest that combining large 
occurrence databases with expert knowledge of plant EIVs is 

a powerful approach for generating additional, ecologically 
relevant predictors of plant species’ distributions.

Relationship between site averaged EIVs and in-situ 
soil properties

In this study, we first investigated the relationship between 
in-situ soil properties and site averaged EIVs using exhaustive 
plant inventories from the WSL and NABO soil databases. 
Among the EIVs investigated, EIV-R best correlated to 
in-situ topsoil properties, showing a positive correlation to 
soil pH. While strong correlations between EIV-R and soil 
pH are generally reported (Ertsen  et  al. 1998, Schaffers 
and Sýkora 2000, Wamelink et al. 2002, Diekmann 2003), 
EIV-R has also been shown to better reflect the total amount 
of calcium (exchangeable Ca2+ and Ca from carbonates) 
rather than soil reaction per se (Schaffers and Sýkora 2000), 
which is a pattern that we could not confirm in our analyses 
on forest plots (lower correlation of EIV-R with Ca than 
pH). The strong relationship observed between in-situ soil 
pH and averaged EIV-R suggests that this EIV is an excellent 
surrogate of pH measurements.

We found that EIV-N, which mainly stands for nitrogen 
and phosphorus availability according to Landolt  et  al. 
(2010), was negatively correlated to C:N, which corroborates 

Figure 5. Habitat suitability maps predicted from ensemble SDMs for three of the 60 plant species modelled across Switzerland. Maps 
illustrate different focal regions (squares of 30 km width) across the study area. SDMs excluded (Standard predictors) or included EIVs 
predictors (EIVs predictors), respectively, for building models. The Ensemble SDM was calculated by averaging all replicates and algo-
rithms. Species occurrences are represented by black dots in the hillshaded maps on the left and in the focal regions. Lakes and rivers are 
represented in grey. The scale (0–1) represents the habitat suitability of the species. Photo credits: Joëlle Magnin-Gonze (G. pneumonanthe 
L., O. jacquinii Bunge) & Patrice Descombes (O. holosericeae (Burm. f.) Greuter).
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observations by Schaffers and Sýkora (2000). C:N is an 
indicator of the potential degradability of the organic matter 
in the soil and therefore reflects the nitrogen availability 
for plants, where low values indicate higher availability 
(Andrianarisoa et al. 2009). EIV-N has also been shown to 
better reflect parameters related to biomass productivity or 
plant growth rates (e.g. biomass production, leaf nitrogen 
content; Ertsen et al. 1998, Schaffers and Sýkora 2000) and 
other soil nutrients (e.g. P, K, NO3

−, NH4
+), rather than 

measurements of soil nitrogen and related parameters (e.g. 
total nitrogen content, mineralization, C:N; Schaffers and 
Sýkora 2000, Diekmann 2003). It is therefore not surprising 
that we found a relatively weak correlation between this EIV 
and soil measurements such as total nitrogen content or 
amounts of basic cations.

Soil moisture indicators, such as EIV-F and EIV-D were 
moderately associated to modelled drought index and soil 
hydromorphy, respectively. While comparisons between soil 
moisture EIVs and in-situ measurements are generally scarce 
in the literature (Diekmann 2003), Ellenberg moisture values 
(F) have been shown to correlate well with groundwater levels 
estimated from soil profiles (Ertsen et al. 1998, Schaffers and 
Sýkora 2000, Wamelink et al. 2002). Similarly, Häring et al. 
(2013) predicted successfully Ellenberg’s soil moisture values 
in forests of the Bavarian Alps and found that the generated 
high-resolution map provided valuable surrogates of site 
hydrological conditions. EIVs offer therefore a valuable 
alternative to hydrological models predicting soil moisture 
conditions (Piedallu et al. 2011, Häring et al. 2013, Cianfrani  
et al. 2019).

Finally, EIV-H was moderately positively associated to 
soil organic carbon contents in the NABO soil database only. 
Because the strength of the correlation is dependent on the 
length of the gradient considered (Diekmann 2003), a higher 
correlation with data from the NABO database might arise 
because this database spans a larger number of vegetation 
types with potentially higher contrasts in soil organic carbon 
content (range of in-situ C values: 0.1–50.2 g kg−1), or due 
to differences in the soil sampling protocol. In comparison, 
WSL soil inventories were solely performed in forests, 
where soil organic carbon content might be more evenly 
distributed, possibly leading to lower contrasts in organic 
carbon content between the sampled sites and therefore to 
weaker correlations to EIV-H (range of in-situ C values: 
7.6–450.5 g kg−1).

Overall, our results indicate that EIVs are useful surrogates 
and descriptors of different soil properties measured in the 
field. In particular, EIVs show strong potential to augment 
information gained from site measurements, as they can 
reflect multiple ecological requirements or conditions which 
cannot be easily measured in the field at large extents and 
high spatial resolution (i.e. < 100 m). This strengthens the 
relevance of predicting EIVs across large geographical areas 
and their potential use as ecologically meaningful predictors 
in SDMs.

Mapping EIVs

While spatial interpolation of edaphic and climatic conditions 
from site measurements is common practice (Schloeder et al. 
2001, Piedallu  et  al. 2011, Pradervand  et  al. 2014), spatial 
modelling of site conditions has only recently gained importance 
(Häring  et  al. 2013, Buri  et  al. 2017). However, current 
challenges in soil mapping have to deal with the generally low 
amount of soil data available across large geographic extents, 
which can lead to a high degree of spatial extrapolation into 
environmental spaces not covered by the calibration data 
(Mesgaran et al. 2014). This can limit the capacity to accurately 
predict site characteristics, especially over large spatial extents 
and complex terrain. In particular, soil profile measurements, 
which are also generally rare, time consuming and costly to 
collect and process (Häring  et  al. 2013, Carter  et  al. 2015, 
Mod  et  al. 2016), might suffer from a low coverage of the 
environmental space. Hence, even if the NABO soil database in 
our study covers a large proportion of the extent of Switzerland 
and includes different types of habitats, we found that the 
predictions of in-situ soil properties were extrapolated to ca 
11% of the area (predictions are outside the predictor range in 
the calibration data), questioning the robustness of those layers, 
despite generally good evaluation scores.

Our study overcame these challenges by combining 
indicator values to large citizen-science plant distribution 
databases. This enabled us to consider more than 70 000 
averaged cell EIV conditions representing an increase of 50× 
in soil related data information compared to available soil 
profile samples (NABO: 1131; WSL: 1156) across Switzerland 
presented in this study. We found that all EIVs were successfully 
predicted at 93 m resolution across Switzerland. As expected, 
EIV predictions correlated to some of the measured soil 
properties, but correlations were generally weaker than with 
site-averaged EIVs of plant inventories performed on the 
soil sampling locations. The lower correlation observed for 
modelled EIV values compared to site-averaged EIVs likely 
arises because models are calibrated from cells with at least 10 
plant species present (and not from complete inventories) and 
because sites with the measured soil properties were removed 
to obtain an independent validation of the performance of 
the models. Because correlations are generally similar, we can 
conclude that lacks of correlation between modelled EIV 
values and in-situ measurements most likely result not from 
inaccurate predictions of EIV but rather from low association 
between modelled EIV values and specific soil properties. 
Among the very few studies attempting to spatially map 
EIVs, Häring et al. (2013) predicted successfully Ellenberg’s 
soil moisture values in forests of the Bavarian Alps and found 
that the generated high‐resolution map provided valuable 
surrogates of site hydrological conditions. Using spatially 
mapped EIVs as predictors in SDMs enable better predictions 
of plant species distributions than other proxy predictors, as 
they better resolve the fine scale variation in edaphic and 
climatic properties.
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Improving SDMs by using mapped EIVs as 
predictors

Together with NDVI and forest height, EIV-R, EIV-K and 
EIV-L were among the most important predictors in SDMs 
among the 500 species investigated (Fig. 4). When traditional 
predictors were replaced by more informative soil and climate 
related EIV predictors in SDMs among the 60 plant species 
modelled, the performance of SDMs clearly improved. 
In particular, the performance improvement was mainly 
driven by an increase in model specificity, meaning that 
species ranges were less overestimated when including EIV 
predictors. EIV predictors enabled a finer characterization 
and delimitation of the species ecological niche and avoided 
species overprediction to the landscape. For instance, the 
distribution of Gentiana pneumonanthe L. (Fig. 5), a species 
growing in moist, open habitats, showed more accurate 
predictions and lower overpredictions when EIV maps where 
included as SDM predictors. In this case, EIF-F, EIV-W 
and EIV-D provided much better capacities to discriminate 
wetlands from mesic and dry grasslands compared to other 
proxies of soil moisture (distance to water, moisture index 
and annual average site water balance; Supplementary 
material Appendix 1 Fig. A7–A9). Furthermore, the SDM 
performance particularly improved for plants on calcareous 
soils and plants growing at the extremes of the soil moisture 
gradient (Supplementary material Appendix 1 Fig. A12). 
Previous studies already indicated performance gains in 
plant SDMs when including soil pH (Coudun et al. 2006, 
Dubuis  et  al. 2013, Buri  et  al. 2017) or soil moisture 
parameters (Cianfrani et al. 2019) as predictors. Scherrer and 
Guisan (2019) found that ecological conditions reflecting 
soil properties or characteristics and light availability are, 
in addition to temperature, very important predictors and 
should be included in plant distribution modelling. Similarly, 
in-situ soil properties have been shown to better explain the 
distribution of tree species in temperate forests than climate 
variables (Walthert and Meier 2017).

Predictor importance in SDMs varied between species 
and among the different ecological groups but was overall 
consistent with species’ ecological characteristics. For 
instance, EIV-W was a strong predictor for explaining the 
distribution of plant species growing in moist habitats 
subject to intra-annual water supply variability (e.g. Gentiana 
pneumonanthe L.; Delarze  et  al. 1998). Similarly, plants 
growing in forests were best explained by EIV-L, underlining 
the importance of available light in structured vegetation 
types with several layers of foliage (Nieto-Lugilde et al. 2015, 
Scherrer and Guisan 2019). Furthermore, mapped EIVs 
outperformed some of the traditional predictors commonly 
used in distribution modelling. For instance, EIV-R was 
more informative than the reclassified lithologies of the 
geology map reflecting a gradient of increasing CaCO3, and 
EIV-W, EIV-F or EIV-D generally outperformed distance 
to water, moisture index and annual average site water 
balance parameters and provided much better capacities to 
discriminate wetlands from dry grasslands. Furthermore, 

EIVs generally outperformed predictors of in-situ soil 
properties modelled with the NABO soil database. This 
suggest that EIV maps are more informative than soil maps 
derived from in-situ soil properties, which additionally suffer 
from low data availability and strong spatial extrapolations 
in model predictions. Surprisingly, temperature parameters 
were less important for explaining the distribution of plant 
species, likely because some of the EIVs are already correlated 
to temperature. Because all models included the same number 
of variables, the observed improvement in model performance 
resulted from the additional information expressed by EIV 
not accounted for by traditional environmental predictors 
(Scherrer and Guisan 2019).

While biodiversity databases are hosting increasing num-
bers of species occurrences through citizen science contribu-
tions, there is high potential for extending our approach to 
analyzing larger spatial extents such as all of Europe or the 
globe. Generating new EIVs or merging EIV databases in the 
same taxonomic backbone (Dengler  et  al. 2016), for all or 
a few key target species (species with affinities for acidic or 
calcareous soils, or affinities for moist or dry soil conditions), 
provides a cost-effective alternative to traditional site mea-
surements for modelling spatially explicit edaphic and cli-
matic properties at large spatial scale. Finally, EIVs can also be 
inferred from soil pit data where plants were also inventoried 
(Diekmann and Falkengren-Grerup 1998, Wamelink  et  al. 
2002), and then be used in combination with biodiversity 
databases to model soil properties at large spatial extents.

Limitations

While comprehensive and easy to apply, our approach is 
based on few important assumptions. First, EIVs represent 
expert-based and subjective quantifications of the response 
of species to environmental conditions. The EIV maps in this 
study are therefore only surrogates of edaphic and climate 
conditions constrained between a defined range of values 
and representing contrasts in ecological conditions in the 
landscape.

Second, site-averaging ordinal values of EIVs is 
mathematically incorrect. But previous studies have 
demonstrated that EIVs averaged at the plot level are 
excellent bioindicators of the site characteristics when 
plant inventories are available (Ter Braak and Barendregt 
1986, Scherrer and Guisan 2019). Furthermore, we did 
not consider within-species variability in EIV values, nor 
abundance-based weighting to obtain site mean EIV values. 
This rather simple approach of averaging site EIVs among 
jointly occurring species tend to constrain the average EIV 
toward the mean value of the EIV scales and fails to detect 
its extremes. Including species EIV variability or abundance-
based weighting might enable a better characterisation 
of extreme site conditions in future analyses and has the 
potential to reduce the effect of generalist species growing 
in a large spectrum of ecological conditions towards the 
mean value of the EIV scale. Similarly, EIV averaging and 
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modelling using higher resolution predictors (e.g. 10 m, 
25 m), if available, might provide even finer predictions of 
EIVs and less blurred EIV estimates in response to subtle 
changes of the topography.

Third, our approach should primarily be used in areas 
where information about plant species distributions and their 
associated EIV are abundantly available. In addition, spatial 
(i.e. regions with different flora) and temporal (i.e. future) 
extrapolation should be performed with care. Because EIVs 
often reflect combinations of factors influencing the growth 
and performance of the species, predictions of EIVs under 
future conditions using predictions of atmospheric acidic 
and nitrogen deposition might sound like a promising, but 
certainly very complex task. We believe that it might at least 
be possible to test this for EIV-R, which showed good cor-
relations with in-situ soil pH (r > 0.73). But, soil properties 
might also change due to modified plant species pools under 
future climate conditions (e.g. nitrogen fixation by symbiotic 
rhizobia in Fabaceae) or altered soil biotic activity with influ-
ences on humus cycling (mineralization) and nutrient avail-
ability. Thus, atmospheric acidic and nitrogen deposition 
will not be the only sources of changes in soil properties, and 
changes are likely to be multidimensional. Similarly, extrapo-
lation of EIVs into the future might be problematic if biotic 
factors (such as NDVI or forest height) are included and 
especially if they show high variable importance in the EIV 
modelling. In the latter case, biotic factors bring additional 
levels of circularity as we would either assume that they will 
change in a certain direction or remain constant, which in 
fact is just what we want to model based on EIVs. Therefore, 
further studies are necessary to evaluate the transferability of 
this approach in space and time.

Finally, because we used plant occurrences to derive EIV 
maps and then used them to predict the potential distribution 
of plants, our approach may seem circular. However, we found 
very similar site averaged EIVs calculated from the occurrence 
database if single species were iteratively removed from the 
occurrence database (Spearman correlation: r > 0.999; cell 
loss: < 0.071%). This suggests that our approach of averaging 
site EIV and using only cells with at least 10 different species 
enables to robustly capture site conditions and clearly 
demonstrates that the estimation of the site EIVs are not 
dependent on single species. Plants can influence local soil 
and temperature properties (Reich  et  al. 2005, Aalto  et  al. 
2013). Therefore, site properties are expected to be even 
more reliable by considering vegetation (Aalto et al. 2013). 
Our approach provides therefore new insights in generating 
ecologically meaningful predictors of plant distributions at 
high spatial resolution (i.e. < 100 m).

Conclusion

The performance of fine-scale SDMs clearly increases if 
ecologically meaningful predictors are included that better 
reflect the physiological constraints of species. Together with 
rapidly growing plant occurrence databases, EIV mapping 
provides an alternative and cost-effective approach to 

chart local edaphic and climatic conditions at high spatial 
resolution (< 100 m) across large geographical scales. The 
development of ecologically meaningful predictors for plants 
sets the ground for an increased collaboration between 
ecological, geo-environmental sciences and biodiversity  
conservation measures.
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