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Soil microbiome indicators can predict crop 
growth response to large-scale inoculation 
with arbuscular mycorrhizal fungi

Stefanie Lutz    1,7, Natacha Bodenhausen    2,7, Julia Hess1, 
Alain Valzano-Held    1, Jan Waelchli    3, Gabriel Deslandes-Hérold    3,4,6, 
Klaus Schlaeppi    3,7  & Marcel G. A. van der Heijden    1,5,7 

Alternative solutions to mineral fertilizers and pesticides that reduce the 
environmental impact of agriculture are urgently needed. Arbuscular 
mycorrhizal fungi (AMF) can enhance plant nutrient uptake and reduce 
plant stress; yet, large-scale field inoculation trials with AMF are missing, and 
so far, results remain unpredictable. We conducted on-farm experiments in 
54 fields in Switzerland and quantified the effects on maize growth. Growth 
response to AMF inoculation was highly variable, ranging from −12% to 
+40%. With few soil parameters and mainly soil microbiome indicators, we 
could successfully predict 86% of the variation in plant growth response 
to inoculation. The abundance of pathogenic fungi, rather than nutrient 
availability, best predicted (33%) AMF inoculation success. Our results 
indicate that soil microbiome indicators offer a sustainable biotechnological 
perspective to predict inoculation success at the beginning of the growing 
season. This predictability increases the profitability of microbiome 
engineering as a tool for sustainable agricultural management.

Agricultural intensification has achieved substantial yield increases 
but also contributed to biodiversity loss, soil degradation, soil pollu-
tion, greenhouse gas emissions and water eutrophication1,2. Ensuring 
food security for a growing population while reducing environmental 
impacts poses a dual challenge to agricultural production3. Alterna-
tive solutions to agrochemicals are urgently needed to increase the 
sustainability of agriculture.

Soil ecological engineering is an important strategy to increase 
sustainability and reduce the need for external resources4–6. Promoting 
beneficial soil biota is an integral part of this management practice and 
arbuscular mycorrhizal fungi (AMF) in particular have enormous poten-
tial to play a pivotal role4,7. AMF belong to the phylum Glomeromycota 

and form symbiotic relationships with the majority of terrestrial plants. 
They provide the plants with nutrients in exchange for carbohydrates8. 
A range of studies have shown that AMF inoculation in the greenhouse 
and in the field can enhance growth of a wide range of plants, includ-
ing many agricultural crops9–11. AMF are best known for their ability 
to enhance plant nutrient uptake, in particular phosphorus, but also 
other nutrients8,12. In addition, a range of studies have shown that 
AMF also can improve soil structure, nutrient retention in the soil13, 
reduction of greenhouse gas emission14,15, drought tolerance16,17 and 
disease resistance18,19.

Harnessing the beneficial properties of AMF can be achieved in two 
ways. Native AMF communities can be promoted through favourable 
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variables (Supplementary Table 3). Further reductions were achieved 
using three different approaches including a random forest analysis29 
(Fig. 3a and Supplementary Table 4), stepwise model selection using 
‘stepAIC’30 and exhaustive screening using ‘glmulti’31 (Methods and 
Supplementary Table 5). The following 6 variables were identified by all 
approaches: magnesium (EDTA), magnesium (H2O), manganese, min-
eralized N (Nmin), iron and microbial biomass carbon (cMIC). The final 
pool of soil parameters for subsequent MGR prediction was derived 
from the combined result of all three analyses and comprised 15 vari-
ables (Fig. 3a and Supplementary Table 5).

Most important soil OTUs for MGR prediction
We determined the soil fungal communities with long-read sequenc-
ing and found a high relative abundance of Ascomycota, followed by 
Mortierellomycota and Basidiomycota28 (Supplementary Table 6). 
Rarefaction analysis confirmed that sufficient sequencing depth was 
reached to capture the fungal diversity28. Unconstrained ordination 
revealed that soil fungal communities were grouped by year, which 
was subsequently included as a co-variable in all downstream analyses 
(Extended Data Fig. 3).

Analogous to the soil parameters, we reduced the number of fungal 
taxa (represented as operational taxonomic units (OTUs), hereafter 
referred to as sOTUs for soil OTUs) for model input using different 
approaches (Fig. 3b). The combined results of an indicator species 
analysis (Supplementary Table 7) and differential abundance analysis 
(Supplementary Table 8) comparing high- and low-MGR fields, as well 
as a random forest analysis performed on the continuous MGR values 
(Supplementary Table 9), yielded a total of 44 sOTUs (see Supplemen-
tary Methods for more details).

To further refine the pool of sOTUs, another exhaustive automated 
model selection was performed using glmulti31, resulting in the selec-
tion of 7 and 6 sOTUs associated with high and low MGR, respectively 
(Fig. 3b and Supplementary Table 10). The genus Phaeohelotium was 
represented with two sOTUs that were associated with low MGR. In con-
trast, sOTUs that were more abundant in fields with high MGR included 
several genera with plant pathogenicity potential. These comprised 
Fusarium, Olpidium, Myrothecium, Striaticonidium and Chaetomium. 
The summed relative abundances of these sOTUs associated with 
low and high MGR each correlated well with MGR (Fig. 4a,b). In fields 
with high MGR, up to two indicator sOTUs for high MGR were present  
(Fig. 4c), while in fields with low MGR, two to three indicator sOTUs for 
low MGR were abundant (Extended Data Fig. 4).

agricultural practices such as low tillage intensity, crop diversification 
and organic farming20–22. Alternatively, AMF can also be deliberately 
introduced into the soil. The latter can be a valuable strategy for restor-
ing exhausted soils with low abundance of native AMF. While positive 
effects are often reported in greenhouse studies, the results of field 
inoculations with AMF are highly variable9,10,23. The mycorrhizal growth 
response (MGR) is a metric to express the effects of AMF inoculation 
on crop yield24. Depending on the soil and plant context, MGR effects 
range from beneficial to detrimental25,26. One unsolved aspect of the 
variable inoculation success is that the extent to which the introduced 
AMF are established often remains unknown27. Thus, the impact of field 
inoculations with AMF on crop yield is highly unpredictable and their 
application is currently not reliable.

For AMF inoculations to become an agronomically useful man-
agement practice, reliable predictions of the conditions under 
which AMF enhance crop yields are urgently needed. Therefore, we 
conducted inoculation trials with AMF in arable fields and investi-
gated their effect on maize growth in combination with measure-
ments of the local chemical, physical and biological soil parameters 
(hereafter, ‘soil parameters’) and soil fungal microbiome, as well 
as changes in root microbiome composition in response to AMF 
inoculation (Fig. 1).

Here we aimed to test whether field inoculations with AMF are 
feasible and whether their success can be successfully predicted. In our 
proof-of-concept study, we identified the most important predictors 
of MGR. This will pave the way for developing a soil diagnostic tool that 
will inform farmers about the expected benefits of AMF inoculations 
in their fields, thus improving the reliability and profitability of their 
application.

Results
Maize growth responses to AMF inoculation vary strongly
Inoculation trials with the native AM fungus Rhizoglomus irregulare 
SAF22 were carried out in 54 maize fields in Northern Switzerland 
and their effects on maize growth were investigated (Supplementary  
Table 1). The MGR varied widely, ranging from −12 to +40 % (Fig. 2). 
Significant positive growth responses (+12 to +40%) were observed in a 
quarter (14) of the fields. In two fields, a significant reduction in growth 
(−12 %) was observed. For downstream analyses, we categorized fields 
according to the 25th (<−2.4% MGR) and 75th (>12.1% MGR) quantiles 
of the MGR range, hereafter referred to as ‘low-MGR’ and ‘high-MGR’ 
fields, respectively.

All inoculation trials were performed without phosphorus fertili-
zation. In a subset of the fields (18 fields in 2018), we also tested whether 
the addition of phosphorus influenced inoculation success (Extended 
Data Fig. 1). In the majority of tested fields, we did not find a significant 
effect of fertilizer type.

Most important soil parameters for MGR prediction
To identify the main factors explaining the variation in MGR, we meas-
ured a total of 52 soil parameters. Field sites used in this study differed 
widely in terms of soil properties (for example, total phosphorus (P) 
content varied with a factor of 4 (from 570 to 2,312 mg kg−1 dry soil), 
mineralized nitrogen (N) content varied with a factor of 11 (from 9 to 
102 mg kg−1 dry soil) and soil organic carbon content varied with a factor 
of 4 (from 0.8 to 3.4%); Supplementary Table 1). Different soil types were 
examined in ref. 28. We first assessed pairwise correlations between 
soil properties and MGR for 54 fields. This yielded only few and weak 
relationships (Supplementary Table 2).

Because such one-factor analyses were clearly insufficient to 
explain MGR, we examined the relationship between soil proper-
ties and MGR with multivariate models in a second step. For this we 
reduced the pool of 38 parameters for which data were available for 
all 54 fields and filtered out strongly correlated variables (r > 0.8 or 
r < −0.8; Extended Data Figs. 2 and 3). This resulted in a subset of 22 
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Fig. 1 | Experimental setup of the field inoculation trials. To develop a soil 
diagnostic tool to predict the success of AMF inoculation, a total of 52 soil 
parameters and the soil microbiome were analysed in 54 fields at the beginning of 
the growing season. After sowing, inoculations with the AMF R. irregulare SAF22 
(or a control substrate) were carried out. At harvest, the mycorrhizal growth 
response, total root colonization and composition of the root microbiome were 
analysed to assess the success of AMF inoculation.
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Establishment success is insufficient to explain MGR
To examine the establishment of the AMF inoculum in the maize roots, 
we measured total root colonization by microscopy and establishment 
success of the inoculated strain SAF22 by profiling the fungal root 
microbiome using long-read sequencing (root (r)OTUs). However, 
none of these parameters correlated with MGR (Fig. 4c and Extended 
Data Fig. 5).

The fungal root microbiome was determined using PCR primers 
that enrich for AMF (Supplementary Fig. 1 and Table 11). Rarefaction 
analysis confirmed that sufficient sequencing depth was reached 
(Supplementary Fig. 2). Similar to the soil microbiome, albeit less 
pronounced, the native root microbiome (control samples) showed a 
year effect (Extended Data Fig. 6). With the ratio between inoculated 
and control samples, we quantified the establishment success of the 
inoculum R. irregulare SAF22, which ranged between 17.8% and 100% in 
38 fields (Supplementary Table 13). In 5 fields, establishment was very 
low (0.7–9.4%), while in 11 fields, it did not establish at all (0%). Overall, 
we found clear differences between control and inoculated samples 
(Extended Data Fig. 7 and Supplementary Fig. 3).

Soil pathogenic fungi are most important predictors of MGR
For prediction of MGR, we then modelled all the previously selected 
15 soil parameters and 13 sOTUs (Fig. 5). Combining these predic-
tors in a full model, they were able to explain 86% of the variation in 
MGR (P < 0.001; Fig. 5a). Interestingly, the 15 soil parameters were 
by far less important (29%) than the 13 sOTUs (53%). A reduction of 
predictors, comparing all possible models with a maximum size of 
10 predictors, resulted in a model consisting of 3 high-MGR sOTUs 
(Trichosporon, Myrothecium, unknown), 3 low-MGR sOTUs (Powello-
myces, two unknown), as well as Nmin, cMIC, ammonium and magne-
sium (H2O) (Fig. 5b). Although highly simplified, this model was still 
able to explain 68% of the variation in MGR (P < 0.001). An alternative 
model with only the 13 sOTUs (Fig. 5c) was almost as good, reaching 
66% explanation (P < 0.001).

sOTU18, identified as Trichosporon sp., was the most important 
predictor for high MGR in all models. Species of the genus Trichosporon 
are known pathogens; however, there are currently no reports on plant 
pathogenicity. Interestingly, the abundance of sOTU18 correlated with 
variables indicative of low-carbon and low-nutrient fields (Extended 
Data Fig. 8).

We followed a binary classification approach to cross-validate 
our models since the ultimate goal is not to predict the exact value of 
the MGR, but to provide recommendations on whether inoculation 
provides a benefit (significant positive growth response, >12.2%, as this 
was the lower limit for significant positive effects in this study) or not 
(neutral or negative growth response, <12.2%). This resulted in a high 
mean accuracy of 80% (full model) and 83% (reduced model and soil 
fungus model). We are thus able to make the right decision (to inoculate 
or not) with a high probability.

Root microbiome data confirm results of prediction model
To investigate the relationships between plant pathogenic soil fungi 
and the inoculated AMF, we investigated the root fungal profiles for 
community shifts in response to inoculation. We performed a differ-
ential abundance analysis comparing control vs inoculated plots in 
low-MGR fields and control vs inoculated plots in high-MGR fields. In 
low- as well as high-MGR fields, we find a lower relative abundance of 
several native AMF (including the genera Funneliformis, Rhizophagus, 
Glomus and Paraglomus; Fig. 6, and Supplementary Tables 14 and 15) 
in the plots inoculated with R. irregulare SAF22. It is important to note 
that AMF inoculation changed community composition, but it had no 
significant effect on AMF diversity (AMF OTU richness increased in 
42% of the fields and decreased in 44% of the fields upon inoculation; 
Supplementary Table 16).

Even more remarkably, in fields with high MGR, the introduced 
strain SAF22 also reduced the relative abundance of several plant 
pathogenic taxa. These included the genera Olpidium, Cladosporium, 
Mycochaetophora, Pyrenochaeta and Vishniacozyma (Fig. 6 and 
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Fig. 2 | Mycorrhizal growth response over 3 yr. MGR varied widely, ranging 
from −12 to +40%. Plot shows mean values (circle), as well as the confidence 
interval of MGR for each field (n = 8 independent control and inoculated plots). 
Significant differences are highlighted by filled circles. High- and low-MGR fields 
(75th and 25th quantiles) are highlighted by shaded areas and bold x-axis labels. 

We observed a slight year effect. 2019 was the year with the lowest number of 
fields with significant positive effects (4 out of 25 fields, 16% of fields) and 2020 
was the year with the highest number (5 out of 12 fields, 41% of fields). This could 
be due to different weather conditions during the 3 yr.
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Supplementary Table 15). Taken together, the in-depth analysis of 
the root fungal profiles revealed a plausible mechanistic basis for 
positive MGR: the introduced AMF outcompetes the otherwise plant 
pathogenic fungi from the roots most probably resulting in better 
growth of the maize plants.

Discussion
Here we show that inoculation with arbuscular mycorrhizal fungi signifi-
cantly increased maize yield. We achieved a significant positive increase 
in biomass of 12–40% in a quarter of the fields, which is considerably 
higher than the annual yield increases through breeding for a range 
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Fig. 3 | Variable selection for the MGR prediction model. a, Soil parameters 
were initially filtered through the removal of co-correlated variables, followed by 
random forest, stepAIC and glmulti analyses resulting in a final set of 15 variables, 
displayed as loading vectors in the PCA plot of all soil parameters. b, Soil fungal 
OTUs were selected using indicator species, differential abundance and random 
forest analyses, and a further refinement step using glmulti. This resulted in a 
final set of 13 sOTUs, depicted as loading vectors in the partial (adjusted for year 
effect) dbRDA plot, showing a clear grouping by MGR category. c, Establishment 
success of the inoculated AMF. Fields are shown in descending order of MGR 

(grey bars, representing the confidence interval of MGR for each field, displayed 
on the secondary y axis). AMF establishment success (displayed on the primary 
y axis) is shown as the difference (Δ) between inoculated and control samples 
for the relative abundances of SAF22 rOTUs and total colonization. The plot 
shows that there is no relationship between MGR and establishment success 
(indicated by the smoothed lines, which follow a different trend from that of 
MGR). However, the relative abundance of SAF22 and total root colonization are 
strongly correlated (see Extended Data Fig. 5c for pairwise correlations).
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of crops (which are often below 1%)32. Moreover, effect sizes of adding 
cover crops (up to 8%)33 and other biofertilizers (up to 12%)34 in compa-
rable climatic regions and production systems are also lower compared 
with growth increases in inoculated high-MGR fields in this study.

While many studies pointed to the importance of AMF for plant 
nutrition, this study links AMF inoculation to soil pathogen protection. 
Pathogen abundance in the soil best explained AMF inoculation success 
(33% of variance explained), while soil parameters were less important 
(29%; Fig. 5a). While a range of studies have shown that inoculation with 
AMF can promote plant growth in the field9–11, results are variable and 
none have used soil characteristics and molecular-based soil microbi-
ome analysis to specifically predict under which conditions AMF can 
promote plant growth.

Phosphorus availability tended to be negatively associated with 
inoculation success in previous studies35. In our study, phosphorus 
explained less than 2% of the variation in MGR, which was also reflected 
in the outcome of the fertilizer trial (see Supplementary Results and 
Extended Data Fig. 1). Despite a large (factor of 26) variation in imme-
diately plant-available phosphorus levels (0.34–9.07 mg kg−1, H2O-CO2 
extraction; Supplementary Table 1), most soils were above the thresh-
old for phosphorus deficiency in Swiss soils (0.58 mg kg−1)36, perhaps 
also explaining why AMF inoculation success was best explained by 
other factors.

Further, positive growth responses were associated with lower 
soil organic carbon levels and especially with reduced soil microbial 
biomass carbon (Fig. 5b). Soil microbial biomass represents the living 
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Fig. 4 | Abundance of soil fungal OTUs associated with high and low MGR. 
a,b, The summed relative abundances of the 7 and 6 sOTUs indicative of high 
(a) and low (b) MGR, respectively, correlate well with the residuals of MGR after 
fitting the 15 soil parameters. The correlation coefficients (Pearson, rho) and the 
significance values (P) are displayed in the plots. The regression line is shown 
in grey and the 95% confidence interval is the grey shaded area. c, The relative 
abundance of high-MGR sOTUs was standardized using z transformation for 
better visualization and is displayed on the primary y axis. The MGR range per 

field is indicated by grey bars (representing the confidence interval of MGR) 
and is displayed on the secondary y axis. Fields are arranged in descending 
order of MGR. The plot shows that on average, only one or two of these OTUs 
were abundant in a field with high MGR. Therefore, these predictors are only 
suitable in combination in a multiple linear regression model. NA, unknown. 
Full information on taxa identities can be found in Supplementary Table 10. The 
corresponding plot for low MGR OTUs can be found in Extended Data Fig. 4.
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fraction of organic carbon and is an important component of soil 
health37,38. Fields with low microbial carbon content appeared to benefit 
more from AMF inoculations, suggesting that AMF are particularly 
important when soil health is low. It is also known that organic amend-
ments can suppress a wide range of pathogens in the soil39,40. Therefore, 
protection from pathogens by inoculated AMF may be particularly 
important in soils with low organic content. Consequently, AMF inocu-
lations in healthier soils with high abundance of OTUs associated with 
low MGR (for example, Phaeohelotium; Supplementary Table 10) are 
less likely to provide economic benefits.

Several sOTUs associated with high MGR in this study are known as 
plant pathogenic taxa (Supplementary Table 10) and can infect impor-
tant crops including maize41–45. These comprise Olpidium brassicae41,42, 
Myrothecium sp.43 and Fusarium equiseti44,45. The most important pre-
dictor in the model, however, was sOTU18 with the genus assignment 
Trichosporon, known to cause diseases in human46. So far, this genus 
has not been described in relation to plant pathogenicity; yet, it best 
explained inoculation success with AMF and especially in high-MGR 
fields where it was less abundant in inoculated plots, AMF had a positive 

impact on plant yield (Supplementary Tables 14 and 15), suggesting a 
negative effect of this taxon on maize growth. Moreover, sOTU18 is an 
indicator of poorer soil properties (that is, negatively correlated with 
organic carbon and soil fertility, and positively correlated with sand 
content; Extended Data Fig. 8). Overall, pathogen abundance might be 
more pronounced in poorer soil. The addition of AMF provides addi-
tional protection and plants growing in these fields might benefit more 
from mycorrhizal inoculation. Given the limitations of marker genes 
in predicting fungal lifestyles, further studies need to isolate these 
fungi and test whether they indeed negatively affect maize growth to 
experimentally verify their pathogenicity potential and to what extent 
AMF can contribute to pathobiome management.

Only few pathogens seem to be important in the studied context, 
as the summed abundances of all soil fungal pathogens identified by 
guild-based screening was not able to predict MGR (see Supplementary 
Results and Extended Data Fig. 4). AMF strains are probably specialized 
in their ability to protect against specific pathogens. Here we inoculated 
an AMF strain that was isolated from Swiss soil and can establish well in 
a wide range of soil types24,35. The inclusion of other AMF genotypes to 
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be screened for their properties to protect against specific pathogens 
would not only broaden the scope of this management practice and 
facilitate establishment under a wide range of conditions, but could 
also prevent possible agricultural intensification and biodiversity loss 
through the employment of only one AMF strain. Even though we did 
not observe a reduction in AMF diversity (Supplementary Table 16), 
future studies need to investigate the long-term effects of inocula-
tions, as well as the persistence and invasiveness of native vs exotic 
AMF inocula. The unintended consequences of non-native inoculants 
in natural and agricultural systems are not known, but if inoculants are 
invasive, they may pose a threat to soil and plant biodiversity and eco-
system functioning47. Furthermore, complementary to more diverse 
and complex inocula, the possibility of AMF rotations—analogous to 
crop rotations—could also mitigate the risk of low-diversity microbial 
treatments on soil biodiversity.

The ability of AMF to protect plant roots from attack by soil-borne 
pathogens can be explained by various mechanisms including 
improved plant nutrient uptake and consequently plant health48, 
induced systemic resistance49, alteration of the root microbiome50 
and direct competition for root space18,19,51. In our study, several of 
these mechanisms of action probably occurred simultaneously. Our 
root microbiome data partly point to direct competition for root 
colonization. In fields with high MGR, pathogenic fungi were sig-
nificantly less abundant in inoculated roots (Fig. 6). These included 
the previously identified important soil pathogens Olpidium and 
(potentially plant pathogenic) Trichosporon, as well as Cladosporium, 
Mycochaetophora, Pyrenochaeta and Vishniacozyma. Myrothecium 
and Fusarium, which were also identified as important predictors, 
could not be found in the root microbiome data, possibly because 
the molecular primers used for roots were specifically designed to 
target AMF52. Thus, general ITS (internal transcribed spacer) primers 
for the roots also need to be included in future studies to cover full 
fungal diversity.

Moreover, it was striking that there was no correlation between 
root colonization and plant growth response. Inoculation of the AMF 
strain SAF22 was the experimental factor, but inoculum success and 
how well the AMF strain established was not a good predictor. Instead, 
differences in its functions explained the variation in MGR. In contrast 
to the common interpretation where biofertilizers stimulate plant 
growth, here the interpretation is the other way around: abundant 
pathogenic soil fungi, which are present in ‘high-MGR’ fields, cause a 
growth reduction in the control treatment, while this otherwise nega-
tive effect is mitigated by the inoculated AMF. We believe this could 
be due to several reasons closely related to the many ways AMF can 
suppress pathogens. First, if AMF establish first and fast, this could 
prevent or reduce pathogen establishment. Second, a range of studies 
have shown that AMF can trigger induced systemic resistance49,53–55, and 
AMF may indirectly affect pathogens by altering the microbiome50. 
Time-resolved studies that follow the processes and mechanisms in 
the roots throughout the growing season are needed.

Several studies have shown that the abundance and activity of 
AMF are also explained by the bacterial microbiome56 and pesticide 
application57,58. Further, differences in microclimatic conditions may 
be another factor contributing to differences in MGR. The inclusion of 
such factors may resolve even more of the unexplained variance. How-
ever, while field inoculations must be economically viable, simple and 
cost-effective prediction of inoculation success must also be possible. 
Predicting MGR based solely on sequencing soil fungal pathogens, 
for instance, would represent a simplified diagnostic approach. Here 
we present an initial list of pathogenic sOTUs that could be quanti-
fied directly in the field at the beginning of the growth season, with 
results being available within a few hours and at a reasonable cost 
using quantitative PCR or rapid sequencing59. Furthermore, automated 
and affordable microbial diagnostic assays could be developed (for 
example, Loop-mediated isothermal amplification). Subsequently, 
pathogen abundance can predict inoculation success.
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Fig. 6 | Comparison of differentially abundant rOTUs between control and 
inoculated samples for fields with low and high MGR. Differential abundances 
were assessed using DESeq2 (Wald test; significance threshold, 0.1; P values 
adjusted for multiple comparison; dashed lines correspond to a log2FC of −1 and 1 
to guide the eye). In fields with low MGR (left), the inoculated R. irregulare SAF22 
(represented by several OTUs corresponding to rRNA variants, see Methods) 
replaced the native AMF, while in fields with high MGR (right), not only the native 
AMF but also pathogenic fungi were replaced. Full taxonomic assignments of 
the OTUs can be found in Supplementary Tables 14 and 15. It should be noted 

that primers targeting AMF were used for the root data, so a number of fungi 
could not be detected, including some pathogens (for example, Fusarium, 
Myrothecium) that had been identified as significant in the soil data. Of note, we 
identified Trichosporon, the most important soil fungal OTU in the predictive 
model, also in the data of the root fungal communities (rOTU20 shares 100% 
sequence similarity with sOTU18 over its entire amplicon length). Even though it 
does not appear in the plot of fields with high MGR as it was below the significant 
threshold (P = 0.252), it showed a similar trend (log2FoldChange = −0.583) as the 
displayed pathogens (Supplementary Table 15).
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With this work using 54 fields, we have shown that field inocula-
tion with AMF can successfully be predicted and can give a yes/no 
recommendation with high accuracy of 80–83%; this means a success-
ful prediction in 4 out of 5 fields. We have solved the context depend-
ency for one maize variety in one geographic area. The approach 
presented here is easily transferable and further studies need to test 
different maize varieties, as their responsiveness to mycorrhiza can 
vary greatly23,60. The inclusion of a broad range of soil types and cli-
matic zones will further extend the scope of the work. To maximize 
the potential of AMF for more sustainable agricultural production 
systems, future work needs to include settings with reduced use of 
agrochemicals. Furthermore, our approach can be used as a blueprint 
to predict inoculation success and resolve context dependency of 
other widely used biofertilizers including Rhizobium spp. or Bacillus 
amyloliquefaciens61.

With our results, we provide a crucial starting point for the devel-
opment of a diagnostic tool using soil microbial indicators that can 
ultimately increase the reliability of field inoculations. As a result, 
AMF inoculations can become a powerful management option for 
microbiome engineering in arable land and thus an integral part of 
agricultural sustainability.

Methods
Field sites
The field inoculations were carried out in three consecutive years in a 
total of 54 maize fields in northern Switzerland. In 2018, 22 fields were 
inoculated between 23 April and 16 May. In 2019, 25 fields were sampled 
between 18 April and 7 June. In 2020, 12 fields were sampled between 
22 April and 16 May. The exact GPS locations are available but are not 
provided here for confidentiality reasons. The farms were chosen on 
the basis of the farmers’ willingness to participate in this study and 
planned cultivation of maize for the respective growing season. Apart 
from inoculum and fertilizer application, the experimental sites were 
managed by the farmers according to Swiss standards of conventional 
farming62.

Fertilizer
All fields were fertilized with N and potassium (K). Since it has previ-
ously been shown that MGR is negatively correlated with the fertilized 
amount of P35, a subset of the 2018 plots (see below) were additionally 
fertilized with P to further verify these results. The amount of N, K and 
P was calculated on the basis of the Principles of Agricultural Crop 
Fertilisation (PRIF) in Switzerland62, which gives recommendations on 
the amount of fertilizer to be applied based on the plant and its specific 
nutrient needs. The following granular fertilizers were used: N in the 
form of 24% ammonium nitrate (NH4NO3), P as triple superphosphate 
(46% P2O5) and K as 60% water-soluble potassium oxide (K2O). The cor-
rect amount of fertilizer that was going to be applied (20.1 g N, 8.2 g of 
P2O5 and 22.1 g K2O per m2) was filled into sealed bags.

Experimental setup
In 2018, a split plot design was used for practicality reasons. Each 
experimental field comprised 12 maize rows of 24 m length, with the 
spacing between two maize rows being 75 cm. Fertilizer types (NK 
and NPK) were randomly assigned to whole plots, and inoculum types 
(control and AMF) were randomly assigned to split plots within each 
whole plot. A total of 16 whole plots was installed in a square 2 × 8 
design, each of them comprising an area of 13.5 m2 (corresponding 
to 6 maize rows of 3 m length). Each whole plot contained an AMF 
and a control treatment, separated by two maize rows, resulting 
in eight replicates per treatment combination. In 2019 and 2020 a 
randomized complete block design was used with 8 blocks. It was 
ensured that there were at least three maize rows serving as a buffer 
zone between the first inoculated maize row and the edge of the field, 
to avoid edge effects.

Inoculation
The control (carrier substrate) and AMF inocula (R. irregulare isolate 
SAF22) were produced in the greenhouse. Plantago lanceolata L. was 
planted in 7 l pots filled with an autoclaved soil:sand mixture (3:17 
v/v)35 and inoculated with SAF22 or no AMF (control). The pots were 
watered regularly and after 3 months, the watering was stopped and 
the pots dried out. The resulting mixture of sand, soil, roots and AM 
fungal spores was used to inoculate the fields.

The maize variety LG 30.222 (UFA) was chosen on the basis of 
its high responsiveness to SAF22 in a previous study35. In addition, in 
2019, an inoculation trial with individual and combined inoculations 
of different AMF species (R. irregulare SAF22, Funneliformis mosseae, 
Clareoideoglomus claroideum) was carried out on a subset of 10 fields 
(Extended Data Fig. 10).

After sowing, inoculations were performed as soon as possible 
(after 2–7 d), except for fields F10, F16 and F17 (9–11 d) due to late 
notice by the farmer. In each plot, the farmers’ seeds were carefully 
removed and the seed furrow was dug out to ~15 cm deth and 15 cm 
width. The soil and the respective inoculum (control or AMF) were 
alternately filled back into the hole and mixed well. A stretch of 80 cm 
in a maize row was inoculated with 450 g of the respective inoculum, 
which corresponds to an inoculum concentration of ~5% (v/v). Seeds 
of the maize variety LG 30.222 (UFA) were placed back into the soil–
inoculum mix in their former position and covered with soil. Within 
the inoculated stretch, five seeds were placed ~3–4 cm deep in the 
soil with a 15 cm spacing between them and loosely covered with 
soil. The seeds were coated with standard fungicides as well as the 
insecticide and bird repellent Mesurol, as this is common practice 
in conventional farming in Switzerland. We controlled for possible 
adverse effects of the fungicide coating on the AMF by using the same 
coating in all fields. To avoid contamination, all equipment was used 
only for either control or AMF inoculations, and control plots were 
set up before AMF plots.

Soil sampling and processing
Soil sampling took place before fertilization of the fields and was per-
formed using a half-cylindrical gouge auger (Eijkelkamp; effective 
auger body 100 cm, Ø 3 cm). Twenty soil cores were mixed to form 
composite samples and kept cold during transportation back to the lab-
oratory. Samples were stored at 4 °C for a maximum of 2 weeks before 
sieving to 2 mm. A subsample was stored frozen for DNA extraction.

A total of 52 soil analyses were carried out in the Environmental 
Analytics lab and Soil Biology lab at Agroscope as well as the LBU (labo-
ratory for soil and environmental analytics) according to their standard 
protocols. All data are provided in Supplementary Table 1.

Harvest
Shortly before the farmer’s planned harvest, after ~4–5 months of 
plant growth, two plants from the centre of each of the eight plots per 
treatment and field (that is, 16 plants in total) were cut 10 cm above 
the soil surface and their fresh weight was determined. The plants 
were dried at 60 °C until they reached a constant weight. Dry plant 
biomass was used for the predictions as maize is mostly grown for silage 
in Switzerland. Both parameters are strongly correlated (rho = 0.73; 
Supplementary Fig. 5).

Roots were collected and thoroughly washed with water, cut into 
pieces of ~1–2 cm length and mixed well. Subsamples of the roots for 
DNA extraction were stored at −20 °C. For assessment of total root colo-
nization by microscopy, roots were stored in 50% ethanol until staining.

General statistics and graphics
All statistical analyses described below were carried out in R (v.4.0.3)63 
and plots were created using the R packages ggplot2 (v.3.3.5)64, graph-
ics (v.4.0.3)63 or ggpubr (v.0.4.0)65. Inkscape (v.092)66 was used to 
finalize Fig. 3.
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MGR
MGR was calculated as previously described24 to evaluate the percent-
age change in maize biomass in AMF-inoculated plots in relation to the 
average biomass in control plots. The 25th and 75th quantiles of the 
MGR range were calculated and fields were grouped by MGR categories 
comprising low- (bottom 25%), medium- (intermediate 25%–75%) and 
high- (top 25%) MGR fields (Fig. 1 and Supplementary Table 1).

Differences in MGR between the subset of fields fertilized with 
and without phosphorus were assessed using a two-way analysis of 
variance (ANOVA) using the ANOVA function of the R package stats 
(v.4.0.3)63 with the two grouping variables ‘field’ and ‘fertilizer’ and 
their interaction effect (Extended Data Fig. 1).

Analysis of soil predictors
To find pairwise correlations among all 52 measured soil parameters 
and MGR, Spearman rank correlations (corr.test function of the R pack-
age psych (v.2.1.9))67 were calculated and corrected for multiple testing 
using the Benjamini–Hochberg method68 (Supplementary Table 2).

Further, we performed multiple linear regression analysis. To 
assess the most important predictors for MGR, a stepwise reduction of 
parameters had to be performed. Only parameters that were measured 
in all 54 fields were selected (Supplementary Table 1). First, strongly 
correlated parameters (R < −0.8, R > 0.8) were assessed using the cor 
function in the R package stats (v.4.0.3)63, visualized in a heat map using 
the R packages reshape2 (v.1.4.4)69 and ggplot2 (v.3.3.5)65 (Extended 
Data Fig. 2), and subsequently reduced (Supplementary Table 3).

Further analyses were conducted to identify the most impor-
tant predictors of MGR from this pool. Random forest analysis was 
performed using the R package randomForest (v.4.6-14)29 and 1,000 
trees. The importance of predictors was ranked on the basis of their 
IncNodePurity values (Supplementary Table 4). Stepwise model selec-
tion was performed using the function stepAIC of the R package MASS 
(v.7.3.54)30, including backward and forward selection. The selected 
predictors can be found in Supplementary Table 5. To compare all 
possible models and identify the best model from this pool, the R pack-
age glmulti (v.1.0.8)31 was used with exhaustive screening, the Akaike 
information criterion with correction for small sample sizes (aicc) 
and a maximum model size of 10 predictors (Supplementary Table 5). 
The combined output of these analyses was used as input for the final 
model selection (see below).

Principal component analysis was performed using the prcomp 
function in the R package stats (v.4.0.3)63. A biplot was created with the 
loading vectors corresponding to the 15 selected parameters of the 
glmulti, stepAIC and randomForest analyses described above (Fig. 3a).

Soil microbiome sequencing
Samples for DNA extraction were stored at −20 °C. Details of DNA 
extraction, PCR, library preparation and sequencing have been 
previously described28. DNA was extracted from four subsamples 
from each field using the NucleoSpin soil kit (Macherey-Nagel) 
and ~250 mg of soil. The entire ITS region was amplified using 
primers ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′)70 and ITS4 
(5′-TCCTCCGCTTATTGATATGC-3′)71, employing a two-step PCR proto-
col. First, the ITS region was amplified from genomic DNA. A 5 Prime Hot 
Master Mix (Quantabio) with a total reaction volume of 20 μl containing 
0.3% BSA and 500 nM of each primer was used. The PCR programme 
consisted of an initial denaturation step of 2 min at 94 °C, followed by 
25 cycles of denaturation at 94 °C for 45 s, annealing at 55 °C for 1 min 
and elongation at 72 °C for 1 min, with a final elongation step of 10 min 
at 72 °C. Cleanup was followed by reversible solid-phase immobiliza-
tion with SPRIselect beads (Beckman Coulter). In the second PCR step, 
barcoded ITS1F and ITS4 primers were used but without the addition 
of BSA. The same PCR programme was used, but with only 10 steps. 
DNA was quantified using Picogreen and pooled in equimolar ratios. 
Four libraries were prepared in the same way and sequenced using the 

PacBio single molecule real-time (SMRT) technology72. The raw data 
were converted to circular consensus sequences (min. passes = 5) and 
demultiplexed with SMRT software (v.9.0.0, Pacific Biosciences). The 
raw sequencing data are stored in the European Nucleotide Archive 
(http://www.ebi.ac.uk/ena) under accession number PRJEB53587.

Root microbiome sequencing
The DNA from roots from each block was extracted separately 
according to ref. 72 with some modifications. After lyophilisation, 
roots were ground with glass beads (1 mm and 0.1 mm) in a tissue 
lyser (FastPrep-24) twice for 1 min at 6 m s−1. The NucleoSpin soil kit 
(Macherey-Nagel) was used as before to extract DNA from the pow-
dered roots (~50 mg) using buffer SL1. After quantification with Accu-
Clear Ultra High Sensitivity dsDNA quantification kit (Biotium), DNA 
was diluted to 1 ng μl−1. Samples from all the blocks for one treatment 
of one field were pooled using equal amounts.

We used primers that target AMF so that the community 
profiles included Glomeromycota besides Ascomycota and 
Basidiomycota taxa. A ~1.5-kb fragment was amplified using 
the wobble-containing variants52 of the AMF-specific prim-
ers SSUmCf (5′-TATYGYTCTTNAACGAGGAATC-3′) and LSUmBr 
(5′-AACACTCGCAYAYATGYTAGA-3′), spanning part of the small 
ribosomal subunit, the entire ITS region and part of the large riboso-
mal subunit73. In contrast to the original paper, the PCR method was 
improved by adding Q-Solution (Qiagen) and by using touchdown 
PCR. The polymerase system was Phusion High-Fidelity DNA system 
(Thermo Scientific). Two-step PCR was used to prepare the library for 
sequencing: the first step amplified the target gene, the second PCR 
used primers with a barcode specific for each sample. Reactions of 
the first step were prepared in 20-μl volume with HF Phusion buffer, 
500 nM of each primer, Q-Solution diluted 4 times and 2 ng of DNA. 
Cycling programme of the first PCR consisted of an initial denaturation 
at 98 °C for 3 min, 10 touchdown cycles (30 s at 98 °C, 45 s annealing 
with temperature starting from 65 °C and reducing to 55 °C with 1 °C 
less per cycle, 1 min at 72 °C), followed by 25 cycles of standard PCR (10 s 
at 98 °C, 30 s at 55 °C, 1 min at 72 °C) and a final elongation of 10 min 
at 72 °C. PCR products were cleaned up using solid-phase reversible 
immobilization SPRIselect beads (Beckman Coulter). Reactions for 
the second step were prepared in 30-μl volume with the same concen-
trations of barcoded primers but without Q-Solution and 5 μl of the 
PCR product from the first reaction. The cycling programme of the 
second step consisted of an initial denaturation of 2 min at 98 °C, 10 
cycles (10 s at 98 °C, 30 s at 55 °C, 1 min at 72 °C), followed by 10 min 
final elongation. After final cleanup with SPRIselect beads, DNA was 
quantified with AccuClear Ultra High Sensitivity dsDNA quantification 
kit and pooled in equimolar fashion.

Negative controls did not result in any amplification. A positive 
control of the inoculated AMF was included to identify OTUs corre-
sponding to R. irregulare SAF22 and identified 4 abundant and 3 rare 
variants of the ribosomal (r)RNA operon. The resulting amplicons 
were sequenced in three libraries using the PacBio SMRT technology. 
The circular consensus sequences are stored in the European Nucle-
otide Archive (http://www.ebi.ac.uk/ena) under accession number 
PRJEB56590.

Bioinformatics
Samples for each library were analysed together to form one OTU table. 
Samples were demultiplexed with SMRT (v.9.0.0, Pacific Biosciences). 
Primer removal, quality filtering (maximum expected errors 2, mini-
mum length 500 bp, discarded reads that match phiX), truncation 
(after 1,800 bp or at the first instance of a quality score <3), derepli-
cation, denoising and chimaera removal were carried out using the 
R package dada2 (v.3.10)74. ASVs (amplicon sequence variants) were 
clustered by 97% similarity using the R package DECIPHER (v.2.16.1)75. 
A Bayesian classifier was used to assign the taxonomy with the UTAX 
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reference dataset (utax_reference_dataset_10.05.2021.fasta) from the 
UNITE database76.

Analysis of soil microbiome predictors
The OTU and taxonomy tables as well as the sample data were imported 
into the R package phyloseq (v.1.36.0)77. OTUs with zero counts were 
removed and the four replicates of each sample were merged and the 
counts summed. All samples were rarefied to an even sampling depth 
using the smallest sample number (that is, 4,272 reads). The resulting 
OTU table can be found in Supplementary Table 6. Rarefaction curves 
(rarecurve function in the R package vegan v.2.5-7)78 were calculated 
to determine sufficient sampling depth.

Spearman rank correlations (corr.test function of the R package 
psych v.2.1.9)67 were calculated for individual OTUs and MGR, and cor-
rected for multiple testing using the Benjamini–Hochberg procedure68.

To filter the OTU table to a more reduced candidate set for model 
selection, three independent analyses were performed. An indica-
tor species analysis was performed with low- and high-MGR fields 
(multipatt function in the R package indicspecies (v.1.7.9), function 
‘r.g’, 999 permutations)79. Indicator OTUs with P < 0.1 were retained. 
A less stringent significance threshold of 0.1 was chosen to obtain a 
larger candidate set of 29 OTUs (Supplementary Table 7). Differential 
abundance of OTUs between low- and high-MGR fields was assessed 
using DESeq2 (v.1.30.1)80, and the Wald significance tests and para-
metric fitting. Using a significance threshold of 0.1 resulted in the 
selection of 18 OTUs (Supplementary Table 8). Random forest analysis 
(R package randomForest v.4.6-14)29 was performed to identify the 
most important predictors of MGR. OTUs with IncNodePurity >30 
are listed in Supplementary Table 9. The combined results of these 
analyses produced a subset of 44 OTUs. For final model selection in 
combination with soil parameters, this subset was further reduced 
using glmulti (v.1.0.8)31 with exhaustive screening of all possible mod-
els and the Akaike information criterion with correction for small 
sample sizes (aicc).

Automatic species assignment against the reference database 
often did not result in annotations at lower taxonomic levels. There-
fore, the most important OTUs were additionally subjected to a BLAST 
search against the NCBI database (Supplementary Table 10).

Principal coordinate analysis (PCoA) was performed on the 
square-root-transformed OTUs on the basis of Bray–Curtis dissimi-
larities (vegdist function in the R package vegan v.2.5-7)78 to investigate 
a possible year effect (Extended Data Fig. 3). Subsequently, to explore 
relationships between soil fungal community composition and MGR, 
partial distance-based redundancy analysis (dbRDA) was performed 
using the capscale function in the R package vegan (v.2.5-7)78, with the 
variable ‘Year’ as the condition that was partialled out. The loading vec-
tors corresponding to the final set of 13 soil OTUs selected by the meth-
ods described above were added to the partial dbRDA plot (Fig. 3b).

FUNGuild (v1.2)81 was used to assess fungal guilds and group patho-
gen sOTUs (Supplementary Table 13).

Linear regression models
The lm function of the R package MASS (v.7.3-54)30 was used to develop 
linear regression models. Violation of normality assumption was 
assessed using Ols_test_normality in the R package olsrr (v.0.5.3)82. 
The relative importance of each predictor in the models was evaluated 
using the package relaimpo (v.2.2-6)83 (Fig. 5). For the correlation plots 
of summed high- and low-MGR OTUs and MGR, a linear regression 
model was developed using only the 15 soil parameters. Residuals were 
extracted using the residual function in the R package stats (v.4.0.3)63 
and plotted against OTU abundance.

Cross-validation of models
To cross-validate our models, we split the dataset into a train-
ing dataset (90% of the dataset) and a test dataset (10%) using the 

createDataPartition function of the R package caret (v.6.0-94)84. Since 
the ultimate goal is not to predict the exact value of MGR, a binary 
classification approach was chosen to test the accuracy of the model 
in predicting inoculation success. An MGR of 12.2% was chosen since 
this represented the lower limit for significant positive effects (‘yes’: 
positive growth effect, >12.2% MGR; ‘no’: neutral or negative growth 
effect, <12.2% MGR). The linear regression models were developed as 
described above using the test dataset. MGR values of the test data-
set were predicted using the predict function of the R package car 
(v.3.1.0)85. The number of true positive, true negative, false positive 
and false negative predictions were assessed using the confusion-
Matrix function of the R package car (v.3.1.0). The mean accuracy was 
assessed over 1,000 iterations (randomly splitting the dataset into 
training and test data).

Root microbiome analysis
The OTU and taxonomy tables as well as sample data were imported 
into the R package phyloseq (v.1.36.0)77. OTUs with zero counts were 
removed. All samples were subsampled to an even sampling depth 
using the smallest sample number (that is, 1,660). The relative abun-
dances at the phylum level were assessed and visualized in a bar chart 
(Supplementary Fig. 3). Rarefaction curves (rarecurve function in the 
R package vegan v.2.5-7)78 were calculated to assess sufficient sampling 
depth (Supplementary Fig. 2). The rarefied root OTU table can be found 
in Supplementary Table 11. For the visualization of the community com-
position at the genus level, the 15 most abundant genera were selected 
from the rarefied OTU table (Supplementary Fig. 3).

To investigate similarities of the native root microbiome between 
the MGR categories (that is, low, medium, high) and a possible year 
effect, control samples were selected from the OTU table. First, PCoA 
(cmdscale function in the R package stats (v.4.0.3))63 was performed on 
the root-transformed OTUs and on the basis of the Bray–Curtis dissimi-
larities (vegdist function in the R package vegan v.2.5-7)78 and samples 
were coloured by year. Subsequently, partial dbRDA was performed 
using the capscale function in the R package vegan (v.2.5-7)78, with 
the variable ‘Year’ as the condition that was partialled out (Extended 
Data Fig. 6).

To evaluate the establishment success of the inoculated SAF22, 
PCoA was performed on control and inoculated samples, and 
results were coloured according to these two treatment categories 
(Extended Data Fig. 9). Further, OTUs corresponding to SAF22 (rOTU2, 
rOTU4, rOTU9, rOTU16, rOTU74, rOTU84, rOTU165) were summed 
and their relative abundances recorded for control and inoculated 
samples, as well as their differences (Fig. 3c and Supplementary  
Table 12).

To investigate whether shifts in community structure differed 
between low- and high-MGR fields, we performed a differential abun-
dance analysis (that is, control vs inoculated) for low- and high-MGR 
fields separately. We used the R package DESeq2 (v.1.30.1)80, Wald 
significance tests, parametric fitting and a significance threshold of 
0.1 (Fig. 6, and Supplementary Tables 14 and 15).

Root colonization
Total root colonization by AMF was assessed using the magnified 
section method86. First, roots were cleared with KOH and stained with 
an ink–vinegar mixture87. Approximately 30 cm of roots, consisting 
of 1–2-cm-long pieces, were mounted on a microscope slide and 100 
intersections per sample were counted. The intersection types included 
‘negative’, ‘arbuscule’, ‘vesicle’ and ‘internal hypha’. Total root coloni-
zation was recorded as a percentage of all non-negative intersections 
(Fig. 3c and Supplementary Table 12).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

http://www.nature.com/naturemicrobiology
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Data availability
The raw sequencing data are stored in the European Nucleotide Archive 
(http://www.ebi.ac.uk/ena) under accession numbers PRJEB53587 (soil 
microbiome) and PRJEB56590 (root microbiome). All other data are 
available in the supplementary material.

Code availability
All code and input files are available at https://github.com/PMI-Basel/
Lutz_et_al_Predicting_crop_yield.
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Extended Data Fig. 1 | Fertilisation trial with and without phosphorus. All 
fields were fertilised with nitrogen (N) and potassium (K). In a subset of the 
fields (18 fields in 2018) we also tested whether phosphorus (P) fertilisation 
influenced inoculation success. Fertilisation alone had no significant effect on 
MGR (p = 0.3680); yet, we examined a negative interaction effect of field and 
fertiliser (p = 0.0001). In three fields, inoculation did not have the same effect 
in the presence and absence of P fertiliser, and MGR was lower in the presence 

of additional P (highlighted by a bold rectangle; F17: p = 0.0033, F21: p = 0.0352, 
F10: p = 0.0760). Fertiliser types: NK = nitrogen + potassium, NPK: nitrogen + 
phosphorus + potassium. The boxes represent the interquartile range (IQR, 
25th to 75th percentile). The horizontal line within the box represents the 
median (50th percentile). The whiskers represent the minima and maxima 
of the data in comparison to the IQR (±1.5*IQR). Outliers are represented as 
individual data points.
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Extended Data Fig. 2 | Correlation matrix of soil parameters. Matrix shows Spearman rank correlations between all 38 soil variables for which data were available for 
all 54 fields.
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Extended Data Fig. 3 | Soil fungal communities group by year. PCoA was performed on the square root transformed sOTUs based on Bray-Curtis dissimilarities. Plot 
shows an underlying year effect in the soil fungal data.
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Extended Data Fig. 4 | Relative abundance of sOTUs associated with low 
MGR across fields. The relative abundance of OTUs was standardised using 
z-transformation for better visualization (primary y-axis). MGR is displayed in 
grey bars on the secondary y-axis and fields are arranged in descending order 

of MGR. The plot shows that on average only one or two of these OTUs were 
abundant in a field with low MGR. Full information on taxa identities can be found 
in Supplementary Table 10.
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Extended Data Fig. 5 | Relationship between the establishment of AMF 
and MGR. The relative abundance of the inoculated SAF22 was analysed 
using long-read sequencing. Total root colonisation was determined by 
microscopy. The values for the relative abundance of SAF22 and total root 
colonisation represent the differences between inoculated and control plants 
(Δ in the plots). No correlations were found between MGR and the relative 

abundance of sequenced SAF22 rOTUS (A) or total root colonisation (B). 
However, the relative abundance of SAF22 and total root colonisation were 
positively correlated (C). The correlation coefficients (Spearman rank, rho) 
and the significant values (p) are displayed in the plots. The blue shaded area 
represents the 95% confidence interval.
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Extended Data Fig. 6 | Ordination plots of native root fungal communities. 
In order to explore a possible year effect and the relationship between the 
overall community composition and MGR, ordinations were performed on the 
control samples. The principal coordinate analysis on the left shows only weak 

grouping by year. Similarly, the partial distance-based redundancy analysis, 
after partialling out the effect of the variable year, only shows weak grouping 
by the response variable MGR. Ordinations were performed on the square root 
transformed rOTUs based on Bray-Curtis dissimilarities.
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Extended Data Fig. 7 | Ordination of control and inoculated root microbiome. 
The principal coordinate analysis shows clear separation between the control 
and inoculated samples, indicating that the inoculated SAF22 established 
well in most fields (see Supplementary Table 12 for relative abundance values 

of each field), and thus, causing a shift in the root microbiome. Ordination 
was performed on the square root transformed OTUs based on Bray-Curtis 
dissimilarities.
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Extended Data Fig. 8 | Significant correlations of soil parameters with the 
most important sOTU associated with high MGR. sOTU18 (Trichosporon 
sp.) showed the highest relative importance in the MGR prediction model. 
Its abundance correlates strongly with properties of poor soils (that is, lower 

organic carbon and nutrient contents and higher sand fraction). The correlation 
coefficients (Spearman rank) and the significant values (p) are displayed in the 
plots The blue shaded area represents the 95% confidence interval.
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Extended Data Fig. 9 | Scatter plots of significant correlations of soil 
physico-chemical variables with the most important indicator OTU for 
low MGR. OTU58 (no database match) correlates significantly with properties 
indicative of healthy soils (that is, high respiration, fertility and organic carbon). 

The correlation coefficients (Spearman rank) and the significant values (p) are 
displayed in the plots. The blue shaded area represents the 95% confidence 
interval.
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Extended Data Fig. 10 | Inoculation trial with different AMF species. 
Individual and combined inoculations of different AMF species did not result 
in any significant differences in MGR between species (p = 0.2006, F = 1.51) 
or significant interactions between fields and different species (p = 0.4124, 
F = 1.04,), as revealed by a 2-wy ANOVA (n = 8 individual plots per treatment 

group). The boxes represent the interquartile range (IQR, 25th to 75th percentile). 
The horizontal line within the box represents the median (50th percentile). The 
whiskers represent the minima and maxima of the data in comparison to the IQR 
(±1.5*IQR). Outliers are represented as individual data points.
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