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1 | INTRODUCTION

Stability and structural breaks can occur during interventions and regulations, changes in for-
mulations and climate, after treatment, between different social and economic groups, between
homogenous and heterogeneous objects, they can be planned or natural and they may affect
social and economic indicators. Stability and structural breaks are, therefore, a concern in most
research on social and economic processes. Despite the growing political interest, the amount of
data available and the increasing number of interventions, the roadmaps for measuring stability in
many policy areas and social sciences have found few attention in literature compared to software,
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FIGURE 1 Visualisation of a data pattern. Note. Each square collects the observations of interest. The
number of a square is denoted in top right apex

modeling and computational issues in data analysis. This paper fills this gap and focuses on vari-
ous issues related to stability measurement and modeling.

There are excellent works that have summarized the methods for studying data (e.g., Athey
& Imbens, 2019; Greene, 2011; Lantz, 2019; Wooldridge, 2013). The number of options for data
investigation is enormous, and there is no single uniform methodology for each single research
question (e.g., Athey & Imbens, 2019; Maggino & Facioni, 2017). Let Figure 1 visualize the data
template. In measuring stability or structural break, the definitions (the choice of x and y in a
graph), measure selection (the scales of x and y) and model selection (types of the dots and the
selection of the subsets 1—4) decisively influence the results of a study.

This article summarizes the basic knowledge and techniques on volatility and stability mea-
surements in social sciences, explains their advantages and disadvantages, and suggests sev-
eral ways of volatility and stability investigation under different circumstances. In contrast
to other methodological contributions, we look at statistics from the perspective of a specific
research task—the study of stability and structural break in various understandings of these
terms.

‘We focus mainly on the idea behind the methods and measures, comparing them, but removing
the mathematical descriptions. Our general goal was to address the practical issues of a wide
range of measures and methods, and to guide the readership’s choice between them. We draw
readers’ attention to potential practical problems in the application of the tools in social sciences
and suggest possible solutions. Finally, we provide a roadmap for data investigation that helps
navigating between many methods, avoiding pitfalls and applying model modifications.

For this purpose, we first introduce some basic understanding of volatility and stability in Sec-
tion 2 and then consider principles of volatility measure selection in Section 3. After, we present
the background information on the methods in Section 4 and suggest measurement options and
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statistical methods following the possible state of research interest in Section 5. Section 6 con-
cludes the study.

2 | DEFINITIONS
2.1 | Development

The first important definition is the understanding of “development.” Although in different
research areas the term “development” is understood differently (see general perspective in Cam-
bridge dictionary; in socioeconomics: Myrdal, 1974; Rabie, 2016; in land development: Johnson,
2008), to make the “development” measurable, any of them should consider at least the following
five main cornerstones: (1) the investigated object; (2) the criteria and the rules for tracking the
changes in this object; (3) the efforts, influences, environment and conditions in which the object
exists and changes; (4) the aim, ideals or etalons of this object; and (5) the action of collecting
and keeping the tracked information. If we simplify the understanding of time and define it as a
common and independent scale that tracks the order and the existence of observations, we can
define development as a set of conditions or the estimations of these conditions of the objects in
time.

In this paper, the (positive) bias towards changes or development (e.g., Myrdal, 1974) is with-
drawn on purpose to keep the widest possible implementation of the term. For instance, the devel-
opment of cancer is not a positive change for a human, but still a set of ordered conditions. Another
example, is the growth or the decrease—the positive change until the object suffers from its size
more than gains (see Sickles & Zelenyuk, 2019). To get a time series, we match the conditions of
different objects by the time they were observed and quantified, that is we present the develop-
ment in a numeric format. Volatility occurs when the defined determinants of development (2),
(3), (4), or (5) for the object (1) experience changes in time.

2.2 | Volatility, stability, and structural break

In mathematics and statistics, volatility is an estimate of a fluctuation or several fluctuations.
The largest body of evidence exists in financial models, where volatility is measured with a set
of ordered growth rates, differences, indexes. Repetitive patterns in the development or in the
volatility—cycles or waves—are the feature of the objects to periodically go through expansion,
peak, recession and crisis. The biggest innovation-driven cycles in macro data are observed to
have happened since the 1780s, and the periods of these waves last 40—60 years (Kondratiev, 1926;
Schumpeter, 1939). Smaller waves are complimentary to the bigger ones and last 15—-25, 7—11, and
3—5 years (Juglar, 1862; Kitchin, 1923; Kuznets, 1930). Life cycles of different lengths exist within
organizations, institutions, projects, products, within each individual and social group. Season-
ality is a repetitive pattern in the data of any frequency. A bubble is another form of a wave; it
has a cumulative character of development in time and finishes with an explosion—a rapid and
sharp change in development after a local extreme (see e.g., Sornette et al., 2018). The times and
phases of waves and bubbles are important to know, because catching the wrong wave may violate
volatility measures and modeling results. Volatility for the individual research questions and vari-
able formats (e.g., the deviation from the equilibrium, economic volatility) can be synonymous
with mathematical diversity, variability, dispersion (e.g., Jo€l, 2012).
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Stability is something opposite to volatility and seems to comprise a level of volatility close to
zero. However, in this case, how do we understand a stable heartbeat, stable chemical reaction, sta-
ble society, or stable economic growth? This question arises because each researcher understands
stability in the context and the values of the research area (see, e.g., ECB, 2012; Egan & Schofield,
2009; Rossi et al., 2013). One can clean trends or seasonality and continue to study changes and
outliers. In these cases, stability is a considered trend or seasonality. These considerations need
to be explained, and in economics, they are usually explained with life or business cycles or other
types of seasonality. However, the considered seasonality may capture other important effects or
may not contribute to the data development exactly as much as the researchers assessed. For this
reason, it is challenging to study stability if the etalon development or condition is not defined.
The understanding of the etalon requires a lot of knowledge from the field. In many areas of nat-
ural sciences, the expected development or etalon condition of the object is based on previous
studies. In social sciences, this is not always the case. The sample average or an average plus the
trend is not an estimation of the etalon because the sample can be self-selecting and may cover
only a specific part of a general sample.

The estimated trend may change after structural changes. In statistics, a structural break
is understood as a trend change; in general, structural break is a change in the conditions
where the object exists. It is important to distinguish the effects of structural breaks and the
effects of cofounders by definition and in the models. We refer the reader to Perron (2005)
and VanderWeele (2019) for a discussion on structural breaks and proper confounder selec-
tion. A more flexible definition of stability includes an acceptable magnitude of fluctuations,
that is, fluctuations do not cross the defined corridors around the agreed level, trend, wave or
etalon.

3 | OPTIONS OF MEASURE SELECTION
3.1 | Measures

In this section, we focus on stability and volatility as the dependent variables or as a description
of a certain part of a dataset. The measures of fluctuations and deviations can be classified into
five groups based on their calculation: relative to previous observations, sample statistics, relative
to previous deviations, reordering, benchmarking and signaling (Table 1).

The measures in Group 1 are the growth (deviation) and growth rates (in per cent or in ratios)
calculated relative either to previous observations or to the important time of the studied period.
The n-difference is a growth of the difference of order n - 1. The use of growth rates or differ-
ences allows analysts to handle non-stationary series and to continue studying the series with
minor losses in tools, but with the loss of the levels and, sometimes, meaning. These measures
are employed for the non-stationary series, even if these series are to be stationary theoretically
(e.g., Wang & Tomek, 2007).

Group 2 comprises measures based on statistics (see more in Bedeian & Mossholder, 2000; Edel-
mann et al., 2017). The variance, coefficients of variation and other descriptive statistics are tradi-
tional volatility measures and can be well applicable for data description. They may also become
the dependent variables if measured on the unified time windows.

Group 3 of the measures is based on the statistics of previous deviations. These measures collect
all the benefits and problems of Groups 1 and 2, including the loss of levels and the dependency
on the time window.
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Group 4 is based on reordering and share calculating (see Lane, 2003, pp. 144-151). Reorder-
ing and shares may be applied to panel data with more than one time period in order to track
the development of specific changes in the sample. Ranges are also used to produce range-based
indexes (e.g., Pinches & Kinney, 1971). For panel data, it is possible to track the Lorenz curve (Gini
coefficient) or interquartile range over time. Stabilization will modify into a 45° line for the Lorenz
curve or any of the stability measures applied to the interquartile range number.

Group 5is based on benchmarking. The experts’ criteria define the bandwidth of being stable or
unstable. The dependent variable is replaced with a dummy variable that benchmarks the stable
or unstable observations, whereas the set of explanatory variables defines the conditions when
each outcome was observed. This measure allows applying the models that predict the probability
of the unstable outcome. In signaling, the expert’s criteria relies on data-driven characteristics,
the combination of those, propensity scores and the thresholds for them, as well as the stability
measure can be selected using principal component analysis. As a result, the benchmarks of the
observations can be interpreted as signals and, therefore, be processed using signal processing
concepts (see more in Ortega, 2021; Ortega et al., 2018; Vaswani et al., 2018).

Measures of groups 2 and 3 may differ significantly between different parts of the series or
samples and depend on a number of observations. This is a measurement problem in statistics,
which was also observed for a variety of indexes for diversity and entropy measuring (see Jost,
2006). Therefore, there is no best volatility measure, but the presented weaknesses and strengths
may help to choose the most useful ones for the research.

3.2 | Transformations and frequencies

Besides direct volatility measure calculation, several possible transformations of the data may help
to study fluctuations (Table 2). The data can be: transformed into 1st difference, combined with
another variable, logarithmized, normalized, standardized, indexed on something, de-trended,
calculated relative to itself in a different period or to something else. The described measures and
transformations are applied on the variables in levels either over time or across the objects. The
interpretation of the results then changes with the selected variable type that is why the measures
and transformations are not combined with each other and usually are not applied twice. Any of
the defined measures can become the dependent variable for the modeling.

Weekly, monthly and yearly observations will in most cases deliver different statistics and sta-
bility measures. The lower frequency mutes the fluctuations that occur at higher frequency. This
effect will also lead to changes in estimations. A good start for understanding this effect is to accept
that the development is not interrupted in time, but the measurements of development in most
cases are the average or a sum for changes that occur at higher frequency. Moreover, the measures
do not change with the same rule as the one used to change the scales.

One can assess the models at different frequencies, but in most cases, the selected frequency
follows the research question or institutional setting. In the environment of financial markets,
people may predict the price, for example, for the next 30 min as they usually use tick-by-tick mar-
ket data. Other studies may average yearly observations for several years (e.g., Burnside & Dollar,
1997) and estimate trends and waves. Data of higher frequency is required if changes occur within
the period or aggregation level of one observation. This is particularly the case when analyzing
season-sensitive policies (e.g., Loginova et al., 2021). Usually, the higher the selected frequency,
the narrower are the confidence intervals for estimations. Besides obtaining more observations,
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this is an important reason why the higher frequency is preferable to the lower one. However, in
practice, the available data often defines the frequency selection.

To explain weekly changes with monthly changes, one will have to duplicate, share or extrap-
olate monthly data for each week of the month and assume supervised variation or its absence
at the higher frequency. The higher frequency data help fulfil regular assumptions on the residu-
als. The more observations one has, the more likely one gets normality of the residuals, whereas
other problems of residuals (heteroscedasticity and autocorrelation) in practice are cleaned with
the “robust” option of statistical packages. The daily data and the higher frequent data often suffer
from “weekend effect” if the data are absent or do not change on Saturday and Sunday.

=

4 | MODELING OF STABILITY

Table 3 provides a short overview of the most used methods. Researchers measuring the devel-
opment over time tend to switch from levels to volatilities, especially when a time series anal-
ysis is needed. In the 1980s, time series analysis culminated in the (generalized) autoregressive
conditional heteroscedasticity ((GJARCH) models (Bollerslev, 1986; Engle, 1982), which allowed
explaining fluctuations with the combination of previous fluctuations, errors of the model and
their statistics. Since then, autoregressive integrated moving average (ARIMA), GARCH and
vector autoregression (VAR or VEC) families of models have been developed further and have
remained amongst the most attractive tools for time series analysis.

Scientists traditionally focus on the background, drivers, the responses and causalities. With
a number of strict assumptions, causalities are investigated mostly with causal and experimen-
tal methods (see more in Huber, 2019) because these methods have a more precise definition of
causality as compared with time-series approaches (Lechner, 2010). Besides the mentioned model-
ing methods, stability may also be studied with descriptive statistics, ordinary least squares (OLS),
panel data models and even Machine learning algorithms (Superlearners and Graph Signal Pro-
cessing). All the methods require robustness checks, that is, testing the magnitude of the esti-
mates while running the specification at a different time or time window or for a random cut-off
or treatment, if any. Data availability always forces the researchers to derive modeling conclusions
for only a studied subsample and time frame. The studied subsamples in the best case should avoid
three types of bias: self-selection bias, undercoverage bias and survivorship bias (see Lane, 2003,
pp- 235-237). The milestones of key methodological developments (based on Number, Graph and
other earlier theories) are shown in Figure 2.

DiD and RDD require the causality identification and interference statements, at least Condi-
tional independence assumption (CIA), Stable-unit-treatment-value assumption (SUTVA); Com-
mon support assumption (CS) and Exogeneity assumption (EXOG) should be satisfied (see,
among others, Lechner, 2019). RDD, VAR, ARIMA, GARCH, OLS and Panel data models require
at least 100 observations for the asymptotics. SuperLearners are used on big data. The choice of
the method follows the interest. The violation of the assumptions violates the results.

The DID is a powerful causal estimation approach to measure treatment effect, but it requires
an approved control group for comparison and must fit the common trend assumption. The main
effect is called the “average treatment effect on the treated” and is the measurement of volatility
(shift) introduced by the treatment in the treatment group compared to a control group. Stationar-
ity is sometimes required for this method, but the common trend assumption is always necessary
and can introduce several problems to the study. One can refer to the literature (Jaeger et al., 2020;
Roth, 2019) to see how each observation can significantly change the estimation of the slope of
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Early difference-in- Principal component analysis, random
_ , Groundwork  First regression  GARCH
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FIGURE 2 The milestones of the methodological progress over time. This figure illustrates methodological
progress by mapping only a few selected key works on a timeline. For more details, see Bachelier (1900),
Bollerslev (1986), Breiman (2001), Engle (1982), IEEE (2010), Juglar (1862), Kitchin (1923), Kolmogorov (1933),
Kondratiev (1926), Kuznets (1930), Markov (1906), Maxwell (1868), Neyman (1923), Pearson (1901), Pearson (1905),
Poisson (1837), Rubin (1974), Shannon (1948), Snow (1855), Thistlewaite and Campbell (1960)

the trend. The change in a number of observations may help fulfil the common trend assump-
tion; however, if the estimated effects and their significance differ largely with the introduction
of a couple of new observations, robustness of the model is failed. A time of structural break is
sometimes excluded from data to avoid the influence of the transition period on the estimates
(e.g., Loginova et al., 2021). Propensity score matching allows pairing observations from treated
and control groups by similar values of characteristics (see the discussion in Caliendo & Kopeinig,
2008).

The RDD measures the shift in the sub-population close to the cut-off (see Imbens & Lemieux,
2008; Imbens & Rubin, 1997; Lee & Lemieux, 2010; Thistlewaite & Campbell, 1960). This method
requires (1) avoiding seasonality in the data, (2) explaining the cut-off (consistency) and the model
identification (unconfoundedness), (3) ensuring comparable observations within the window of
estimation (randomization, positivity), and (4) adoption if applied to time series (Hausman &
Rapson, 2018). Similar to the possibility to calibrate the pre-trend with the observations for DID,
the RDD results can significantly change with the changed bandwidth. Pooling observations from
too far from the cut-off or different years violates the design. A procedure for optimal bandwidth
selection exists, but the result of this procedure may depend on the number and the magnitude
of observations in the data. The second option for bandwidth selection is an expert’s decision that
is usually driven by some knowledge about the period of assessment. Lee and Lemieux (2010)
advised testing the bandwidths of different lengths instead of changing kernels. The best band-
width is the one, which is close to the cut-off and provides at least 100 observations for the assess-
ment. Overlapping of the bandwidths for different treatments is not allowed even if the treatments
are insignificant. Fuzzy RDD allows the probability that several observations after the cut-off
remained unaffected. One can also face a lagged effect of the treatment when the RDD cut-off
requires calibration.

ARIMA, GARCH and VAR modeling predicts interdependencies and suffers from non-
stationarity of the series, especially regarding time series with policy effects (structural change),
when the trends change or the levels shift. Any dummy in time series models does not measure
the effect but just measures the shift in the intercept. All-time series must pass the unit root test
(reject unit root) if one applies any of the ARIMA components (e.g., Dickey & Fuller, 1979; Zivot &
Andrews, 1992). All tests (incl. p-values for significance tests) performed on non-stationary series
can deliver untrue results because most of the tools, tests and theorems for these models are
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developed in an assumption of stationarity. A stationary set of series allows studying interde-
pendencies of fluctuations, price transmission, but not a shock transmission between the series
(except impulse response functions) and not causal effects (with a few exceptions, see more in
Lechner, 2010). Various tests on stationarity were developed to allow “fishing” the p-value, how-
ever most time series in levels are not stationary. If the unit root is not rejected, people de-trend
or transform the non-stationary series into 1st difference. These models on differences may clean
level discontinuities including policy-driven effects. A series integrated of higher order n (“I” part
in ARIMA) have more chances to pass the tests on stationarity. However, ARIMA often loses
explanation after the 2nd integrating. ARIMA explains the current observation with several pre-
vious observations (“AR” part) and shocks (“MA” part). This means that the less share of each
fluctuation is explained by the set of previous observations (“AR” part), the more will have to
be explained with the combination of previous errors (“MA” part) and vice versa. VAR allows
AR parts to interrelate between several series. [G]JARCH includes the properties of shocks into
the model. This speculative nature of ARIMA models is similar to seasonality but moves in time
together with the observations and the errors of the model.

Panel data for several periods often allow studying the development. One can define as depen-
dent variable a stability measure for each period across observations. One can also join the peri-
ods into sequential groups and measure stability for each of these groups. Time fixed effects then
must be included in the model. It is worth mentioning that both fixed and random effects mod-
els should be applied and accompanied with time fixed effects. Recent studies developed tools to
assess models with multiple fixed effects (Gaure, 2020) and mixed models containing both ran-
dom and fixed effects in one equation (Bell & Jones, 2014). Both require slightly more individual
observations than classic methods. For OLS and time fixed effects models, the data must pass the
tests for residuals. Because current datasets tend to be big and diverse, recent developments in
big data analysis and super learning may assist in stability studies if the necessary amount and
type of data are available. The Group 5 of stability measures helps apply logit- and probit-models
and most of the supervised machine learning techniques, including classification tools, random
forests and signal processing concepts.

In the current literature, the mentioned models are refined both within each design (e.g., DID
with multiple periods, see Callaway & Sant’Anna, 2020) and by synergies between the designs.
Random forests (Breiman, 2001) are increasingly combined with causal methods. For example,
random forests have previously been combined with RDD (e.g., Asher et al., 2016) as well as with
average, individual and group treatment effects in DID (e.g., causal forests by Athey & Wager,
2019; Lechner, 2019). Time-series methods are less preferable for combining with causal methods
as they can displace the effects to the errors of the model. Diverse collections of simple models are
shown to be useful for describing complex phenomena (see more in Richerson & Boyd, 1987).

LOGINOVA AND MANN

5 | SUGGESTIONS ON MEASURE AND MODEL SELECTION

Standardization or the first difference employed within the groups helps avoid most of the prob-
lems of comparability in the data. Each allows comparing different groups of the objects, for
example, individuals, products, countries, organizations, their characteristics and estimated coef-
ficients. Big data studies often employ normalization of the data. If the study values the informa-
tion on the magnitude of the dependent variable same as the impact of drivers, then it is better
to avoid using ordered models. If the study’s interest is only the magnitudes of the dependent
variable than volatility measures of groups 1-4 would be the best option for investigation.
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FIGURE 3 The scheme of volatility measure selection. Note. “*” denotes that structural breaks are neglected

Figure 3 illustrates the simplified top-down scheme of volatility measure selection. The mea-
sure selection depends mostly on data availability, interest and the presence of structural breaks
in the data. The stability of the dependent variable across individuals is better studied with Gini
coefficients, while the various measures and transformations can be applied for time series. For
tracking the changes in time, Gini coefficients and coefficients of variation are calculated for
each period. The Lorenz curve visualizes the deviation of the actual data from 45° line of etalon
equality.

To measure stability with a model, one should focus on the particular interest. Figure 4 illus-
trates the zones of interest Z; ... Z,, where the stability of the studied series Y may be measured.
We define these zones with Z;. The intercepts of series Y in zone Z; are E(Y,), and the trends
are T(Yz,). The assessments of E(Y,), T(Y,) and statistics will differ depending on the chosen
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Z1

0 time

® Observation — ===~ Trendline = e Level line

FIGURE 4 Anillustration of the zones of stability over time. Note. Each square on the graph collects the
observations for the zone of interest denoted in the square’s top right apex

focus (zone Z;) of the study. One can measure stability of all available data ( Z;), to study only the
moment of structural break and transition (Z,) or to consider the structural break and study the
differences of zones Z; and Z,.

One can choose any of these zones to study separately or compare them with each other. Dur-
ing comparisons, the equal length of the zones allows employing of powerful measures that are
sensitive to the period length, for instance, coefficient of variation. One can benchmark those of
the observations fitting some experts’ criteria on excessive fluctuations and continue the analysis
with the methods of probability estimation for excessive fluctuation.

Traditionally, longer series are preferable because they allow using more explanatory variables,
avoiding overfitting, obtaining normality and tracking tendencies. However, structural breaks
may violate the models. To consider a possible trend break, researchers sometimes use dummies
or interaction terms and then solve the multicollinearity problem. The longer the studied series is,
the stronger the ARIMA, GARCH and VAR models will push the shocks, such as the one depicted
as Z, in Figure 4, to the errors of the model. The value of one observation decreases in the total
assessment with the increasing number of observations. If the effect of interest is exactly the one
undervalued, it is better to use a causal DID estimation or RDD. The trends of ARIMA, GARCH
and VAR models respond to T(Y;), the results of the DID estimation respond to T(Yz,) — T(Y,)
minus the same change in the control group, whereas the results of the RDD respond to the shift
that happened in Z, with a defined width and provided high number of observations. In pooled
models for Z,, the constant will be estimated as E(Y,); in the models for Z; with time fixed
effects for zones Z; and Z, (Z, is dropped), the constant will be estimated for each period sepa-
rately, thatis E(Y2,) and E(Y,), where E(Y,) — E(Y,) collects treatment, structural break and
other uncontrolled effects in Z,. Another problem is to define a structural break if the time of it
is unknown. In practice, Zivot —Andreus test stays a most used tool for this purpose in time series
(Zivot & Andrews, 1992).
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FIGURE 5 An illustration of the zones of stability in groups. Note. Each square on the graph collects the
observations for the method denoted in the square’s top right apex

Figure 5 demonstrates the zones of interest related to RDD, DID and Benchmarking for panel
data with an expert-defined structural break. The techniques of measuring the stability within the
groups usually neglect the correlation of the observations in time or assume the absence of this
correlation. Therefore, stability across the groups may be broader defined than stability of time
series data (e.g., diversity).

Classic DID and RDD are specific settings of OLS with treatment dummy, but gain their causal
interpretation due to the assumptions. In DID application, the observations of the group 2 will
be used as a control group for the observations of the group 1, assuming a common trend in the
untreated phase (and other assumptions mentioned in Section 4). If another control group for
the groups of observations depicted in Figure 5 exists, then these groups may be distinguished
with fixed effects. Benchmarking replaces dependent variable with the dummy to predict with
probability estimation methods and SuperLearners. The expert’s criteria on stable observation
are based on the volatility measures of the group 1.

For RDD, localization of a model is a key for the causal interpretation of estimations. Both
DID and RDD allow the inclusion of fixed effects and other confounders, however, the lit-
erature recommends using DID rather than RDD whenever possible (Hausman & Rapson,
2018), because the insignificant impact of the other factors in RDD is difficult to prove in
practice.

Figure 6 illustrates the simplified top-down scheme of model selection. One may see that the
model selection starts with data availability and interest, continues with several data-specific deci-
sions and further concentrates on proper implementation of the methods.
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FIGURE 6 The scheme of model selection

6 | CONCLUSION

Stability during and beyond structural breaks is an important research interest, and this paper pro-
vides a roadmap and explanation of the basic methods that help to streamline additional stability
research across many sectors, countries and research areas. We summarize the basic knowledge
and basic methods for measuring volatility and stability, explain their advantages and disadvan-
tages, and suggest ways to investigate volatility and stability under different circumstances. The
reader is encouraged to develop, combine and apply modifications to the discussed tools if the
design and measurement are appropriate for the research task.

The paper shows that there is no “one size fits all” solution but the suitable measurements and
methods strongly depend on the scope of the data and the objective of analysis. As discussed in the
paper, stability measurement and modeling can be challenging, especially at the stage of selecting
the model and meeting its assumptions. Therefore, we see further challenges and perspectives
in the field of modeling, especially in optimizing and improving algorithms, machine learning
and facilitating modeling assumptions. Furthermore, the variety of research tasks in which the
discussed measurements and models can be applied remains infinite. Therefore, the study of sta-
bility remains a promising avenue for further research.
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