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ABSTRACT: Rice is the world’s most important staple food and will continue to be so in the coming decades. Ferrous
iron is essential for rice growth. A mapping population of 96 rice inbred lines derived by Neda (NAD) and Ahlemitarom
(ATM) cross, was used to detect quantitative trait loci (QTLs) for fresh biomass (FB), root length (RL), shoot length
(SL), root number (RN), leaf width (LW), root fresh weight (RFW), root dry weight (RDW) and Fe content (FC) under
Fe toxicity condition in rice. Two parents and 96 inbred lines were evaluated for the traits by growing them under normal
and Fe toxicity nutrient solution. Under stress condition, two QTLs were detected for FB on chromosome 10, with LOD
of 2.859, and 2.465. Twelve QTLs were identified for RL on chromosomes 2, 4, 5, 6, 7, 8, 9, 10, and 12. Three QTLs
were detected on chromosomes 6, 7, and 8 for RN, and two QTLs for RDW on chromosomes 2 and 9. One QTL
controlling LW, RFW, and FC was located on chromosomes 10, 9, and 1, respectively. The other QTLs for FB, SL, and
RN was located on chromosomes 12, 12, and 3 under normal condition, with respective contributions of 9.7, 10, and 9.9,
respectively. QLWN-2, gLWN-7, and qLWN-12 were located for LW on chromosomes 2, 7, and 12. These QTLs, due to
the high percentage of explanation after validation, are a good candidate for marker-assisted selection programs with the
help of markers in the rice population.
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INTRODUCTION

Rice (Oryza sativaL..) is one of the most important crops
for human nutrition and trace elements. Improving
production efficiency is a key approach to boosting rice
grain output in the face of a fast-growing global
population. Rice production capacity is limited by a
variety of abiotic and biotic stressors [20].

Ferrous iron is an essential element for rice since it is
involved in several physiological and metabolic
processes. This element is a crucial cofactor for many
enzymes and a significant structural motif for
transcriptional regulatory proteins at trace levels.
However, due to industrial and natural processes,
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excessive levels of ferrous iron induce heavy metal
toxicity, which has a significant impact on rice growth
and quality [18].

Rice production in tropic and subtropic regions is
hampered by iron toxicity. In extremely aerobic
conditions, acid sulfate soils, or acid soils, excess ferrous
iron accumulates in the shoots, causing leaf discoloration
and root loss. Resistant cultivars are a cost-effective and
long-term option for increasing grain yields in Fe-stressed
conditions. Several genes affect the genetic diversity of
Fe toxicity tolerance in rice [5, 6]. Detecting stable QTLs
with a large effect that influences complex characteristics
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under Fe toxicity circumstances is a difficult task
nowadays. QTLs with a major effect, which control
complex traits under Fe toxicity conditions, is a challenge.
Wu et al. (1997) used a doubled haploid population
formed from Azucena and IR64 under culture solution
conditions to identify the first QTL for resistance to Fe
toxicity [31]. Three QTLs for leaf bronzing symptom
score and relative reduction in dry shoot weight were
discovered, with phenotypic contributions ranging from
10% to 32%.

Various genetic populations, such as backcross inbred
lines [27, 30, 4], recombinant inbred lines [4, 5, 27, 29,
30], chromosome segment substitution lines [9], doubled
haploids [31, 32], wild rice accessions of O. glaberrima
[4], and F3 and F2 introgression lines [8, 21, 22, 28] have
been used to map a high number of QTLs for iron toxicity
tolerance. Those 203 QTLs were found to be distributed
mainly on seven chromosomes [1, 11, 13, 17, 21, 26, 35].
There were between 1 and 39 QTLs found, with
phenotypic variation ranging from 4.2% (qCER) to 47.2%
(qSDW) [19, 27]. DHs, RILs, and F3 and F2 introgression
lines were used to determination of iron toxicity major
QTLs in various genetic backgrounds, and they were
mostly mapped on chromosomes 2, 4, 6 [11, 21, 35]. The
QTLs on chromosomes 7, 5, 3, and 1 were identified using
various genetic resources [0, 7, 29]. qLBI, qSR, qRDW,
qTN, and gNPQ on chromosome 1, qSIC on chromosome
2, SFe and gBFe on chromosome 3, and qCCI on
chromosome 7 showed a high phenotypic variation [7,31].
Wan et al. (2003a) discovered certain QTLs with large
impacts on leaf bronzing, shoot and root biomass, and
tiller number (from 20 to 48%) [27]. Wan et al., (2003b)
also discovered fourteen QTLs with chromosomal CSSLs
population that generated 11 to 28% phenotypic variation
in leaf bronzing, plant height, stem dry weight, root dry
weight, and root length in Asominori and IR24 crosses
[28]. Ouyang et al. (2007) discovered numerous QTLs
that impacted coleoptile elongation in  the
Zhenshan97B/Miyang46 population [19]. Under Fe
toxicity, certain QTL for iron content of the shoot were
reported on chromosomes 4 and 3 (Shimizu et al., 2005b),
and it was discovered that this QTL on chromosome 3 co-
located with a QTL for high iron content of the shoot [9].
A study found three and seven QTLs for leaf bronzing
symptom score [30]. The QTLs on chromosomes 3 and 1
had additive effects on shoot tolerance and iron exclusion,
respectively. In six regions of the rice genome, certain
stable QTLs have been identified, which might represent
important QTLs containing genes that influence iron

toxicity tolerance [6]. Dufey ef al., (2015a) produced an
integrated map that included all of the previously reported
QTLs [4]. They highlighted the following four key
genomic regions with a high-frequency QTL. Dufey ez al.,
(2015b) discovered iron toxicity tolerance QTLs in an
interspecific backcross population of
Caiapo/MG12/Caiapo crossings for the first time on
chromosomes 1, 2, 3, 5, 7, and 10. Eleven QTLs were
related to leaf bronzing score, shoot and root dry weight
with explanations ranging from 5 to 18%, and seventeen
QTLs were related to chlorophyll content, shoot water
content, stomata conductance, non-photochemical
quenching, the efficiency of photosystem II, sheath,
blade, and

explanations ranging from 17 to 40% [7]. The finding of

root-plaque iron concentration with
iron toxicity tolerance QTLs in rice genomic areas, as
well as QTLs with substantial phenotypic explanation (up
to 48%), will greatly increase iron toxicity tolerance
breeding efficiency [5].

Different groups are exploiting the rice diversity panels’
availability, some of which have previously been
genotyped using thousands of SNPs [36], to do
association mapping for iron toxicity tolerance.
Currently, the use of molecular marker-assisted breeding
for iron toxicity tolerance (by MSA) is severely limited
since most QTLs reported are for minor impacts, and even
for the few major ones, lack of validation in other genetic
environments and backgrounds (actual field testing) or
large confidence intervals are significant drawbacks [1].
Many populations have reported QTL mapping for
several Iranian rice agronomic characteristics; however,
genes affecting iron toxicity tolerance have yet to be
found in the Iranian rice population. We used an Iranian
RIL population derived from rice cultivars Ahlamitaroum
x Neda to identify the QTLs associated with iron toxicity
tolerance by analyzing seven agronomic traits: shoot
length, fresh biomass, root number, root length, root fresh
weight, leaf width, root dry weight, and iron content.

MATERIALS AND METHODS

Evaluations of iron toxicity tolerances at the seedlings
stage were performed in turn in the greenhouse in the
College of Agriculture Science and Natural Resource of
Gonbad Kavous University.

Two cultivars (Oryza sativa L.) Neda (NAD) and
Ahlemitarom (ATM) were chosen as parental varieties.
Since "NAD" is susceptible to iron toxicity and "ATM" is
tolerant [16]. From a cross between NAD and ATM, 94
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lines F8 generation were derived, and were used in this
study.

Completely randomized design (CRD) consisting of 96
lines with 2 replicates were applied for both control and

stress conditions. For iron toxicity experiment, the

temperature was around 32/25 °C (day/night) and the
relative humidity was ~75%.

The seeds were placed at 50 °C for three days to break
dormancy, then sterilized with 5% sodium hypochlorite
solution for 20 min and rinsed well with distilled water.
Then seeds were soaked in distilled water in the dark at
30 °C for 48 h. Finally, 10 uniformly germinated seeds of
each accession were directly sown in holes of perforated
styrofoam sheets (10 lines x 13 rows) with a nylon net
bottom in a plastic container according to Gregorio et al.,
1997. The styrofoam sheets were allowed to float on the
water for up to five days and then transferred to Yoshida
solution [33] for five days.

Its macronutrients were composed of 50 mg/L Si, 40
mg/L N, K, Mg and Ca and 10 mg/L P. Its micronutrients
were provided with 2.0 mg/L Fe, 0.5 mg/L Mn, 0.2 mg/L
B, 0.05 mg/L Mo, 0.01 mg/L Zn, and 0.01 mg/L Cu. The
culture solution was renewed weekly and pH of the
solution was adjusted to 5.0 with 1-N NaOH/HCI every

day.
At the three-leaf stage, the Fe in the form of FeSO4.7H20
at the concentration of 300mg/ L (5.36 mM)

(2.0 mg/L for control) was applied. The pH of the solution
was adjusted to 5.0 at the alternative day by 1M
NaOH/HCI. The solution was renewed every five days.

After plants were harvested, shoot length (SL) and root
length (RL), fresh weight of root (FWR) and fresh weight
of shoot (FWS), and root number (RN) were measured.

The concentration of Fe in shoot samples under stress
conditions was determined by atomic absorption
(AAS,
Corporation) with the wet digestion method (GB/T
14609-2008). About 1 g of dried shoot samples from each

line was

spectrometry Series2, Thermo  Electron

digested with 5ml mix acid
(HNO3:HC1O4 =4:1, V/V) using a graphite liquation
furnace. The heating process was as follows: 80 °C for
15 min, 120 °C for 20 min, 150 °C for 30 min and 180 °C
for 60 min. Finally, the colorless or slightly yellow

transparent liquid was diluted in a 100 ml volumetric flask

with distilled water. For Fe determinations, calibration

standard solutions were prepared by diluting 1000
pg/ml standard solution (NCS, China).

Forty SSR primer pairs, 16 ISSR markers (76 alleles), two
IRAP markers (7 alleles), and one iPBS marker (3 alleles)
were appropriately distributed on 12 rice chromosomes
were chosen according to Chen et al (1997), Temnykh et
al. (2000) and McCouch et al. (2002) [2, 15, 25]. ISSR,
iPBS, and IRAP were used to check the rate of
polymorphism from previous articles.

Polymerase chain reaction (PCR) was carried out in a total
volume of 0.01 cm™ containing 2 ng of template DNA,
39.2 umol dm™ of each primer, 117.6 mmol dm™ of each
dNTP, 156.8 mmol dm> MgCl2, 19.6 unit of Taq
polymerase, and 0.098 cm?® of 10x PCR buffer. PCR
amplification was performed on a thermal cycler
(BIORAD, America) in the genetic laboratory of Gonbad
University of Iran. PCR products were separated on 6%
(m/v) polyacrylamide gels (38:2 acrylamide:bis-
acrylamide) and detected by the fast silver staining
method [12]. Using Mapmanager QrbX/7, 12 linkage
groups were constructed with a minimum LOD score of
2. Map distances between were presented in centi Morgan
(cM) derived using the Kosambi function [14] of the
program.

RESULTS

Frequency distribution

The frequency distributions of RILs and the values of both
parents for average values of the eleven traits viz., SL,
RL, FWR, FWS, FWR, FWS, RV, FB, DB, LA, and RN
on seedling in rice showed in Figure 1. All of traits in two
conditions were  segregated continuously and
approximately fit normal distributions that had absolute
values of both skewness and kurtosis less than 1.0,
indicating that studied attributes were suitable for
mapping of QTLs analysis. These results demonstrate that
all the eleven traits are quantitative traits controlled by
polygenes and no major genes were contained. For all of
the traits measured there is a clear difference between
Ahlamitaroum and Neda. All the traits showed
transgressive segregation, thereby implying the positive
and negative genes for the traits scattered throughout the
entire genome of rice. Correlation coefficients among the
eleven traits were presented in Figures 1 and 2. Under
both growth conditions, Fe was positively correlated with

all attributes except RL under normal condition, but Fe
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Figure 1. Frequency distribution of studied attributes in 96 Fg rice recombinant inbred lines derived from ATM x NAD crosses under
normal condition.
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Figure 2. Frequency distribution of studied attributes in 96 Fg rice recombinant inbred lines derived from ATM x NAD crosses under
Fe toxicity condition.
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was negatively correlated with all traits except LW and
RN (Figure 3).

Mapping QTLs under normal and Fe toxicity

conditions

Fresh biomass: Under normal condition, one QTL was
detected for FB on chromosome 12. gFBN-12 explaining
9.7 % of the phenotypic variance. In terms of Fe stress,
two QTLs were detected for fresh biomass on
chromosome 10. Their additive effect was -0.015 and -
0.037 gr, respectively (Figures 4 and 5).

Shoot length: Under normal condition, a QTL was
detected for SL on chromosome 12. Parent NAD alleles
have decreased this trait. QTL was not detected in stress
conditions for this trait.

Root length: Under stress condition, 12 QTLs were
identified for RL on chromosomes 2, 4, 5, 6, 7, 8, 9, 10
and 12. qRL-10a that explained of more than 20% for
phenotypic variance and was close to the ISSR14-2
marker. QTL was not detected under normal condition for
this trait.

Root number: Under normal condition, a QTL was
detected for RN on chromosome 3. Its additive effect and
LOD were 0.145 and 2.167 respectively. Under Fe stress
condition, three QTLs were identified for root number on
chromosomes 6, 7, and 8. qRN-6, qRN7 and qRNS8 were
close to the IRAP17-1, ISSR5-4 and RM28I1,

respectively.

Leaf width: Under normal condition, three QTLs were
identified on chromosomes 2, 7, and 12 for LW. Their
additive effect was 0.024, 0.328, and -0.42, respectively.
qLW-10 was located on chromosome 10 for leaf width
under Fe stress conditions. It explained 16.1% of
phenotypic variation. The parent AHT alleles increased
this trait.

Root fresh weight: Under Fe stress condition, a QTL was
found on chromosome 9 for RFW. This QTL was located
between RM205 and ISSR 8-7 markers and justifies
10.9% of phenotypic variation. Under normal condition,
no QTL was detected RFW under QTL control condition.

Root dry weight: Under Fe stress condition, two QTLs
were located for RDW on chromosomes 2 and 9. Their

additive effect was 0.001 and -0.001gr, respectively.
qRDW-2 and qRDW-9 were able to explain 13.6 and
11.3% of the phenotypic variation of the trait.

Fe content: gFC-1 was detected on chromosome 1 for Fe
content, in Fe stress. It was located between the RM 10864
and ISSR13-2 markers and justifies 11.9% of phenotypic
variation. Under normal condition, no QTL was detected

Fe content under QTL control condition.

Fe is a necessary element for some biological processes
such as photosynthesis, respiration and nitrogen
assimilation [13]. In this study, Linkage map covered a
total of 1419 cM with an average two locus interval of

13.07 cM.
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Figure 3. Graphical presentation of correlation coefficients
among studied traits under normal (above) and Fe toxicity
(down) conditions in seedling stage and 96 Fs rice recombinant
inbred lines derived from ATM x NAD crosses.
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Figure 4. Genetic linkage maps and QTLs identified under normal conditions in seedling stage the F8 population derived
from ATM x NAD.
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Figure 5. Genetic linkage maps QTLs identified under Fe toxicity conditions in seedling stage the F8 population derived
from ATM x NAD.
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Table 1. Putative QTLs for iron toxicity in seedling stage the Fs population derived from Ahlemitarom (ATM; a tolerant to iron
toxicity variety) and Neda (NAD; a susceptible to iron toxicity variety).

Traits QTL Chr. Flanking markers LOD Position Additive effect R? Direction of ph.
Fresh biomass gFB-10a 10 ISSR15-2 2.859 0 -0.015 14.5 NAD
gFB-10b 10 ISSR15-2-ISSR14-2  2.465 10 -0.037 12.6 NAD
qRL-2a 2 ISSR8-2 2.133 0 -0.992 11.0 NAD
qRL-2b 2 ISSR20-7-RM301 2.015 84 1.145 10.5 ATM
qRL-4 4 ISSR1-4-RM280 2.386 124 1.197 12.3 ATM
qRL-5a 5 ISSR10-2-ISSR4-3 2.243 92 -1.004 11.6 NAD
qRL-5b 5 ISSR4-3-ISSR9-4 2.243 94 -0.965 11.6 NAD
Root length qRL-6 6 RM597-ISSR9-1 3.006 88 -4.945 15.2 NAD
qRL-7 7 ISSR20-2-ISSR12-1 3.198 16 -21.144 16.1 NAD
qRL-8 8 ISSR4-6-ISSR13-3 2.384 18 -2.028 12.3 NAD
qRL-9 9 RM205-ISSR8-7 2.667 100 -1.214 13.6 NAD
gqRL-10a 10 ISSR14-2-ISSR13-4  4.442 26 -4.239 21.5 NAD
qRL-10b 10 RM294A-RM591 3.383 90 -2.15 16.9 NAD
qRL-12 12 ISSR15-1-IRAP17-3  3.023 130 3.339 15.3 ATM
gqRN-6 6 IRAP17-1-RM111 2.784 44 -0.472 14.2 NAD
Root number qRN-7 7 ISSR5-4-ISSR4-7 2.391 104 -0.538 12.3 NAD
qRN-8 8 ISSR2-5-RM281 2.381 98 0.122 12.2 ATM
Leaf width qLW-10 10 ISSR13-4-IRAP17-2  3.202 34 0.650 16.1 ATM
Root fresh weight qRFW-9 9 RM205-ISSR8-7 2.112 98 -0.006 10.9 NAD
Root dry weight qRDW-2 2 ISSR20-7-RM301 2.659 84 0.001 13.6 ATM
qRDW-9 9 RM205-ISSR8-7 2.197 100 -0.001 11.3 NAD
Fe content qFC-1 1 RM10864-ISSR13-2  2.317 86 1.432 11.9 NAD

Table 2. Putative QTLs for normal condition in seedling stage the Fg population derived from Ahlemitarom (ATM; a tolerant to Fe
toxicity variety) and Neda (NAD; a susceptible to Fe toxicity variety).

Traits QTL Chr. Flanking markers LOD Position Additive effect R? Direction of ph.
Fresh biomass qFBN-12 12 RMS83-ISSR15-1 2.134 104 -0.113 9.7 NAD
Shoot length  qSLN-12 12 ISSR13-7-ISSR14-4 2.190 32 -1.863 1.0 NAD
Root number ~ qRNN-3 3 ISSR16-3-RM 143 2.167 56 0.145 9.9 ATM
qLWN-2 2 ISSR1-1 2.093 26 0.024 9.6 ATM
Leaf width qLWN-7 7 ISSR20-2-ISSR12-1 2.221 16 0.328 10.1 ATM
qLWN-12 12 ISR13-7-ISSR14-2 2.085 32 -0.420 9.5 NAD

Dong et al. (2006) and Stein et al., (2009) were mapped
three QTLs associated with Zn>* toxicity tolerance on
chromosomes 1, 3 and 10 [3, 24]. qZNT-1 explained
21.9% of the total phenotypic variation and showed the
largest effect on the trait. In this study, a QTL was
identified for the Fe content on chromosome 1 under Fe
toxicity conditions. qFC-1 was located near the RM 10864
markers with a LOD value of 2.317 and explained 11.9%
of the total phenotypic variation (Table 1).

Dufey et al. (2015b) have reported some QTLs for SDW
and RDW on chromosomes 1, 3, 5, and 12. In this study,
we detected QTLs related to RDW in the seedling stage.
These QTLs were mapped on chromosomes 2 and 9.
qRDW-2 and qRDW-9 explained 13.6% and 11.3 % of
the total phenotypic variation, respectively [7].

Zebeau and Vos (1993) showed that correlated traits are
QTLs that are
chromosomes in similar regions [34]. In the present study,

often controlled by located on

under normal conditions, the QTL associated with SH and
LA in the region of ISSR13-7-ISSR14-4 chromosome 12
overlapped and had a positive and significant correlation
(0.765"). According to the results under normal
conditions, it seems that there is a significant relationship
owing to pleiotropy or the relationship between the genes
controlling the traits. qRL-9 and qRDW-9 were found at
the same map locations in chromosome 9, but they had
low and negative significant correlations (Table 2).

CONCLUSION

QTL analysis helped to identify several major QTLs that
are of potential value for the improvement of Fe toxicity
tolerance in rice. Under stress condition, five QTLs were
detected for root length on chromosome 6, 7, 10, and 12,
and their contributions to whole variation were 15.2%,
16.1%, 21.5%, 16.9% and 15.3, respectively. One QTL
detected on chromosomes 10 for leaf width. It explaining
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16.1% of phenotypic variation. These QTLs, due to the
high percentage of justification after validation, could be
a good candidate for marker-assisted selection programs
with the help of markers in the desirable genetic
background of rice.
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