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A B S T R A C T   

Soil organic carbon (SOC) plays a major role in the global carbon cycle and is an important factor for soil health 
and fertility. Accurate mapping of SOC and other influencing parameters are crucial to guide the optimization of 
agricultural land management to maintain and restore soil health, to increase soil fertility, and thus to quantify 
its potential for sequestering CO2. Remote sensing and machine learning techniques offer promising approaches 
for predicting SOC distribution. In this study, we used remote sensing data and machine learning algorithms to 
map SOC at regional to large scale, which we then combined with temporospatial and spectral signature-based 
soil sampling to integrate local ground measurements. A rigorous validation approach was performed where 
several independent unseen datasets with a high number of samples were used, which additionally involved 
densely sampled fields. We found that our approach could predict SOC with an average percentage error of less 
than 10 % with an R2 of 0.91 using support sampling on croplands located on mineral soils, demonstrating the 
potential of remote sensing, machine learning, and specific ground measurements for mapping SOC. Our results 
suggest that this approach could make small carbon differences measurable and inform carbon sequestration 
efforts and improve our understanding of the impacts of land use and field management practices on soil carbon 
cycling.   

1. Introduction 

Soil organic carbon (SOC) determines soil quality and health (Tiessen 
et al., 1994). It plays a pivotal and multifaceted role in enhancing the 
fertility and productivity of agricultural soils as a crucial regulator of the 
global carbon cycle (Loveland and Webb, 2003; Karchegani et al., 2012; 
Falahatkar et al., 2014). Its presence brings significant benefits to soil 
structure, particularly through the augmentation of water-holding ca-
pacity, as well as soil nutrient content (Rawls et al., 2003; Lal, 2020). A 
high SOC content signifies soil robustness and its capacity to support 
optimal plant growth. In addition to its impact on soil quality, SOC as-
sumes a key role in the context of climate change mitigation. Soils can 
act as a vital carbon sink, facilitating carbon sequestration by effectively 
storing atmospheric carbon in the soil matrix. This capacity to sequester 
carbon can contribute to global efforts to reduce greenhouse gas emis-
sions. Therefore, monitoring and mapping SOC emerge as indispensable 
practices, as they enable assessing and managing SOC levels in 

agricultural soils. Such endeavors facilitate the implementation of sus-
tainable agricultural practices, leading to long-term productivity and the 
preservation of soil health (Nunes et al., 2021; Reeves, 1997; Weil 
Magdoff et al., 2004). 

Traditional field-based sampling approaches pose practical chal-
lenges in terms of cost and time, especially when dealing with extensive 
agricultural areas (Tajik et al., 2020; Poeplau et al., 2022; Zeraatpisheh 
et al., 2022). Due to the high spatial variability of SOC (Huang et al., 
2007; Vasenev et al., 2013), cumulative SOC stock calculations via 
extrapolation to larger areas give inaccurate results, making it impos-
sible to quantify significant changes in soil carbon stocks over several 
years. 

In this context, remote sensing is a promising and affordable alter-
native for SOC assessment. In recent years, there has been a growing 
interest in mapping SOC using satellite technologies, with researchers 
and companies actively pursuing this endeavor. This interest can be 
attributed to four primary reasons. 
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(i). Satellite data offers the advantage of efficiently and cost- 
effectively monitoring large areas, enabling rapid assessment of SOC 
distribution. 

(ii). Satellite data can provide information on regions where col-
lecting ground data is challenging or even impossible, thereby over-
coming logistical limitations. 

(iii). The high temporal resolution of satellite data facilitates the 
tracking of SOC changes over time, enhancing our understanding of 
dynamic soil carbon dynamics. 

(iv). Methods based solely on satellite data are non-invasive, 
requiring no direct soil interaction or disturbance, simplifying the 
mapping process, and, most importantly, have lower costs. 

During the 1990s, significant research was dedicated to the investi-
gation of the relationship between satellite data and SOC mapping. A 
notable study (Wilcox et al., 1994) demonstrated strong linear correla-
tions between Landsat TM bands, having a spatial resolution of 30 m, 
and surface SOC based on an analysis of 224 SOC measurements. Sub-
sequent research continued utilizing Landsat TM for SOC mapping and 
formed the foundation of SOC mapping using remote sensing (Merry and 
Levine, 1995; Batjes, 1996; Frazier et al., 1997; Levine et al., 1998; 
Cannell et al., 1999). These studies consistently reported promising 
correlations with coefficients of determination (R2) exceeding 0.5, 
which means that only 50 % of the variation could be explained. 

In the 2000s, the focus shifted towards validating SOC predictions 
from remote sensing against higher-resolution data, such as aerial 
photography, to investigate spatial variations. For example, Basnyat 
et al. (2004) compared the spatial distribution of SOC with plant growth 
through the normalized difference vegetation index (NDVI) derived 
from Landsat TM. Throughout this decade, research on SOC prediction 
using remote sensing continued, expanding sample sizes and incorpo-
rating field spectroscopy and Landsat TM data (Goidts et al., 2009; He 
et al., 2002; Jaber, 2006; Nyssen et al., 2008; Szakács et al., 2004). 

The 2010s marked a significant shift in SOC research, coinciding 
with the launch of Sentinel satellites, having a spatial resolution of 
10–20 m. In 2018, researchers from the Czech Republic investigated 
methods for retrieving SOC and soil texture from Sentinel-2 data, 
showcasing the superiority of satellite-derived SOC maps over those 
calculated from aerial images regarding the accuracy and the benefits of 
high temporal resolution of shorter than 2 weeks (Gholizadeh et al., 
2018). Another notable study in 2018 by Castaldi et al. (2018) modeled 
SOC in croplands using APEX data and the extensive LUCAS topsoil 
database, incorporating the highest number of samples up to that point. 
In contrast to previous decades focused on mapping and spatial varia-
tion, the 2010s witnessed a shift towards quantitative analysis through 
model development (Castaldi et al., 2016, 2018, 2019, 2023; Ladoni 
et al., 2010; Ayoubi et al., 2011; Kumar et al., 2012, 2018; Vågen et al., 
2013; Noshadi et al., 2014; Peng et al., 2015; Mondal et al., 2017). 

By 2020, SOC sequestration had emerged as a prominent and highly 
researched topic in the field of remote sensing (Castaldi et al., 2023; 
Dvorakova et al., 2023). Numerous important factors influencing SOC-
were investigated during this period, furthering our understanding of 
this complex and highly volatile phenomenon. Notably, studies delved 
into the effects of crop residues (Dvorakova et al., 2020), terrain (Guo 
et al., 2021), climate (Dvornikov et al., 2021), soil texture (Padarian 
et al., 2022), and management practices (Paul et al., 2020; He et al., 
2021; Wang et al., 2021a; Zhang et al., 2022). These investigations shed 
light on the multifaceted nature of SOC dynamics and their relationship 
on SOC sequestration with key environmental factors. 

Simultaneously, researchers integrated optical and radar data to 
model changes in SOC (Wang et al., 2021b; Nguyen et al., 2022; Zhou 
et al., 2022). This fusion of data sources provided a comprehensive 
perspective on SOC variations, capturing both surface and subsurface 
characteristics. Shafizadeh et al. (Shafizadeh-Moghadam et al., 2022) 
combined multi-year Sentinel-1, Sentinel-2, and terrain data to assess 
the SOC on forest and cultivated lands. During this period, there was a 
notable trend towards developing more sophisticated models, 

incorporating deep learning techniques, and handling larger datasets 
(Zhang et al., 2022; Odebiri et al., 2022a, 2022b; Meng et al., 2022; 
Zhao et al., 2022). These advancements allowed for more accurate 
predictions and improved understanding of the complex relationships 
between remote sensing data and SOC dynamics. 

In line with these advancements, a recent analysis of cost and ac-
curacy conducted by Andries et al. (2021) has highlighted the potential 
of integrating remote sensing technology and in-situ sampling as a 
reliable and cost-efficient method for monitoring and assessing SOC 
stocks at a local scale. 

In this study, we investigate two different predictive frameworks for 
SOC estimation using satellite data and machine learning only and 
machine learning refined with informed ground measurements. In both 
frameworks machine-learning parts consist of different algorithms, 
which are evaluated for their individual performances, including a light 
gradient boosting machine (LGBM), random forest (RF), and multi-layer 
perception (MLP). To ensure unbiased evaluation, all frameworks are 
validated on an independent set of samples that were not used during 
the model development and refinement phase. These measurements are 
crucial for building accurate machine-learning models and calibrating 
the relationships between environmental predictors and SOC content. 

The objective of this study was to calculate SOC maps at 10 m × 10 m 
resolution using a novel approach combining a satellite-based machine- 
learning model and ground measurements. The machine learning model 
was trained using a Europe-wide dataset collected over agricultural 
areas. The ground measurements are acquired via the sampling 
approach called Precision Sampling (Yuzugullu et al., 2020) for more 
accurate predictions. The Precision Sampling approach considers the 
time series of Sentinel-1 and Sentinel-2 images and assigns sampling 
locations according to the spatial distribution of spectral-temporal het-
erogeneity. The validation analysis has four levels that challenge the 
developed approach: (i) During model training using a random split of 
the acquired data, (ii) after model training on the unseen data, (iii) after 
model training and refinement using ground measurements on the un-
seen data, (iv) after the model training and refinement using ground 
measurements on four densely sampled fields located in Europe. 

2. Data 

This section describes the datasets providing initial ground SOC data 
used to train the ML model ensemble and subsequently outlines the 
input features utilized for modeling. It includes information about 
climate, terrain, and soil texture, as these factors are known to influence 
soil organic carbon content (VandenBygaart, 2006; Vos et al., 2019). 

2.1. Ground data 

2.1.1. Training data 
For the spatial modeling of SOC levels, we used ground data from 

various sources offering openly available data and compiled them into a 
unified database reflecting a large variance in SOC and soil situations for 
algorithm development and testing. To ensure unit consistency, we 
converted the units of the collected data to mass percentages SOC(%). 
The data were collected from different European locations, as depicted 
in Fig. 1. Specific datasets such as ITACyL (Inicio, 2022), LUFA 
Nord-West, NABODAT (Marianne Stokar, 2022), and OpenAgrar (Poe-
plau et al., 2020a) represent their respective countries, showing dense 
sampling in regions like northern Spain, Germany, and Switzerland. The 
LUCAS (LUCAS - ESDAC, 2020) dataset covers a significant portion of 
Europe, including countries like France, Great Britain, Italy, Greece, 
Czechia, Poland, Slovakia, Austria, and Denmark, contributing to a 
comprehensive coverage of soil SOC measurements. 

Table 1 provides a summary of the data used in this study, including 
information on SOC and soil texture (clay, silt, and sand) at the topsoil 
(0–10 cm) level. The SOC values exhibit a right-skewed distribution, as 
shown in Fig. 2, with values ranging from 0.01 to 6.28 %, a mean of 1.32 
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%, and a standard deviation of around 0.40 %. Considering the distri-
bution of SOC values, it is important to note that the model’s predictive 
capabilities may be limited for SOC values higher than 3.70 % due to the 
lack of sufficient training data in that range. 

2.1.2. Validation data 
To validate our approach, we used field samples collected at 0–30 cm 

depth and followed different levels of validation involving ground 
measurement. The first level consists of data from Table 1, which are 
split during the model training. The second and third level includes 
measurements obtained from fields through the Precision Sampling 
method (Yuzugullu et al., 2020). The last level involves densely sampled 
agricultural fields from Poland, Switzerland, and France, whose details 

are given in Table 2. The data from Poland are based on tests of 9032 soil 
samples in a specific field and made available by Polish companies: Top 
Farms “Głubczyce” sp. z o. o. and QZ-Solutions sp. z o.o. The tests of 
these samples were carried out as part of the project of detailed soil 
research in southern Poland - an experimental field with an area of 127 
ha, cultivated by Top Farms “Głubczyce”. The data from Switzerland are 
based on tests of 33 soil samples in a test field included in the EJP Soil 
STEROPES project. Lastly, the data from France are based on tests of 55 
soil samples in two test fields cultivated by SandriCourt Estate. 

The Precision Sampling method utilizes a spectral-temporal hetero-
geneity map of the field, calculated from Sentinel-1 and Sentinel-2 im-
ages acquired when the field is either bare soil or at a very low plant 
biomass coverage. In our validation dataset, we collected data from a 

Fig. 1. Available SOC data (n = 36622) in this study that are collected from agricultural areas, marked according to their sources.  

Table 1 
Summary of the data sets used for training the model ensemble and containing data properties related to corg, including according to sources, units, sample counts, 
resolution, sampling depth, and sampling period.  

Name Unit Sample Count Resolution Sampling Depth (cm) Sampling Period Reference 

ITACyL % 21782 Point 0–30 2000–2021 Inicio (2022) 
LUFA Nord-West % 16888 Field 0–30 1995–2015 Personal contact 
LUCAS g/kg 8551 Point 0–20 2009–2018 LUCAS - ESDAC (2020) 
NABODAT % 3185 Point 0–30 2000–2017 Marianne Stokar (2022) 
OpenAgrar g/kg 2075 Point 0–10 2011–2018 Poeplau et al. (2020a) 
ISRIC % 1667 Point 0–10 2000- ISRIC Soil Data Hub (2022) 
ISMN % 110 Point 0–30 2017- ISMN (2022) 
Total  54258      
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total of 532 fields belonging to AgriCircle AG clients, as shown in Fig. 3. 
The soil samples were taken at 0–30 cm depth. Among these fields, 225 
had independent validation points located at least 30 m away from the 
sampling locations that are used for the refinement process. The sampled 
fields were primarily located in Great Britain, Germany, Switzerland, 
Poland, and Ukraine. Densely sampled fields represent the real spatial 
variation of SOC, challenging the presented methodology at a finer 
scale. The fields are located in Poland, Switzerland, and France. For 
refinement purposes, the closest measurement point to the Precision 
Sampling location is selected. 

By incorporating these field measurements into our analysis, we 
ensure a robust validation of our approach and enhance the reliability of 
our results. The diverse geographical distribution of the sampled fields 
further strengthens the generalizability of our findings across different 
agricultural areas having different climates, soil textures, terrain, and 
even management practices, as being tested using the densely sampled 
fields. 

2.2. Satellite data 

In this research, we used data from Sentinel-1 (S1) and Sentinel-2 
(S2), which are part of the Copernicus program led by the European 
Space Agency (ESA) in partnership with the European Union (EU). The 
Copernicus program is a comprehensive Earth observation initiative to 

provide accurate and timely information about the Earth’s environment. 
Through a constellation of satellites known as Sentinels, Copernicus 
collects data on the atmosphere, oceans, and land. The program offers 
free and open access to its data and services, empowering policymakers, 
businesses, and citizens to make informed decisions regarding climate 
change and sustainable development, in particular for agriculture. 

S1 carries a C-band Synthetic Aperture Radar (SAR) with a center 
frequency of 5.405 GHz. The S1 mission consists of two satellites, S1a, 
and S1b, providing a maximum of 6-day temporal resolution. In our SOC 
prediction model, we used the Ground Range Detected (GRD) data 
processed by ESA at a spatial resolution of 10 m. The Sentinel-1 data 
used in this research includes two polarizations: vertical transmission- 
vertical received (VV) and vertical transmission-horizontal received 
(VH). These polarizations and the system’s frequency make the data 
sensitive to the physical and dielectric properties of the surface. Ac-
cording to (Liu et al., 2013), soil particles with higher organic matter 
content exhibit a greater capacity to adsorb water, resulting in lower 
dielectric constant values and higher transition water content levels 
within the soil. 

The descriptive statistics (minimum, maximum, mean, standard de-
viation) of the features derived from the Sentinel-1 data are collected 
between 2017 and 2023 covering multiple agricultural seasons on the 
ground measurement locations, and are provided in Table 3. The mean 
and standard deviation of the VV polarization in time are higher 
compared to the VH polarization. This difference can be attributed to the 
fact that VH is lower than VV over bare soil with low roughness, as only a 
limited portion of the signal is polarized and returns to the sensor. 

S2 is equipped with the Multispectral Instrument (MSI), which cap-
tures 13 electromagnetic spectrum bands ranging from the visible (VIS) 
to the short infrared (SWIR) wavelengths. The revisit period of S2 is 6 
days, providing frequent and regular observations of the Earth’s surface. 
The 13 bands have different spatial resolutions, with some bands at 10 m 
resolution and some at 20 m resolution. Additionally, there are three 
bands at 60 m resolution specifically dedicated to cloud screening and 
atmospheric corrections. The combination of these bands allows for 
detailed and comprehensive earth observation. 

Table 4 summarizes the descriptive statistics (minimum, maximum, 
mean, standard deviation) for the features derived from the S2 data, 
which are collected between 2017 and 2023 covering multiple agri-
cultural seasons on the ground measurement locations. The table in-
cludes the temporal mean and standard deviation for each band. It is 
observed that the temporal mean of reflectances converges between 0.3 
and 0.4, indicating a consistent average reflectance across different 
bands. The standard deviations remain relatively stable within the range 
of 0.05–0.1, suggesting limited variability in reflectance values over 
time on agricultural soils. 

This spectral behavior aligns with the expected spectral signature of 
soil (Mohamed et al., 2018). The interaction between incident radiation 
and soil particles can explain the saturation behavior observed. In 
particular, near-infrared (NIR) and shortwave infrared (SWIR) wave-
lengths are absorbed and scattered by soil particles, limiting the addi-
tional information that can be extracted about soil composition and 
properties. As the NIR and SWIR wavelengths are absorbed and scat-
tered, the soil’s response becomes less sensitive to further changes in the 
electromagnetic spectrum. This saturation effect occurs because the soil 
particles effectively absorb the energy at NIR and SWIR wavelengths, 
and additional increases in energy do not lead to significant changes or 
improvements in the measurement of soil characteristics. 

2.3. Climate data 

The climate data used in this study was obtained from the Meteo-
matics API (Weather API, 2022). The API call involved providing the 
latitude and longitude coordinates of the sampling locations, as well as 
specifying the desired parameters Data was retrieved for daily temper-
ature (T) and precipitation (Prec). 

Fig. 2. Distribution of the SOC, used for the development of the predic-
tion models. 

Table 2 
Information on densely sampled agricultural fields.  

Field 
Code 

Country Area 
(ha) 

SOC 
Range 
(%) 

Number of 
Samples 

Data Source 

(a) Poland 127 0.5–2.0 9032 Top Farms 
“Głubczyce” sp. z o. 
o. and QZ-Solutions 
sp. z o.o. 

(b) Switzerland 4.2 2.2–3.2 33 Public, EGP Soil 
STEROPES 

(c) France 7.5 1.7–4.4 32 Sandricourt Estate 
(d) France 14 1.8–3.3 23 Sandricourt Estate  
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The descriptive statistics of the climate features, including the tem-
poral mean, standard deviation of temperature, as well as the temporal 
mean and sum of precipitation, is shown in Table 5. These statistics offer 
insights into the variability of temperature and precipitation across the 
measurement points. 

2.4. Terrain data 

The terrain data was obtained from the Copernicus Global 30 m 
Digital Elevation Model, accessed through the Google Earth Engine 
(GEE) with the identifier COPERNICUS/DEM/GLO30. This dataset has a 
spatial resolution of 30 m, allowing for detailed information on the 

Fig. 3. Validation SOC data (n = 255) in this study were collected from agricultural areas with Precision Sampling.  

Table 3 
Features obtained from S1, namely temporal mean and standard deviation after the incidence angle correction.  

Feature Unit Min Max Mean stDev Feature Unit Min Max Mean stDev 

VV (mean) dB − 17.58 − 1.11 − 11.09 1.24 VV (stDev) dB 0.00 10.23 2.73 0.67 
VH (mean) dB − 23.75 − 2.76 − 18.54 1.28 VH (stDev) dB 0.00 12.56 2.64 1.01  

Table 4 
Reflectance-based features obtained from S2, namely temporal mean and standard deviation after atmospheric correction.  

Feature Unit Min Max Mean stDev Feature Unit Min Max Mean stDev 

B2 (mean) – 0.00 0.98 0.12 0.05 B2 (stDev) – 0 0.62 0.08 0.05 
B3 (mean) – 0.00 0.98 0.16 0.05 B3 (stDev) – 0 0.58 0.08 0.05 
B4 (mean) – 0.00 0.98 0.20 0.05 B4 (stDev) – 0 0.55 0.08 0.04 
B5 (mean) – 0.00 0.98 0.24 0.05 B5 (stDev) – 0 0.55 0.09 0.04 
B6 (mean) – 0.00 0.95 0.26 0.06 B6 (stDev) – 0 0.49 0.09 0.04 
B7 (mean) – 0.00 0.91 0.28 0.06 B7 (stDev) – 0 0.48 0.09 0.04 
B8 (mean) – 0.00 0.96 0.30 0.06 B8 (stDev) – 0 0.46 0.10 0.04 
B8A (mean) – 0.00 0.89 0.31 0.06 B8A (stDev) – 0 0.46 0.10 0.03 
B9 (mean) – 0.00 0.99 0.31 0.06 B9 (stDev) – 0 0.59 0.10 0.04 
B11 (mean) – 0.00 0.68 0.36 0.07 B11 (stDev) – 0 0.31 0.09 0.02 
B12 (mean) – 0.00 0.61 0.29 0.05 B12 (stDev) – 0 0.31 0.08 0.02  
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elevation of the study area. 
In addition to the elevation data, we derived several terrain-driven 

features from the digital elevation model (DEM) to further charac-
terize the terrain and hydrological properties of the study area. These 
features include slope, aspect, hillshade, and topographic wetness index 
(TWI), which are summarized in Table 6. 

2.5. Soil texture 

Soil texture plays a crucial role in influencing the variation of SOC 
levels, as it directly affects the soil’s capacity to retain and sequester 
SOC. Clayey soils, characterized by higher proportions of clay particles, 
have a greater potential for organic matter retention and typically 
exhibit higher SOC content. On the other hand, sandy soils, with a higher 
proportion of sand particles, generally have lower organic matter and 
SOC levels. 

To obtain a broad understanding of soil composition and its impli-
cations for carbon storage, low-resolution soil texture maps provided by 
organizations like ISRIC (International Soil Reference and Information 
Centre) categorize soil types based on their relative proportions of sand, 
silt, and clay. Such maps provide valuable insights into the dynamics of 
SOC. However, it is important to acknowledge the limitations of low- 
resolution maps, as they may not accurately capture fine-scale spatial 
variations in soil texture and SOC content. Table 7 summarizes the 
descriptive statistics (min, max, mean, standard deviation) of essential 
soil texture features, offering an overview of their distribution and 
variability within the study area. 

3. Methods 

The developed SOC mapping approach consists of four building 
blocks, as illustrated in Fig. 4: 

1. Preprocessing of the data: This step involves applying temporal 
limitations, eliminating outliers, and selecting relevant features from the 
input datasets. These preprocessing techniques ensure the quality and 
relevance of the data used for modeling. 

2. Training of different model frameworks: Three different models 
are trained using the preprocessed data, namely Light Gradient Boosting 
Machine, Random Forest, and Multi-Layer Perceptron. The purpose is to 
explore different modeling approaches and assess their performance in 
predicting SOC levels. 

3. Selection of the best-performing model framework: Based on 
evaluation metrics and performance measures, the model framework 
that demonstrates the highest accuracy and reliability in predicting SOC 
levels is selected as the best-performing model and used for the next 
steps. 

4. Refinement of generated maps using ground measurements: The 
selected model framework is then utilized to generate initial SOC maps. 
These maps are further refined and validated using ground measure-
ments, ensuring the accuracy and precision of the predicted SOC values. 

By following these four building blocks, the SOC mapping approach 

aims to provide reliable and accurate predictions of SOC levels across 
the study area. 

3.1. Pre-processing 

3.1.1. Temporal data selection 
SOC is known to display temporal dynamics influenced by various 

factors. Interventions aimed at carbon sequestration, such as organic 
fertilizer application and regenerative agriculture practices, can 
enhance SOC levels. Conversely, activities leading to bare soil exposure 
or excessive soil disturbance result in a SOC decline. 

To ensure the relevance and consistency of the SOC data used in our 
model development, a rigorous filtering process was implemented. Only 
measurements obtained after the year 2000 were considered, while 
older data were excluded. This filtering criterion serves two purposes. 
Firstly, it ensures that the selected data represents the current SOC 
status, as older measurements may not accurately reflect the present 
conditions due to the aforementioned factors. Secondly, it accounts for 
potential changes in SOC levels resulting from evolving management 
practices over time. The temporal variation in SOC is assumed to be 
negligible in this study, as the variation is expected to be within the 
range of the laboratory error. 

By implementing this temporal filtering process, we aimed to 
enhance the accuracy and applicability of our model by utilizing the 
most relevant and up-to-date SOC data available. 

3.1.2. Outlier elimination 
To ensure data quality and reliability of the data input, we conducted 

outlier elimination during the preprocessing. We analyzed the distri-
bution of each feature and the target parameter (SOC) individually. We 
identified samples located in the top and bottom 1 % percentile as po-
tential outliers for each feature. The samples that were marked at least in 
80 % of the features were identified as an outlier. These outliers were 
then removed from the dataset to eliminate extreme values that could 
distort the analysis and modeling results. Specifically for the SOC values, 
an additional criterion was applied. Values exceeding 3.70 %, which 
corresponds to the 0.95 percentile of the data, as shown in Fig. 2, were 
poorly populated and were therefore removed from the dataset. This 
criterion helps to maintain the dataset’s relevance and coherence with 
real-world conditions. 

As a result of the outlier elimination process, the number of samples 
in the dataset was reduced from 48877 to 36622 (see Table 8). While 
this reduction may seem significant, it contributes to enhancing the 
quality and reliability of the remaining data by eliminating potential 
outliers that could introduce bias into the analysis. Furthermore, after 
the outlier elimination, we observed that the distributions of the pa-
rameters tended to converge towards a Gaussian distribution with a 
slight skewness. This helps feature scaling, which is beneficial for the 
convergence of machine learning (ML) algorithms. 

Table 5 
Summary of the climate data over last three years.  

Feature Unit Min Max Mean stDev Feature Unit Min Max Mean stDev 

T (mean) Co 2.13 17.88 10.31 1.40 Prec (mean) mm 0.01 0.27 0.07 0.03 
T (stDev) Co 2.79 11.74 6.72 0.58 Prec (sum) mm 19.17 538.37 133.34 65.38  

Table 6 
Summary of the terrain data.  

Feature Unit Min Max Mean stDev Feature Unit Min Max Mean stDev 

elevation m 0 1721.00 531.77 338.83 hillshade – 107.00 251.00 179.88 7.78 
Aspect – 0 36.00 2.74 2.21 TWI – − 4.41 18.06 − 0.10 2.91 
Slope degree 0 355.00 144.84 106.21        
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3.1.3. Feature selection 
In our study, feature selection was performed using linear correlation 

analysis, which allows us to understand the influence of individual pa-
rameters and their linear interactions, namely, Pearson correlation co-
efficient (Benesty et al., 2009). We assessed the correlation among all 
the features within the dataset. During the feature elimination process, 
we focused on highly correlated features. Specifically, we identified 
features with an absolute correlation coefficient greater than 0.9. From 
this subset of highly correlated features, we retained the one that 
exhibited a strong correlation with the target parameter (SOC), and 
removed the others. By considering the correlation between features, we 
aimed to identify the most relevant and informative features for our 
modeling purposes. This approach helps to reduce the dimensionality of 
the dataset and select the features that contribute the most to predicting 
SOC levels. 

3.2. Model development 

3.2.1. Algorithms 
To map SOC using satellite data, we evaluated multiple algorithms 

that are used for SOC mapping using remote sensing data, each offering 
unique characteristics and advantages (Ayoubi et al., 2011; Ye et al., 
2021; Wang et al., 2016; Kim and Grunwald, 2016). The following al-
gorithms, that are implemented in scikit-learn package (Pedregosa et al., 
2011) were tested in our study: 

LGBM (Light Gradient Boosting Machine): LGBM is a gradient 
boosting framework that utilizes tree-based learning algorithms. It is 
known for its efficient training and prediction capabilities. LGBM is 
based on histogram-based algorithms and supports parallel computing, 
making it suitable for handling large-scale data efficiently. It offers a 
wide range of hyperparameters that can be customized to optimize 
performance (Ke et al., 2017). 

RF (Random Forest): RF is an ensemble learning method that 
combines multiple decision trees to make predictions. By aggregating 
the outcomes of several models, RF improves accuracy and robustness. It 
also provides the ability to assess the importance of features in the data, 
facilitating the feature selection process (Breiman, 2001). 

MLP (Multi-Layer Perceptron): MLP is a type of artificial neural 
network that consists of multiple layers of interconnected neurons. It can 
learn complex patterns in the data and make predictions through feed- 
forward propagation. MLP models can be trained with or without 
back-propagation to optimize their performance (Gardner and Dorling, 
1998). 

These algorithms provide diverse modeling approaches, each with its 
own strengths in capturing the intricate relationships between several 
features and SOC levels. Through a thorough assessment of these algo-
rithms, our objective is to identify the model that can accurately explain 
the variations observed in the features with the highest level of accuracy 
and use that model for the next steps. This assessment involves rigorous 
evaluation and comparison of the algorithms’ performance using 

Table 7 
Summary of the low-resolution soil-texture data.  

Feature Unit Min Max Mean stDev Feature Unit Min Max Mean stDev 

Clay % 3.50 64.00 21.88 7.41 Sand % 2.00 89.70 44.12 17.40 
Silt % 5.10 80.30 34.00 12.04 Bulk Density kg/m3 800 1580 1248 102  

Fig. 4. Applied process chain for the SOC model training and prediction.  

Table 8 
Summary of the ground data after each pre-processing step.  

Name Unit Original Sample 
Count 

Temporal 
Limitation 

Outlier 
Elimination 

ITACyL % 21782 20336 20225 
LUFA Nord- 

West 
% 16888 4876 4571 

LUCAS g/ 
kg 

8551 7814 6962 

NABODAT % 3185 2443 1933 
OpenAgrar g/ 

kg 
2075 1859 1624 

ISRIC % 1667 1439 1211 
ISMN % 110 110 96 
Total  54258 48877 36622  
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appropriate metrics and validation techniques. 

3.2.2. Data split 
The data split step in ML model development is a critical stage for 

assessing the model’s performance and its ability to generalize to new, 
unseen data. This step involves dividing the dataset into training and 
validation sets. The training set typically accounts for 80 % of the 
dataset and is used to train the model. During this process, the model 
learns the underlying relationship between the input features and the 
target SOC by minimizing the prediction errors, consequently improving 
its ability to make accurate predictions. 

On the other hand, the validation set plays a crucial role in inde-
pendently evaluating the model’s performance. It consists of the 
remaining 20 % of the data and should be completely independent of the 
training sets. This ensures that the model has not been exposed to the 
validation points during the training process, allowing for an unbiased 
assessment of its predictive capabilities. By evaluating the model’s 
performance on unseen data, we can gauge its ability to generalize and 
make reliable predictions under unknown conditions. 

3.2.3. Hyperparameter optimization 
Hyperparameter optimization plays a crucial role in ML model 

development as it involves finding the best combination of hyper-
parameters that maximize the model’s performance for a given dataset. 
Hyperparameters are configuration settings that are not learned from 
the data but must be set manually. 

In this study, hyperparameter optimization is performed using the 
Hyperopt package (Bergstra et al., 2013). It is a widely used Python li-
brary that offers a flexible and efficient framework for hyperparameter 
tuning. It incorporates Bayesian optimization algorithms, which itera-
tively explore the hyperparameter space to find the optimal configura-
tion by specifying the objective function to be optimized and controlling 
the optimization process. It automates the search for the best hyper-
parameters by intelligently selecting new configurations to evaluate 
based on the results of previous evaluations. This iterative process 
continues until an optimal configuration is found that maximizes the 
model’s performance on the validation data. 

In this study, we focus on the optimization of the hyperparameters, 
including learning rate, maximum depth, and bin size, to minimize the 
validation error between the measured and the estimated values and 
maximize the coefficient of determination. 

3.3. Selection of the best-performing model 

To ensure high predictive accuracy, three previously described ML 
algorithms were evaluated and compared in this study, namely LGBM, 
RF, and MLP. The selection of the final model was based on the com-
parison of their validation scores. To assess the accuracy of the models, 
two metrics were employed: Mean Absolute Percent Error (MAPE) and 
the coefficient of determination (R2). 

MAPE measures the average percentage difference between the 
predicted and observed values of SOC. It is calculated using the 
following equation (1), where n is the number of samples. 

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
Predictedi − Measuredi

Measuredi

⃒
⃒
⃒
⃒ (1) 

The coefficient of determination, R2, measures how well the model 
explains the variance in the SOC values. It ranges from 0 to 1, with a 
higher value indicating a better model fit to the observed data. 

By comparing the MAPE scores of the different models, the algorithm 
that achieved the highest validation R2 and lowest MAPE was selected as 
the final model. A lower MAPE indicates a better fit between the pre-
dicted and actual values, indicating higher predictive accuracy and 
better model performance in capturing the variations in SOC levels. 

3.4. Output SOC map refinement and post-processing 

Different potential approaches can be considered to reduce the error 
and enhance the accuracy of the predictions: incorporating additional 
ground measurements for model training and applying a refinement 
process using ground measurements in a specific region of interest. 

The first option involves retraining the model with a substantial 
number of additional ground measurements to reduce the error. Given 
the complex nature of the SOC system in agricultural areas, this option 
can be costly and time-consuming. In addition, it would require financial 
resources to conduct field measurements and obtain accurate SOC 
values across various locations and conditions. 

The second option involves a refinement process using ground 
measurements in a specific region of interest. Instead of retraining the 
entire model, ground measurements can be selectively collected in the 
target region, and the predicted SOC map can be adjusted based on these 
measurements. This approach provides a more straightforward, more 
localized solution for achieving highly accurate SOC maps while 
empowering the first option of extending the dataset in the long term. 

3.4.1. Precision sampling 
In this study, we choose the second option by following the Precision 

Sampling approach (Yuzugullu et al., 2020) to refine the predicted SOC 
map, which was previously mentioned in Section 2.1.2. The process 
involves sampling each region of interest at multiple points based on the 
spectral-temporal heterogeneity of the soil observed in Sentinel-1 and 
Sentinel-2 images. This sampling strategy allows for a more targeted and 
representative collection of ground measurements. 

3.4.2. Post-processing 
A 2D interpolation technique with thin-plate spline (Bookstein, 

1989) was applied to the sampled SOC measurements to conduct the 
refinement process. Thin-plate spline interpolation is commonly used in 
geostatistics and spatial analysis to estimate values at unmeasured lo-
cations based on the values observed at sampled locations. It provides a 
smooth surface that captures the spatial variation of the feature of in-
terest. After the interpolation, a 3x3 smoothing window was applied to 
the interpolated SOC map. This smoothing process helps reduce noise 
and further enhances the spatial variation representation over the area 
of interest. The 3x3 window means that each pixel in the map is 
smoothed using the values of its neighboring pixels within a 3x3 grid, 
which corresponds to a 30mx30 m area for the Sentinel satellites. 

The predicted SOC map can be adjusted and refined based on the 
variation of SOC in the field and error observed at the Precision Sam-
pling locations by applying the refinement process using interpolation 
and smoothing techniques. As we apply a 2D interpolation for the 
refinement, the quality of the output depends on the location of the 
Precision Sampling locations, the quality of the ground measurements, 
and the prediction accuracy of the model. Combining these three factors, 
this approach aims to improve the spatial accuracy and representation of 
SOC content across the study area, providing a more reliable and 
detailed SOC map. 

4. Results and discussion 

This section initially presents the data insights where the correlations 
between the SOC and related features that are remotely sensed or ob-
tained from available datasets are investigated. This provides a better 
understanding of the relationships between the features and their po-
tential influence on SOC and the prediction of it. Next, the model results 
are presented for different validation cases with and without refinement 
via ground measurements. Additionally, case studies from Poland, 
Switzerland, and France, which have dense sampling, are provided to 
illustrate how the model’s results can be applied in different 
geographical contexts. Lastly, the practical implications of the findings 
are discussed. The insights gained from the model can have real-world 
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applications, particularly in the context of soil management and carbon 
sequestration efforts. 

4.1. Data insight 

The linear relationships between the target parameter, SOC, and the 
selected features are represented in Fig. 5. Upon examining the corre-
lations, shown in Fig. 5, it is evident that no single feature exhibits a 
strong (≥ 0.5) negative or positive correlation with SOC. For example, 
the Sentinel-1 features, which capture the physical and dielectric 
properties of the soil, do not show a significant correlation with SOC, as 
shown in a case study conducted in Iran (Shafizadeh-Moghadam et al., 
2022). On the other hand, in our study, the Sentinel-2 features, partic-
ularly the temporal mean values, showed a negative correlation ranging 
from 0.2 to 0.4, consistent with findings from previous investigations 
(Gholizadeh et al., 2018; Castaldi et al., 2023). In contrast, the temporal 
standard deviation derived from Sentinel-2 features showed only a weak 
positive correlation or no correlation at all with SOC. 

Turning to the terrain-driven features, none of the parameters dis-
played high correlations (≥ 0.5), with SOC except for elevation. In the 
collected data, the elevation exhibited a relatively strong negative cor-
relation with SOC. However, this finding contradicts the literature, 
where researchers have found a positive correlation between elevation 
and SOC (Dieleman et al., 2013; Tsui et al., 2013). On the other hand, 

our data’s negative correlation, which was previously also observed in 
(Aksoy et al., 2016), explained considering the SOC enhancing effect of 
shallow groundwater, which is mainly found in the lowlands with low 
elevation (Poeplau et al., 2020b) and likely to the much larger extend of 
the dataset compared to the previous studies (Dieleman et al., 2013; Tsui 
et al., 2013) in a different climate introducing a bias towards lower 
regions because of their larger spatial extent in Europe. Another reason 
can be climate conditions, where higher altitudes have lower tempera-
tures and precipitation, leading to lower soil respiration and crop resi-
dues, resulting in more SOC at lowlands (Jiang et al., 2013; Badraghi 
et al., 2021). 

Regarding soil structure, there is a relatively strong negative corre-
lation between bulk density and SOC. This finding can be attributed to 
the fact that SOC is reducing the bulk density of soils by improving their 
structure (De Vos et al., 2005; Zeraatpisheh et al., 2021). The ability of 
soil to infiltrate water is influenced by bulk density, and plants rely on 
the soil solution to uptake nutrients. Therefore, areas with high bulk 
density may have limited water availability, impacting plant nutrient 
uptake, including carbon. Consequently, soils with high bulk density are 
expected to have lower SOC content (Sakin, 2012; Gupta and Larson, 
1979; Adams, 1973). 

When examining the inter-correlations between features, several 
noteworthy observations emerge. Firstly, there is a strong positive cor-
relation between the Sentinel-1 and the Sentinel-2 features, depending 

Fig. 5. Correlation between SOC and the features, n = 36622. In the color-coded heatmap, red indicates a strong negative correlation, green indicates a strong 
positive correlation, and yellow represents a weak or no correlation between the features. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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on the satellite. This high correlation leads to eliminating multiple 
Sentinel-1 and Sentinel-2 features during the feature reduction stage of 
the pre-processing before the model training stage. Moving on to the 
terrain-driven features, there is a strong positive correlation between 
slope and hillshade, which is expected since the hillshade is calculated 
based on the slope and aspect of the terrain. In terms of soil texture, all 
three features (clay, silt, and sand) exhibit high correlations due to their 
sum totaling 100 %. Lastly, the climate features demonstrate a corre-
lation greater than 0.95 between the temporal mean and standard de-
viation of precipitation, indicating a close relationship between the 
mean and variability of precipitation values. 

4.2. Model results 

This section provides an overview of the modeling results of different 
machine learning frameworks and identifies the best-performing model. 
The results are categorized into four subsections: internal model 
assessment (4.2.1), validation without refinement (4.2.2), validation 
with refinement (4.2.3), and validation with refinement on densely 
sampled fields (4.2.4). 

By assessing the model’s performance on both the validation data 
from the data sources and the separate validation data collected ac-
cording to Precision Sampling and grid sampling, we can accurately 
gauge the model’s effectiveness in predicting SOC content. This 
comprehensive evaluation approach ensures that the model’s perfor-
mance is thoroughly assessed and provides valuable insights into its 
predictive capabilities. 

4.2.1. Internal model assessment 
We conduct a comparative analysis of three different modeling 

frameworks discussed in Section 3.2.1, whose performances are sum-
marized in Fig. 6. The scatter plots in the matrix structure allow for a 
visual comparison of the performance of the different modeling frame-
works across various evaluation metrics. They also provide a clear 
representation of the relationships between the predicted values and the 
actual SOC values for each model and data set. 

We selected the model for further work based on the R2 and MAPE 
values of the validation dataset. Upon examining the training column of 
Fig. 6, we can observe that the LGBM model achieves the highest R2 

value of 0.73, indicating that it explains 73 % of the variation in SOC 
using the given features. The RF and MLP models follow with slightly 
lower R2 values. A similar ranking is observed when considering the 
MAPE values, where the LGBM model outperforms the other models. 

However, it is essential to note that an R2 value of 0.73 indicates that 
there is still a substantial portion of the variation in SOC that the model 
does not explain. This could be due to factors such as unaccounted 
features, measurement errors, or inherent variability in SOC content that 
cannot be captured solely by the selected features. Additionally, the 
scatter plots reveal a tendency of the models to overestimate SOC below 
1.5 % and underestimate it above 2 % content. These biases in estima-
tion could be attributed to the complexities of the relationship between 
the input features and SOC, as well as the limitations of the modeling 
frameworks that tend to predict towards the mean. 

Comparing the performance of LGBM between the training (R2 =

0.73) and validation sets (R2 = 0.54), we observe a difference in R2 

values of 0.19. This difference suggests a slight occurrence of overfitting, 
where the model may have fit the training data too closely and may not 

Fig. 6. Scatter plots between measured and predicted SOC values using different frameworks for their training, testing, and validation data sets. Each column in the 
figure represents a different modeling framework, while each row represents the evaluation results for training and validation data sets. 
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generalize well to unseen data. However, considering the difference in 
sample sizes between the training and validation sets, as well as the size 
of the complete dataset, this difference in performance can be deemed 
acceptable. 

Agricultural management practices, such as crop rotations, cover 
crops, tillage practices, and nutrient management, play a significant role 
in the spatial and temporal variations of SOC (Wiesmeier et al., 2013; 
Hoyle et al., 2016), making it complex to be captured by satellite data 
alone. At the same time, the spectral information is obtained for the 
surface of the soil, but soil samples comprise down to 30 cm depth at 
maximum, causing a potential mismatch of features and the target. 
Moreover, SOC shows a higher variability also at a small scale that might 
be possible to resolve using satellite data (Poeplau et al., 2022). The 
temporal variability of SOC and the timing misalignment between 
ground measurements and satellite data can introduce additional un-
certainties in the predictions (Rochette et al., 2011). Measurement un-
certainties arising from different laboratories, equipment, sampling 
devices and sampling protocols can also impact the accuracy of the 
model predictions (Jandl et al., 2014). 

Given these complexities and limitations, it is crucial to interpret the 
model’s performance in the context of the specific challenges associated 
with SOC prediction in agricultural systems. Continued research and 
refinement of modeling approaches, as well as the integration of addi-
tional contextual information, can further improve the accuracy and 
robustness of SOC predictions. 

In the validation plot of the LGBM model, we observe an R2 value of 
0.54 and a MAPE value of 32 percent. These results indicate that the 
LGBM model, trained using the given features, can predict the SOC 
content at the pixel level with moderate success. However, it is impor-
tant to consider the spatial range of the SOC measurements, which 
encompass different climates, soil textures, spectral properties, and 
cultivation practices in Europe. These factors introduce variability and 
complexity into the prediction task. 

The MAPE value of 32 % indicates a relatively high error rate when it 
comes to estimating changes in SOC stocks, for example, as part of 
carbon sequestration schemes. Carbon stock change calculations typi-
cally require multiple measurements over time, and the mean SOC 
values should have minimal overlap with the associated errors to ensure 
a reliable assessment. In this context, incorporating ground measure-
ments can be beneficial or even necessary to refine the predictions at the 
field level. Ground measurements provide direct and more accurate 
information about SOC content, and integrating them into the prediction 
process can improve their accuracy and reliability. 

4.2.2. Validation without precision sampling 
In this research section, the previously trained LGBM model was 

tested on a separate set of points where SOC measurements were 
collected for Precision Sampling calibration from different fields and 
validation without performing any prior refinement. This section serves 
as independent validation, similar to the one conducted in Section 4.2.1, 
but using recent data collected between 2019 and 2023. The results in 
Fig. 7 demonstrate similar findings to the validation conducted within 
internal model evaluations, with a dataset size of 1725 ground 
measurements. 

By evaluating the performance of the LGBM model on this separate 
validation dataset, we can assess its generalization ability and robust-
ness in predicting SOC content in recent and unseen locations. The 
scatter plots in Fig. 7 provide insights into the relationship between the 
predicted SOC values and the actual measurements at these validation 
points. 

The R2 value of 0.49 obtained from the validation data set indicates 
that the LGBM model explains approximately 49 % of the variation in 
SOC using the given features. While this value is lower than the R2 value 
obtained from the internal model assessment, it still indicates a mod-
erate performance level in predicting SOC content at the pixel level. 
However, it is essential to consider the spatial and temporal range of the 

validation data set, which encompasses various environmental condi-
tions, soil types, and agricultural practices. The MAPE value of 21 % 
suggests that there is still a relatively high error level in the predictions. 
Similar to the previous validation, the under/over-estimation trend can 
also be observed in this dataset, with a central tendency around 1.1 % 
SOC content. 

These results further support the model’s ability to predict SOC 
content at the pixel level but also highlight the need for refinement. The 
MAPE value of 21 percent indicates that there is still room for 
improvement in the accuracy of the predictions. Incorporating addi-
tional ground measurements to retrain the model and refining the pre-
diction map can help mitigate the under/over-estimation tendencies and 
enhance the accuracy of the SOC predictions for SOC content. 

4.2.3. Validation with precision sampling 
The validation conducted in Sections 4.2.1 and 4.2.2 indicates that 

there is room for improvement in achieving accurate SOC maps. 
Fig. 8 presents the calibration and validation point results from the 

dataset described in Section 2.1.2, in which the Precision Sampling 
measurements of SOC were used to adjust the predicted SOC map via 
thin-plate spline. It is important to note that these 225 validation points 
in the agricultural fields are located at least 30 m from the calibration 
points, ensuring their independence. By examining the scatter plots in 
Fig. 8, we can observe the performance of the refined SOC map at the 
calibration (left) and validation (right) points. 

The refined SOC map achieves a high R2 value of 0.93 at the cali-
bration points, indicating a strong correlation between the predicted 
SOC values and the ground truth measurements. The low MAPE value of 
6.92 % suggests a relatively small average difference between the pre-
dicted and actual SOC values at the calibration points. These results 
demonstrate the effectiveness of the refinement process in accurately 
estimating the SOC content using the interpolation and smoothing 
techniques. 

Moving to the validation points, the refined SOC map maintains a 
high level of performance with an R2 value of 0.91. This indicates a good 
correlation between the predicted SOC values and the ground truth 
measurements at the validation points, demonstrating the generaliz-
ability of the refined map. The slightly lower MAPE value of 6.5 % at the 
validation points than the calibration points suggests (6.9 %) a slightly 
larger average prediction error. However, this MAPE value is still 
significantly lower than the initial MAPE of 21 % observed without 
incorporating ground measurements. 

The significant reduction in MAPE from 21 % (without refinement) 
to 6.5 % (with refinement) highlights the value of incorporating ground 
measurements, particularly with the Precision Sampling approach, in 
improving the accuracy of the SOC map. Moreover, achieving these 

Fig. 7. Correlation between measured and predicted SOC values on the vali-
dation data without refinement. 
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results at a spatial resolution of 10 m further enhances the utility of the 
refined SOC map for detailed carbon sequestration assessments and land 
management decisions while having the field sampling cost as a finan-
cial drawback of the proposed approach. 

4.2.4. Validation with precision sampling on densely sampled fields 
This validation section evaluated the SOC prediction model on four 

densely sampled fields presented in Fig. 9, one in Poland (a), one in 
Switzerland (b), and two in France (c&d). This evaluation allows for a 
higher-resolution assessment of the model’s performance and provides 
insights into the spatial variability of SOC within the fields. 

Fig. 9(a) presents the results for the field located in Poland, which is 
cultivated by Top Farms “Głubczyce”, having a total area of 127 ha. The 
data was made available by Polish companies: Top Farms “Głubczyce” 
sp. z o. o. and QZ-Solutions sp. z o.o. The left sub-figure shows the grid 
sampling results, where the field was sampled at a grid size of 25 m. The 
grid sampling results are visualized as a map rasterized to a resolution of 
10x10 m. It is important to note a gap in the sampling coverage and a 
misreported single-sampled value in the southern part of the field. The 
middle sub-figure displays the model prediction refined with the Pre-
cision Sampling approach and the corresponding sampling locations. 
The Precision Sampling locations are spread across the field, which 
provides representative ground measurements for the refinement pro-
cess. The right sub-figure presents a scatter plot at the pixel level, 
comparing the ground measurements with the corresponding pre-
dictions from the refined SOC map. Each point in the scatter plot rep-
resents a pixel in the field where both the ground measurement and the 
predicted SOC value are available. By examining the scatter plot, we can 
assess the accuracy of the refined SOC map in capturing the variability of 
the ground measurements. 

The scatter plot indicates an R2 value of 0.52 and a MAPE of 10.6 % 
for the refined SOC map in capturing the variability of the ground 
measurements. The R2 value of 0.52 suggests a moderate correlation 
between the predicted SOC values and the ground truth measurements. 
The MAPE value of 10.6 % indicates the average difference between the 
predicted and actual SOC values at the pixel level. It is worth noting that 
the calculated MAPE in this densely sampled field is slightly higher than 
the one reported in Section 4.2.3 by a difference of 4 %. This discrepancy 
may arise due to the field’s specific characteristics, spatial variability, 
and the density and distribution of the ground measurements in the 
sampling process. 

We can observe discrete ground measurements in the scatter plot 
shown in the right sub-plot of Fig. 9(a). The discrete nature of the ground 
measurements is because the SOC values provided by the laboratory 
reports are rounded to one decimal point. Unfortunately, without having 
access to the actual measurements with two decimal points, which 
corresponds to a change up to 10 % of the reported value, it is impossible 

to determine whether the accuracy of the model would have been higher 
or lower in this specific validation case. The discrete nature of the 
ground measurements limits our ability to assess the model’s perfor-
mance at a finer scale and evaluate its agreement with the predicted 
values. 

The second field is located in Switzerland and was sampled within 
the STEROPES project, which Agroscope leads. Fig. 9(b) shows the re-
sults for the corresponding field, having a total area of 4.2 ha. The left 
sub-figure shows the sampling locations with a color coding for the 
measured SOC value. The middle sub-figure displays the model predic-
tion refined with the Precision Sampling approach and the corre-
sponding sampling locations. The right sub-figure presents a scatter plot 
at the pixel level, comparing the ground measurements with the related 
predictions from the refined SOC map. Each point in the scatter plot 
represents a pixel in the field where both the ground measurement and 
the predicted SOC value are available. By examining the scatter plot, we 
can assess the accuracy of the refined SOC map in capturing the vari-
ability of the ground measurements. 

The scatter plot indicates an R2 value of 0.76 and a MAPE of 2.9 % for 
the refined SOC map in capturing the variability of the ground mea-
surements. The R2 value of 0.76 suggests a high correlation between the 
predicted SOC values and the ground truth measurements. The MAPE 
value of 2.9 % indicates the average difference between the predicted 
and actual SOC values at the pixel level. This finding of 2.9 % is higher 
than the one calculated in validation with adjustment (6.5 %) and the 
field located in Poland (10.6 %), possibly due to its smaller size. 

The third and fourth fields are located north of Paris, France. The 
data was made available by Sandricourt Estate. Fig. 9(c) and (d) show 
the results for the corresponding fields, having an area of 7.5 and 14 ha, 
respectively. The scatter plot indicates R2 values of 0.95 and 0.85 and 
MAPE values of 7.4 % and 6.4 % for the refined SOC maps in capturing 
the variability of the ground measurements. The R2 values greater than 
0.85 suggest a strong correlation between the predicted SOC values and 
the ground truth measurements. These MAPE findings of around 7 % 
align with the MAPE values calculated in validation with adjustment 
(6.5 %) and less than the field located in Poland (10.6 %), possibly due 
to their smaller sizes. 

4.3. Practical implications 

The assessment of carbon sequestration is essential for the carbon 
market, where farmers can be rewarded for the SOC that they sequester. 
Monitoring requires calculating SOC stock changes over time by 
considering the accrual or loss of carbon from the soil. Two main 
methodologies exist for this purpose, namely measure-remeasure and 
carbon-balance models. The measure-remeasure approach requires 
multiple measurements in time and has the highest assessment accuracy 

Fig. 8. Correlation between measured and predicted SOC values on the validation data with refinement.  
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Fig. 9. Validation SOC data collected from densely sampled fields located in Poland, Switzerland, and France. In each sub-figure, the order of the visuals from left to 
right are measurement map, predicted map, and validation plot, respectively. 
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as it relies on the ground measurements directly. On the other hand, 
carbon-balance models require management practices and some inputs 
such as soil type, climate, and crop information. At higher levels, they 
use temporal trends of indices such as leaf area index for the forecast of 
SOC stock. The models, such as LPJ-Guess (Smith, 2001) and RothC 
(Coleman and Jenkinson, 1996), are proven to make reliable estimations 
by simulating the factors in an ecosystem within given boundaries if 
calibrated correctly. The downside of such models is that they require 
many inputs to forecast the SOC stock, which leads to a high degree of 
uncertainty. At the same time, it is costly to evaluate them at a fine 
spatial resolution. 

For an accurate SOC sequestration assessment, the method that 
provides the lowest uncertainty is the measure-remeasure approach, 
which aligns perfectly with this study’s ground measurement supported 
SOC mapping approach. The high-resolution SOC maps generated 
through the presented framework can serve as a baseline and status map 
needed for a measure-remeasure method. SOC stock map calculation 
requires SOC content, bulk density, and stone content, where SOC can be 
calculated by the presented approach. A similar model can be developed 
for the bulk density, and generated maps can be improved using ground 
measurements at the Precision Sampling locations. Of course, fast and 
largely automatized measurement of soil density along with the soil 
sampling is a prerequisite for this. Subsequently, the SOC content and 
soil density maps can be combined to derive SOC stocks and related 
maps. To implement the measure-remeasure approach, the initial step 
would be to create a baseline SOC stock map using the model and 
refinement via Precision Sampling. This map represents the spatial 
distribution of SOC stock within the agricultural field at a specific point 
in time. After a certain time interval, a second measurement of SOC 
stock content is taken across the same field at the exact locations. This 
measurement captures the current SOC stock status of the soil. Using the 
same set of features and the trained model, a new SOC stock map rep-
resents the current spatial distribution of SOC stock. By comparing the 
baseline and status SOC stock maps, the changes in SOC stock can be 
calculated for different areas within the agricultural field. This infor-
mation is crucial for certification and monitoring purposes. Integrating 
the proposed SOC prediction framework into the measure-remeasure 
method offers several advantages. It provides a cost-effective and effi-
cient way to estimate the spatial variation of SOC at a high resolution, 
allowing for more accurate assessments of SOC stock changes. 

The validation of the measure-remeasure method relies on accurate 
quantification of the uncertainty ensuring conservative accounting and 
minimizing the risk of overestimation. The uncertainty information ac-
counts for various sources of uncertainty, including measurement errors, 
sampling variability, and model error. These uncertainties are crucial for 
calculating the discount factor in carbon crediting schemes. The dis-
count factor is typically calculated using statistical methods to quantify 
the confidence intervals (CI), standard errors, or other statistical mea-
sures of uncertainty associated with the SOC stock measurements. The 
discount factor is then applied to adjust the credited SOC stock, reducing 
it by a certain percentage to reflect the level of uncertainty. Table 9 
shows the summary of validation datasets used in this research with 50 
%, 70 %, 80 %, and 90 % CI. 

The agreement between the cases with and without refinement using 
ground measurements via Precision Sampling, as shown in Table 9, is 
indeed an important finding. It indicates that including ground mea-
surements through Precision Sampling significantly reduces the error 
and uncertainty associated with the SOC stock estimation. Comparing 
cases (b) and (c) for the 90 % confidence interval (CI), which is 
commonly used in carbon crediting programs, we observe a substantial 
reduction in error by 35.3 % when ground measurements are incorpo-
rated. This highlights the value of integrating ground measurements into 
the modeling process, leading to more accurate and reliable estimates of 
SOC. 

Furthermore, the strong similarity between the 90 % CI values in 
cases (c) and (d), where Precision Sampling was applied, provides 

statistical support for the validity of the proposed model and the effec-
tiveness of Precision Sampling. This suggests that the model and 
refinement process are robust and consistent, as the results remain stable 
even with different datasets. This has significant implications for carbon 
crediting programs, as it ensures more accurate accounting and better 
quantifying carbon sequestration efforts. 

5. Conclusion 

This research focuses on developing and implementing a novel al-
gorithm for predicting soil organic carbon (SOC) content in European 
soils to assess field scale SOC changes. The algorithm utilizes satellite, 
climate, terrain, and soil texture data to generate accurate predictions of 
SOC levels. Satellite data, such as multispectral and radar imagery, 
provide information about soils’ spectral properties and surface char-
acteristics. This data is combined with climate data, including temper-
ature and precipitation features, and terrain data, which includes 
elevation, slope, aspect, and hillshade information. Additionally, soil 
texture data, which describes the composition of the soil in terms of its 
sand, silt, and clay content, is incorporated into the algorithm. By 
integrating these diverse data sets, the algorithm can capture and 
analyze the complex relationships between environmental features and 
SOC content. The Light Gradient Boosting Machine algorithm is trained 
using a data set of measured SOC values from various European 
locations. 

The outcomes of this study include a prediction model that can 
generate accurate estimates of SOC content at the European scale 
average percentage error below 10 %. In addition, the algorithm has 
been validated using independent data sets and has demonstrated reli-
able performance in predicting SOC levels across different soil types and 
geographic regions in Europe with and without the refinement using the 
ground measurements. 

Ultimately, the developed framework allows the estimation of SOC 
using a model with a relatively low number of features and ground 
measurements gathered via precision sampling. Including ground mea-
surements by support sampling enhanced the overall accuracy signifi-
cantly. This provides predictions with low error, which had significant 
implications for soil management, land use planning, and environmental 
research. Accurate predictions of SOC content enable better decision- 
making regarding soil health, carbon sequestration, and sustainable 
land management practices. By understanding the spatial distribution of 
SOC across agricultural fields, stakeholders can make informed choices 
to optimize agricultural practices, enhance carbon sequestration efforts, 
and effectively mitigate climate change impacts. 

In the subsequent phase of this research, our focus will shift towards 
extending the predictive capabilities to soil texture mapping, employing 
a comparable and robust approach. Predicting soil texture at large scale 
has got lower errors than for predicting SOC content (Gebauer et al., 

Table 9 
MAPE values of different CIs based on the validation datasets presented in this 
research.  

Dataset Sample 
Size 

50 % 
CI 

70 % 
CI 

80 % 
CI 

90 % 
CI 

(a) Internal Validation 7325 31.5 38.5 49.4 71.2 
(b) Validation without 

Precision Sampling 
1725 21.0 40.3 48.0 56.0 

(c) Validation with Precision 
Sampling 

225 6.0 11.5 16.4 20.7 

(d) Validation Dense 
Sampling: Poland 

9032 10.6 14.1 17.6 21.7 

(e) Validation Dense 
Sampling: Switzerland 

33 2.6 3.1 3.9 7.8 

(f) Validation Dense 
Sampling: France #1 

32 7.4 8.7 10.9 13.6 

(g) Validation Dense 
Sampling: France #2 

23 6.4 8.2 9.3 10.1  
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2022). This expansion holds the potential to support agricultural man-
agement strategies and enhance the precision of soil moisture mapping. 
By seamlessly integrating these additional dimensions, our ongoing ef-
forts aim to provide a comprehensive toolkit for stakeholders in agri-
culture and environmental factoring, facilitating better and more 
nuanced decision-making and contributing to the sustainable and effi-
cient management of agricultural landscapes.URL https://www.scienc 
edirect.com/science/article/pii/S0016706112002133. 

CRediT authorship contribution statement 

Onur Yuzugullu: Conceptualization, Data curation, Formal anal-
ysis, Investigation, Methodology, Project administration, Resources, 
Software, Validation, Visualization, Writing – original draft, Writing – 
review & editing. Noura Fajraoui: Conceptualization, Data curation, 
Formal analysis, Investigation, Methodology, Resources, Software, 
Validation, Visualization, Writing – original draft, Writing – review & 
editing. Axel Don: Data curation, Resources, Supervision, Writing – 
original draft, Writing – review & editing. Frank Liebisch: Conceptu-
alization, Data curation, Methodology, Project administration, Re-
sources, Supervision, Writing – original draft, Writing – review & 
editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The authors do not have permission to share data. 

Acknowledgment 

The authors would like to thank Rodrigo Principe, Witra Tahjudil, 
and Utku Berkalp Unalan for setting up the Google Earth Engine 
framework to download the satellite data and Rene Dechow for his help 
downloading model data for the OpenAgrar measurements and Trupthi 
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