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Abstract
Nutrient deficiencies are one of the main causes of significant reductions in commercial crop production by affecting asso-
ciated growth factors. Proper plant nutrition is crucial for crop quality and yield therefore, early and objective detection of 
nutrient deficiency is required. Recent literature has explored the real-time monitoring of plant electrical signal, called elec-
trophysiology, applied on tomato crop cultivated in greenhouse. This sensor allows to identify the stressed state of a plant in 
the presence of different biotic and abiotic stressors by employing machine learning techniques. The aim of this study was 
to evaluate the potential of electrophysiology signal recordings acquired from tomato plants growing in a production green-
house environment, to detect the stress of a plant triggered by the deficiency of several main nutrients. Based on a previously 
proposed workflow consisting of continuous acquisition of electrical signal then application of machine learning techniques, 
the minimum signal features was evaluated. This study presents classification models that are able to distinguish the plant’s 
stressed state with good accuracy, namely 78.5% for manganese, 78.1% for iron, 89.6% for nitrogen, and 78.1% for calcium 
deficiency, and therefore suggests a novel path to detect nutrient deficiencies at an early stage. This could constitute a novel 
practical tool to help and assist farmers in nutrition management.

Keywords Plant electrophysiology · Nutrient deficiency · Crop monitoring · Classification of plant’s state · Machine 
learning · Discriminative features

1 Introduction

The mineral nutrition of plants is based on the absorption 
of inorganic ions from the soil. Mineral nutrients are then 
transported and distributed to aerial organs such as leaves 

and fruits via dedicated transporters and/or ion channels. 
Nutrients play diverse and critical roles in maintaining plant 
growth and development (Welch and Shuman 1995; Mer-
chant 2010). However, the availability of these essential ions 
fluctuates in time and space due to changing environmental 
conditions. To cope with this constraint, plants have a wide 
range of adaptive responses triggered by sensing systems 
that perceive the external availability of mineral nutrients in 
the soil. Plants are able to reprogram and adjust their metab-
olism, growth, and development to adapt and survive. Such 
reactions result in changes in the underlying physiological 
process that are portrayed among others, by variations in the 
electrical potential (EP) of the plant (Volkov and Ranatunga 
2006). Indeed, electrical signaling is a universal biologi-
cal process to transmit information in the life kingdom. In 
plants, a rapid electrical response is observed as a reaction 
to external stimuli, either biotic or abiotic. Therefore, the 
analysis of plant electrical signals, called electrophysiology, 
has strong potential for detecting changes in the plant state 
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by identifying patterns that are related to the applied stimuli, 
namely nutrient deficiencies.

Monitoring plant health is a daily routine for growers and 
farmers to adjust their management and respond effectively 
and in a timely way to abiotic and biotic challenges, thus pre-
venting crop loss and ensuring good quality production. Fur-
thermore, climate changes are disrupting predictable natural 
events and growers are responding by closer monitoring of 
their growing ecosystems. For instance, nutrient availability 
is one of several factors that have a significant impact on 
plant fitness and consequently lead to losses in crop yield in 
both qualitative and quantitative aspects (Morgan and Con-
nolly 2013; Kalaji et al. 2017). Changes in the plant appear-
ance, such as the color and the shape of the leaves, can indi-
cate that the plant is suffering from a nutrient deficiency. 
Visual symptoms of nutrient deficiencies vary depending 
on the required amount, their biological role, the mobility 
within the plant, etc. (de Bang et al. 2021). However, for 
farmers, diagnosis using visual inspection can, therefore, 
only occur once the stress is at an advanced stage. In addi-
tion, some nutrient deficiencies share common symptoms 
(Kumar et al. 2021). Hence, to optimize the crop production, 
early and automated detection of a nutrient deficiency is 
needed in everyday agricultural practice.

Advances in digital technology nowadays allow remote 
sensing in real-time for precision agriculture. Many sen-
sors are today deployed in the field to measure environ-
mental factors such as weather conditions, soil conditions, 
and insect populations, but sensors that directly target a 
plant’s physiological state are scarce. There is a need 
for sensors that can detect early indices of plant stress. 
Remote spectral imaging is a novel imaging method to 
monitor early visual signs of phenotypic traits of plants 
(Mishra et al. 2020). However, the appearance of these 
phenotypic traits is the result of physiological changes that 
are already happening in the plant in response to stress, 
thus providing less time to react. In this context, measur-
ing the electrical signal on agricultural crops could repre-
sent a worthy alternative in plants since electrical signals 
are known to occur within a second at the cellular level 
(Tran et al. 2018; Bouteau et al. 2020) and within a few 
seconds at the whole-plant level (Mousavi et al. 2013). At 
the whole-plant level, the sum of the electrical signal from 
cells is recorded as electrical potential. Electrical signals 
are known to play a central role in numerous physiologi-
cal processes and in systemic communication in plants 
(Fromm and Lautner 2007; Choi et al. 2016). It is the most 
efficient method for rapidly transferring information over 
long distances. These electrical potential variations have 
been confirmed in many agricultural plants such as cucum-
ber, pea, soybeans, cabbage, wheat, apricot, and tomato. 
Several studies in the current literature propose approaches 
based on machine learning techniques to identify patterns 

in plant electrophysiology signals related to an applica-
tion of different biotic (Simmi et al. 2020; Reissig et al. 
2021) and abiotic (Souza et al. 2017; Pereira et al. 2018) 
stressors. Nonetheless, most of these studies were done in 
a controlled environment, isolated from the surroundings’ 
electrical noise. Recent advances in plant electrophysiol-
ogy allow real-time measurement of plant’s electrical sig-
nal in regular greenhouse conditions i.e. outside a Faraday 
cage (Tran et al. 2019). Using a thin needle, the electri-
cal potential can be monitored for several weeks without 
affecting plant functions (Tran et al. 2019). It follows that 
the electrophysiological state can be deduced and could 
provide decision support to growers.

Electrophysiological sensors have been shown to moni-
tor instantaneously the electrical signal of plants responding 
to their environment (Najdenovska et al. 2021a; Tran and 
Camps 2021). With a pair of shielded electrodes inserted 
in the main stem, the electrical potential is monitored and 
recorded continuously at a high sample rate (500 Hz) via an 
electronics board isolated from surrounding noise. Moreo-
ver, based on such recordings, a workflow employing Gra-
dient Boosted Tree (GBT) algorithms on local signal fea-
tures, has also been proposed for classification of the state of 
tomato plants in the presence of contamination with spider 
mites (Najdenovska et al. 2021b). The resulting classifica-
tion model was able to distinguish the stressed state (spider 
mites presence) from the normal state with an accuracy of 
80%.

Because of its economic and nutritional aspects, tomato 
is the second most important vegetable crop next to potato 
cultivated for its fleshy fruit. It is grown in almost every 
country across the globe (FAOSTAT 2022). Therefore, the 
aim of this study was, by applying the proposed workflow for 
classification of electrophysiological signals, to evaluate the 
possibility of differentiating a tomato plant’s normal state 
from the stressed one caused by the lack of specific nutri-
ents. Amongst micronutrients, manganese (Mn) and iron 
(Fe) were chosen since it shares common visual symptoms at 
early stage, i.e. chlorosis of intercostal area of young leaves 
leading to difficult diagnosis. For macronutrient, nitrogen 
(N) and calcium (Ca) were selected in this study. Indeed, N 
is the nutrient needed in greatest abundance by plants since 
it is utilized for protein synthesis which is the plant “back-
bone” therefore essential for plant growth. Concerning Ca, 
it affects the fruits aspect with blossom-end rot if calcium is 
lacking for several days which represents major concerns for 
growers. Each of these nutrients were analyzed separately. 
Additionally, by comparing the signal features that most evi-
dently discriminate the plant state, eventual specificities in 
the information portrayed by the electrical plant response 
could be determined and identified to each of these deficits, 
thus allowing the identification of what sort of deficiency 
is occurring.
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2  Materials and methods

2.1  Experimental site and design

The experiment was conducted during the 2019 grow-
ing season in a greenhouse at Agroscope research station 
(Conthey, Switzerland). The compartment floor area meas-
ures 370  m2 and was equipped with technology compara-
ble to commercial greenhouses. Tomato plants (Solanum 
lycopersicum), variety Admiro (De Ruiter), grafted on 
Beaufort (De Ruiter) root stock were used in this study. 
This variety is specific for soilless cultivation with indeter-
mined growth allowing to harvest tomato during the whole 
season. Once the two first trusses are harvested, growth 
stage can be considered as constant with 13/15 leaves and 
7/8 trusses simultaneously at different maturation stage. 
Plants were grown in rockwool cubes, transplanted at the 
four-leaf stage, at the end of January 2019 on organic slabs 
composed of bark compost (35%), a peat substitute (30%), 
Coco peat (20%) and topsoil 15% (Substrate 127, Ricoter, 
CH), located on hanging and elevated gutters. Plants were 
cultivated with two-trusses with a planting density of 3.8 
trusses per  m2.

Fifteen independent tomato plants were used from April 
to September 2019 (4–9 months old, > 4 m high) for each 
four specific nutrient deficiency trials that were performed 
separately over the time resulting in 60 plants overall. 
For each trial, tomato plants were initially submitted to 
a period with full nutrient solution, considered a control 
period, followed by deprivation of specific nutrient until 
advanced stage of deficiency. Therefore, the duration of 
the trial varied between 2 weeks (for N deprivation) to 
5 weeks (for Mn deprivation) depending on the tested defi-
ciency. Irrigation water and nutrients were supplied with 
drippers operated by a valve. Manganese, iron, nitrogen, 
or calcium were specifically removed from nutrients pre-
mixed at the beginning of each deprivation experiment.

2.2  Electrophysiology

The electrical potential was recorded continuously 
throughout each deficiency trial lasting several days to 
weeks depending on the studied nutrient. Signal acquisi-
tion was monitored as previously described (Tran et al. 
2019) with the multi-channel PhytlSigns device (Vivent 
SA, Switzerland). The electrical potential was measured 
with custom-made electrodes, which consist in coaxial 
cable (2.79 mm diameter) and the center conductor (silver 
coated copper filament diameter < 0.2 mm) wire that was 
inserted into the main stem. Electrodes are fabricated from 
50-Ω impedance coaxial cable with an inner conductor of 

silver coated copper wire of diameter 0.5 mm. The outer 
conductor is a shielded copper braid with a waterproof 
jacket. Particular attention is paid to grounding throughout 
the instrument. The electrode is connected to a DC-cou-
pled amplifier with appropriate filtering and noise cancel-
lation followed by an analogue to digital signal converter 
and a data logger.

In order to obtain a stable signal, the electrode should 
be inserted in the conducting bundles; thus, recording was 
checked for 48 h following insertion and replaced if required. 
Once inserted and signal acquisition is stable, electrodes 
can be left during several months. The difference of electri-
cal potential was measured between two electrodes placed 
between a higher part of the stem (active electrode) and a 
lower part of the stem (ground electrode). The recordings 
were stored at sampling rate of 500 Hz.

2.3  Dataset

The data acquired within each deprivation experiment were 
analyzed as four separate datasets while employing the same 
methodology described in the following sections. The study 
aims at discriminating the normal from stressed plant state 
caused by a deficit of a particular nutrient or, in other words, 
to model plant electrophysiological behavior in control ver-
sus strong-stress conditions. Each dataset included a par-
ticular part of recordings from 15 tomato plants represent-
ing 96 h duration, representing 1440 h of recorded data per 
experiment. The first 48 h of each individual plant represent 
the optimal growth condition with complete nutrition, i.e., 
before the switch off of one of the nutrients tested, whereas 
the remaining 48 h were selected from the period when the 
visual symptoms appeared, i.e., when the plants were visu-
ally deficient. Hence, equal data distribution of each state 
was used to build a classifier for distinguishing these states 
in the recorded plant electrophysiological response. For early 
detection analysis, each model was applied on the whole 
recorded signal from the plants forming the respective test 
set, starting from the beginning until the end of the nutrient 
deprivation. The approach taken was to build models to clas-
sify “control” conditions (full nutrient) vs “strong” nutrient 
deficiency (visual symptoms). The studied classification out-
put was the prediction of control sate, thus accuracy above 
60% were considered as “control”, those below 40% were 
considered as “stressed” and in between were considered as 
“early stressed” since it represents the transient state. The 
whole recording acquired during experiment were used as 
test dataset.

2.4  Data preprocessing

The models for identifying the presence of stress in the mon-
itored plants were built using machine learning techniques 
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applied to features extracted locally from the recorded data 
(Najdenovska et al. 2021b). To extract such features, the raw 
signal i.e., the measured electrical potential in mV over time 
from each chosen dataset underwent several preprocessing 
steps. Figure 1 shows a diagram representing the preprocess-
ing pipeline.

The initial step involved notch filtering at 50 and 100 Hz 
to eliminate potential noise from the electric power source. 
The second step involved generating the samples for the 
modeling through a windowing procedure (Najdenovska 
et al. 2021b). More precisely, in a step of 5 min, seven dif-
ferent windows of fixed size, 15 s, 30 s, 1 min, 2 min, 5 min, 
10 min, and 30 min, were taken from the filtered signal. 
Then in each of these windows, 34 different features were 
calculated describing the characteristics of the respective 
raw signal in time or frequency domain. The information 
portrayed by these signal characteristics was used to build 
the predictive models. The calculated features enclose:

• Main descriptive statistical time-domain measures, such 
as the minimum, maximum, and variance as well as the 
skewness describing the asymmetry of the signal, the 
kurtosis characterizing the signal distribution in terms 
of tails, and the interquartile range (IQR) describing the 
spread of the distribution (Chatterjee et al. 2015; Najde-
novska et al. 2021b);

• Advanced statistical time-domain measures such as the 
Hjorth mobility estimating the mean frequency of the 
power spectrum, Hjorth complexity representing the 
change in frequency or the signal’s bandwidth (Hjorth 
1970), generalized Hurst exponent (GHE) giving a meas-
ure of signal’s long-term memory i.e., signal’s persistent 
behaviors (Nigmatullin et al. 2021); Shannon (Shannon 
1948) and logarithmic wavelet package entropy (wen-

tropy) quantifying the degree of signal’s randomness, 
root mean square (RMS) of the windowed signal together 
with the impulse, margin, shape and crest factor express-
ing the signal properties related to its peaks and ampli-
tude (Caesarendra and Tjahjowidodo 2017; Ben Ali et al. 
2018);

• Statistical frequency characteristics, namely the fre-
quency center and the root variance frequency, consid-
ered the first- and second-order moment of the Fourier 
spectrum, respectively, as well as the root mean square 
frequency (Caesarendra and Tjahjowidodo 2017).

• Color noise: describing the similarity between the sig-
nal’s noise and color noise, expressed by the scalar prod-
uct of their respective normalized half-length spectrum 
of frequencies (Najdenovska et al. 2021b). Five differ-
ent color noises were studied, namely the white, blue, 
brown, pink, and purple noise, each represented by dif-
ferent power for a different frequency spectrum range. It 
represents the dynamics of the critical state of a dynamic 
system (Bak et al. 1987; Pereira et al. 2018).

• Time–frequency domain characteristics portrayed by the 
wavelet decomposition of order 8 performed using mul-
tiresolution analysis based on maximum overlap discrete 
wavelet transform. Such decomposition impedes the pro-
cess of subsampling and, therefore, enables a higher level 
of information (Ghaemi et al. 2019). The taken features 
are the minimum, maximum, and mean values of the per-
formed wavelet decomposition at levels 1, 4, and 8.

All the features calculated within these seven windows 
represent a single sample of the data to model for a given 
plant. Hence, each sample contained 238 features in total. 
The concatenation of these samples resulted in a matrix 
where each row represented a feature vector. A min–max 

Fig. 1  Diagram presenting the 
flow of the pre-processing pro-
cedure transforming the plant 
electrophysiological signal for 
modelling
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normalization was applied to each feature vector to com-
pensate for eventual inter-plant variability. A relatively big 
spectrum of features calculated within different window 
lengths was explored to better understand the signal infor-
mation and the temporal extent characterizing the presence 
of stress in the recorded signals. This addresses the lack of 
a priori knowledge in this field (Najdenovska et al. 2021b).

The described preprocessing procedure transformed the 
96 h raw signal recording of each plant into a modeling data-
set of 1 152 samples. Or, for each experiment the modeling 
dataset enclosed 17 280 samples in total, where exactly half 
of them were labelled as “normal” and the other half as 
“stressed”. To reduce an eventual tendency to overfitting of 
the models to be built for each experiment, the initial feature 
space of 238 elements was reduced to a subset containing 
only the mutually uncorrelated features (correlation < 95%, 
significance level < 5%) and that, at the same time, are corre-
lated to the label vector (correlation > 1%). Moreover, addi-
tional elimination of features with values remaining constant 
over were also excluded.

2.5  Modelling of classifiers

The classification models for each experiment were built 
using the Gradient Boosted Trees (GBT) algorithm (Chen 
and Guestrin 2016) based on previous studies carried out 
on tomato (Najdenovska et al. 2021b). To do this, the data-
set was separated into two parts: the learning set enclos-
ing samples of 12 plants (representing 80% of the data) 
and the test-set enclosing the remaining 3 plants (20% of 
the data), which allowed to decrease the evaluation bias. 
The GBT parameters such as number of trees, learning rate 
and maximum depth were tuned using a grid search within 
the learning set. The tested values for each parameter were 
[100, 200, 300], [4, 7, 9] and [0.05, 0.1, 0.3], respectively. 
The tuning enclosed a cross-validation with 12 folds, each 

fold corresponding to the samples of one plant. The param-
eters that provided the highest accuracy were chosen. This 
accuracy will be further referred to as training accuracy. 
To evaluate the performance of the built classifiers, several 
measures were calculated on the test set, namely accuracy, 
precision, recall value, and specificity.

2.6  Features importance

The GBT algorithm provides as well the importance of each 
feature, which is assessed as the average of its contribution 
for both splitting and improving the gain with the respective 
split during the construction of the tree (Rifkin and Klautau 
2004). For the purpose of real-time prediction that can be 
used as help tool for growers and in order to reduce process-
ing time, the minimal features required to predict deficiency 
has been assessed. For this, the 10 most discriminative fea-
tures used by the GBT algorithm were selected and analyzed 
to further explore the features proficient in identifying the 
stressed state and the related classification performance. 
More precisely, for each of the four datasets individually, 
the classification process was repeated using only that set 
of features. In the next step, the least important feature out 
of the n was eliminated, and a novel model was built on the 
remaining n-1. This procedure, namely classification step 
and most discriminative features, was repeated until the set 
enclosed only one feature representing the most discrimina-
tive one.

3  Results

3.1  Appearance of visual symptoms

Tomato as agricultural crops may be subject to nutritional 
disorders, and depending on the specific nutrient, the 

Fig. 2  a Electrode inserted 
in the main stem of tomato 
plant (top) linked to the device 
(bottom). b Typical visual 
symptoms observed on tomato 
plants after specific depletion 
of manganese (Mn), iron (Fe), 
nitrogen (N) or calcium (Ca) 
in the fertigation system. The 
appearance of these symptoms 
differs depending on nutrient 
deficiency
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appearance of visual symptoms usually occurs several days 
or weeks later. The effects of specific nutrient deficiencies 
on tomato in soilless culture have been investigated. Figure 2 
shows the sensors setup and the appearance of the first visual 
symptoms on the tomato plants. This visual inspection has 
been performed daily. Lack of N supply in fertigation typi-
cally results in leaves with a uniformly pale green to yellow 
color. Symptoms were seen in the older leaves 4 days after 
depletion. For Ca (blossom rot end) and Fe (interveinal chlo-
rosis), the symptoms appeared 9 and 12 days later, respec-
tively. The longest manifestation of a deficiency was visu-
ally observed with Mn almost 3 weeks after applying the 
deficiency. The young leaves showed chlorotic zones in the 
intercostal areas. Since availability of nutrients is crucial 
for plant growth, development and consequently crop yield, 
early assessment of nutrient imbalance is of strong interest 
for growers.

3.2  Electrical signal patterns

Long-term variations of electrical potentials (EP) were 
monitored in response to four different nutrient deficiencies 
starting from full nutrient condition, switched to nutrient 
deficiency condition until the end of deprivation. During 
full nutrient conditions (Fig. 3, “Control state”), electrical 
potential displayed daily variations with a higher poten-
tial during daytime compared to night time as previously 
described (Tran et al. 2019). These variations were shown 
to be linked to nycthemeral rhythm with higher metabolism 
during day (Oyarce and Gurovich 2010; Ríos-Rojas et al. 
2015). Depending on the applied nutrient depletion, the EP 
showed a modification in daily variations (Fig. 4). The base-
line showed a hyperpolarization or reduction in level after 
shortages of Mn, Fe and Ca; whereas a depolarization or 
increase in level was observed in response to N depletion 
(Fig. 4a). Concerning the daily amplitudes, a significant 
diminution was observed for all nutrients tested except for 
Ca which showed no significant change.

3.3  Model performance

To identify eventual patterns in plant electrical responses 
differentiating the normal from the stressed state triggered 
by the lack of a nutrient, classification of electrophysiologi-
cal signals was applied on data acquired from tomato plants 
growing in soilless culture submitted to specific nutrient 
deficiencies, namely Mn, Fe, N or Ca. The performance 
of the respective classification models is summarized in 
Table 1. Overall, the Gradient Boosted Trees (GBT) models 
performed with F1-score higher than 79% for each nutrient 
deficiency. Among the datasets, the Fe stressor displayed 
the lowest model performance (79.7%) whereas the highest 
accuracy was obtained for deficit of N (92.9%). Lack of Mn 

and Ca in the fertigation solution resulted in accuracy of 
85.0% and 81.1%, respectively.

Along with the accuracy, Table 1 also shows the train-
ing accuracy representing the average over the accuracies 
obtained for each fold for the chosen values of the GBT 
parameters, as well as the precision, recall and specificity 
for each of the trained models, respectively. The relatively 
high values of precision, recall and specificity portray the 
fact that each of the classifiers is able to predict both plant 
states, stressed and normal, in the same, unbiased, manner. 
The exceptions to this are the models built on the Mn data-
set, where the very high recall values and relatively lower 
specificity indicate that the classifiers are more biased to 
predict the stressed state over the normal state.

To reduce an eventual tendency to overfitting, a corre-
lation-based selection of features was undertaken for each 
dataset. The resulting sets included from 103 to 124 features, 
depending on the stressor (Table 1). The complete list of 
features enclosed for each dataset are given in Tables S1-S4 
of the Supplementary Information.

3.4  Models built with the most discriminative 
features

To further explore the most discriminative features for 
the trained GBT models and the related classification 
performance, additional modelling was done on a feature 
set enclosing solely the most discriminative features. The 
reduction of the feature space led to a slight decrease in the 
accuracy, compared to the original models. These results 
are summarized in Fig. 5 for each deficit dataset. The figure 
show changes in the model performance as the number of 
discriminative features starting from a set of 10 and decreas-
ing the number iteratively to a single feature. For all nutri-
ents tested a significant reduction of features allowed a good 
classification prediction.

In the case of Mn deficit, the classification performance 
starts to decrease when taking seven features with a consid-
erable reduction for three or fewer features (Fig. 5a). Con-
sidering the models built on the dataset representing the Fe 
deficit, with only five features, the models still clearly recog-
nize the stressed state (Fig. 5b). For the dataset representing 
the Ca deficit, model perform better for the identification 
of the stressed state when the set is including either three 
or four features, the discrimination of each class becomes 
approximately equal, but the overall performance is lower 
(Fig. 5c). Finally, the models built for discriminating the 
normal from the stressed state caused by the N deficit, the 
performance starts to decrease when the feature set includes 
five or fewer features (Fig. 5d).

The findings represented in Table  2 show that spe-
cific combination features are used to discriminate dif-
ferent deficits. These features represent different types of 
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Fig. 3  Representative electrical signals acquired in hydroponic 
tomato plants in soilless culture grown in a greenhouse. Two typical 
days are shown in control (left) and stressed state (right) i.e. appear-

ance of visual symptoms after specific depletion of a manganese 
(Mn), b iron (Fe), c nitrate (N) or d calcium (Ca) in the fertigation 
system. The signal is presented at 1 point per minute



574 Horticulture, Environment, and Biotechnology (2024) 65:567–580

information and are extracted for different window lengths. 
One could observe that for different deficits, common fea-
tures appeared, namely skewness for three different datasets. 
It is noteworthy that among the most discriminative features, 
the Generalized Hurst exponent (GHE) is represented in all 
datasets.

Altogether, the models built on reduced feature sets, 
enclosing several important features, provided highly 
accurate predictions. In fact, even though there is a slight 
decrease in accuracy compared with models built on the ini-
tial features sets, the training accuracy is, in general, closer 
to the accuracy when using these considerably reduced 
sets. With this a posteriori reduction of the feature space, 
the complexity of the model decreases as does the required 
computing time and could be therefore implemented for real-
time prediction for growers.

3.5  Specificity of nutrient deficit identification

To assess the ability of the trained models to identify only 
the stressed state triggered by the related specific deficit ver-
sus the recognition of a stress caused by the other deficits, a 
crossed-comparison of each model have been applied to the 
test sets of the other three datasets.

The accuracy of each model evaluated on the four dif-
ferent test-sets representing a specific deficit, for both the 
initial set of features and the reduced set enclosing the most 
discriminative features, are given in Table 3 and S5. One 

observes that apart from the test-set of the related stressor, 
the models perform poorly in classifying the data represent-
ing the other deficits. However, even though the accuracy 
remain lower, the models built for one of the macronutrients, 
either N or Ca, show better results representing the deficit of 
the other macronutrient than the data related to the deficit of 
micronutrients, especially when using the large feature set. 
Similarly, the models built for the Fe deficit, better classify 
the Mn test-set data than those related to the macronutrient 
deficiencies. In contrast, the models built on the Mn deficit 
data present very weak classification performance for the 
test-set related to Fe deficit.

3.6  Evaluation of a potential early prediction

The next step was to investigate whether the developed mod-
els were able to detect an early stage of the respective nutri-
ent deficiency prior to the appearance of the actual visual 
symptoms (Fig. 2). The studied classification output was the 
prediction of “control” sate, thus accuracy above 60% were 
considered as “control”, those below 40% were considered 
as “stressed” and the transient state between 40 and 60% 
were considered as “early stressed” (Fig. S1). The Fig. 6 
summarize the temporal scheme of model prediction against 
visual symptoms appearance. Among all algorithms tested, 
the one built for N performed poorly as a tool for early detec-
tion of deprivation only identifying the deficit at the same 
time as the leaves turned a more yellow color (Figs. 2 and 

Fig. 4  Effect of specific deple-
tion of manganese (Mn), iron 
(Fe), nitrogen (N) or calcium 
(Ca) in the fertigation system 
on (a) the baseline and (b) 
the amplitude of bioelectri-
cal signals. Results are the 
difference between control and 
stressed states. Bars represent 
mean ± s.e.m, n ≥ 24

Table 1  Performance summary of the classification models trained on the initial features set

*Positive class: deficit
**Values correspond to: number of trees, max depth, and learning rate, respectively

Stressor Tuned parameters** Number of features 
(selection based on 
correlation)

Training accuracy 
(folds average) (%)

Accuracy (%) Precision* (%) Recall* (%) Specificity* (%)

Deficit of Mn [100, 4, 0.05] 103 81.42 85.01 81.48 90.62 79.40
Deficit of Fe [100, 4, 0.3] 124 73.14 79.69 78.09 82.52 76.85
Deficit of
N

[100, 4, 0.1] 109 86.52 92.88 93.08 92.65 93.11

Deficit of Ca [100, 9, 0.05] 113 71.67 81.11 82.96 78.30 83.91
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6). In contrast, for the other nutrient deficiencies, the trained 
classification models were able to predict lack of nutrients in 
the fertigation system well before visual symptoms (Fig. 6). 
The best performance was observed for Ca with a latency of 

only less than 1 day to predict a deficiency whereas visual 
symptoms appeared after 9 days. For Fe and Mn, the algo-
rithm determined a nutritional disorder after 3 and 4 days, 
respectively. In addition, the Mn trained model displayed the 

Fig. 5  Classification performance with features sets enclosing up to 
the 10 most discriminative features used by the GBT algorithm for 
models trained with datasets obtained from tomatoes grown after spe-
cific depletion of a manganese (Mn), b iron (Fe), c nitrate (N) or d 

calcium (Ca)in the fertigation system. Grey bars and colored curves 
represent training and accuracy, respectively. Dashed lines represent 
model accuracy using initial features set for training (grey) and test-
ing (coloured) for the respective models

Table 2  Importance of the minimum features required for discriminating the stress caused by each nutrient deficiency

*Decomposed signal at level 1 resulting from the performed wavelet decomposition of order 8

Reduced set of 8 features for Mn Reduced set of 5 features for Fe Reduced set of 7 features for N Reduced set of 6 features for Ca

Feature Weight (%) Feature Weight (%) Feature Weight (%) Feature Weight (%)

GHE at 30 min 57.36 Min. WD1* at 
30 min

27.18 Min. WD1* at 15 s 42.27 Brown noise at 
30 min

26.70

Variance at 15 s 13.04 Pink noise at 30 min 22.30 Maximum at 30 min 18.01 Hj. Mobility at 
30 min

19.32

Maximum at 15 s 7.80 Min. WD1* at 5 min 20.17 Crest factor at 5 min 11.70 GHE at 5 min 17.82
Skewness at 30 s 5.98 Skewness at 2 min 15.51 IQR at 2 min 10.07 Minimum at 30 min 12.36
Skewness at 1 min 5.35 GHE at 5 min 14.83 Shannon went. at 

15 s
6.26 Brown noise at 30 s 9.58

Hj. Cmpx. at 30 min 4.66 Min. WD1* at 
30 min

6.13 Skewness at 2 min 7.26

Minimum at 30 min 2.93 GHE at 30 min 5.58
Fq. Centre at 15 s 2.88
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earliest detection by reducing the reaction time for growers 
by more than 2 weeks before visual symptoms appear. It has 
to be noted that, an adaptation and/or compensation mecha-
nism can be observed for Mn and Fe (Fig. S1). Altogether, 
these results demonstrate that electrical potential recorded 
on tomatoes grown in a commercial greenhouse provides 
strong potential for the use of machine learning techniques 
for early detection of lack of nutrients.

4  Discussion

This study shows that plant electrophysiology signals can be 
used to identify a stressed state, in commercial tomato crops, 
related to lack of a specific nutrient. More precisely, for each 
of the analyzed nutrient deficiencies, the trained classifica-
tion models built based on a previously proposed workflow 
(Najdenovska et al. 2021b), are able to identify the stressed 
state with an accuracy higher than 79% (Table 1).

4.1  Long‑term memory temporal features 
importance

The trained classification models also allow the identifica-
tion of a set of features as the most discriminative for each 
studied stressor. The diversity of the most discriminative 
features for each nutrient deficiency could be related to 
the differences in plant reactions to the lack of a specific 
nutrient. For some deficiencies, the GBT algorithms show 
more decisive patterns in the signal information from the 
temporal and, for some, in the frequency-related features. 
Nevertheless, GHE, being a temporal feature portraying the 
signal’s long-term memory, is present among the most dis-
criminative features in all tested nutrient deficiencies, but 
with different weights (Table 2). For instance, calculated 
within windows of 30 min, it is remarkably predominant for 
distinguishing the stress related to Mn deficiency but, for 
the stress related to either N or Ca deficiency, its weight is 
considerably lower. Additionally, this temporal feature was 
previously shown to be important in drought stress (Tran 
et al. 2019) or spider mite infestation (Najdenovska et al. 
2021b) using electrophysiological signals in tomatoes. This 
strongly suggest that GHE could represent a common fea-
ture related to plant stress in general. Moreover, reported 
findings reveal the importance of GHE also for the analysis 
and classification of human bioelectrical signals, such the 
electrocardiogram (Karegar et al. 2017) and the electroen-
cephalogram (Lahmiri 2018; Hu et al. 2019). Additionally, 
the low-level wavelet-based decomposition of the signal, 
representing its fast variations, is important for identifying 
the stress caused by the deficit of both Fe and N. However, 
differences are observed in the length of the window por-
traying the discriminative information, suggesting further 
distinct plant reactions for deficiencies of different nutrients. 
For instance, the characteristic variations at high frequencies 
are represented by small intervals of 15 s when the stress is 
triggered by a N deficit, while in the case of Fe deficiency, 
they are portrayed within intervals from several minutes up 

Table 3  Models’ performance evaluated on the four different test-sets representing a specific deficit

Dataset for build-
ing the model

Feature set Number of 
features

Accuracy on Mn 
test-set (%)

Accuracy on Fe 
test-set (%)

Accuracy on N 
test-set (%)

Accuracy on 
Ca test-set 
(%)

Mn model Selection based on correlation 103 85.01 38.83 58.56 51.36
Fe model 124 59.29 79.69 43.32 42.45
N model 109 44.53 35.33 92.88 68.89
Ca model 113 39.29 51.74 62.09 81.11
Mn model Most discriminative features 8 78.53 35.24 58.88 51.79
Fe model 5 51.91 78.12 23.06 47.42
N model 7 43.52 37.18 89.64 64.47
Ca model 6 55.79 56.68 61.68 78.10

Fig. 6  General temporal scheme representing prediction carried out 
on the test dataset acquired from tomatoes grown with specific deple-
tions of manganese (Mn), iron (Fe), nitrogen (N) or calcium (Ca) in 
the fertigation system. Blue arrows show the time of the model pre-
diction, whereas red arrows show the first appearance of visual symp-
toms
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to 30 min, which is the other explored temporal extreme. 
Literature evidence suggests that biological signals exhibit 
important non-stationary characteristics (Seven et al. 2013; 
Shen and Lin 2019). In addition to these features, the model-
ling of brown noise appears as the most important feature for 
identifying stress from a Ca deficit. This could further sup-
port the recently introduced assumption that different stress-
ors trigger changes in the color noise of the signal (Souza 
et al. 2017; Pereira et al. 2018).

4.2  Minimum features required to predict

With a posteriori reduction of the feature space, the com-
plexity of the model decreases as does the required com-
puting time. However, a trade-off should be considered 
since very simple models are usually not able to capture 
the dominant trend within the data. Additionally, the lack 
of relevant information also results in poor performance 
and often the combination of features appears as more dis-
criminative than the individual presence of the features. In 
this case, by taking only a relatively small set of features, 
namely several of the most discriminative features, which 
decreases by approximately 10 times the size of the initial 
feature space, the model performance remains relatively 
high (Fig. 4 and Table 2). It has to be noted that specificity 
reflecting the control state is reduced in all nutrient models 
tested (Table S5). Hence, the computational time and power 
processing required for the prediction of the plant state could 
be significantly decreased. Therefore, it engenders a high 
potential for deploying the respective predictive models in 
real-time scenarios for continuous crop monitoring once the 
sensor is settled on a plant for the whole season.

In addition to the findings revealing that different fea-
tures can discriminate different deficits, analysis showed 
that each of the trained models is specific for identification 
of the stress caused by the related deficit (Table 3). Indeed, 
for proper crop growth, 18 nutrients are essential and play 
diverse, critical roles in different physiological processes. 
Each nutrient is targeted to a specific area for a specific func-
tion and, consequently, the respective perception and sign-
aling-related events are also specific (Hänsch and Mendel 
2009). It is noteworthy that, according to the trained models, 
the stress caused by the deficit of the micronutrients is dif-
ferent from the stress triggered by the lack of the considered 
macronutrients. The observed affinity between models built 
for N and Ca suggests a potential similarity in the electrical 
plant response to the deficit of either one of these macro-
nutrients. Such findings could be associated with the fact 
that macronutrients are required in larger amounts by plants 
(Kirkby 2012). Calcium improves plant vigor, is implicated 
in cell wall formation and stabilization and therefore, plays 
a role in growth (Thor 2019). Nitrogen plays a fundamental 
role regarding its presence in nucleic acids (DNA), amino 

acid (proteins) and in chlorophyll; therefore, it is vital for 
photosynthesis (Xiong et al. 2018). Hence, both N and Ca 
are targeted to growing points such as apex (stem and root) 
or fruits that possibly share common signaling pathways 
encoded in electrical signal features. Considering the two 
tested micronutrients, this affinity-related behavior is only 
observed for the model trained from the Fe deficit data when 
classifying the stress caused by the Mn deficit, implying 
that the signal patterns of plant responses to the deficit of 
Fe are potentially enclosed in the response to the deficit of 
Mn. As divalent ions, Fe (López-Millán et al. 2013) and Mn 
(Schmidt et al. 2016; Andresen et al. 2018) act as an enzyme 
cofactor or as a metal with catalytic activity in biological 
clusters. Once taken from soil, they are assimilated into plant 
tissue via similar transporters and, furthermore, evidence 
shows that compensation mechanisms exist between various 
micronutrients (Zhang et al. 2019; Alejandro et al. 2020). 
Both ions are important in chlorophyll formation, hence 
visual symptoms appear as chlorosis in crops, pointing out 
the fact that visual diagnosis of deficiency symptoms serves 
only to guide the occurrence of possible nutrition-related 
problems.

4.3  Early detection

The approach used to build models was to classify control 
(full nutrient) and “strong” nutrient deficiency (visual symp-
toms) conditions. The acquisition of the signal was done 
on the same cohort of plants for each studied nutrient defi-
ciency. Even though the data representing control conditions 
was not acquired in parallel, the model performance on the 
unseen dataset (test dataset) gave a high prediction rate for 
both control and “strong stress” portrayed by the specific-
ity and the recall value, respectively (Table 1). In addition, 
the prediction with the trained models on data representing 
the period before visual symptoms, showed significant early 
detection of stress related to Mn, Ca and Fe deficiencies, 
whereas for N, the model predicted a stressed state at the 
same time as visually detectable stress (Fig. 5). Nitrogen, as 
a primary macronutrient, is required in the greatest amount 
among all nutrients and therefore, its deficiency is demon-
strated faster, namely after 4 days in the tested conditions 
(Fig. 1). Because N is a mobile nutrient, it can be remobi-
lized to areas of greater demand, typically from old leaves 
to new growth causing deficiency symptoms first on older 
leaves. In contrast, non-mobile nutrients such as Ca, Mn 
or Fe are fixed and cannot be relocated within the plant. 
Therefore, evidence of a deficiency typically appears on 
new growth (Gerloff 1987; Kalaji et al. 2014). Results sug-
gest that early detection of non-mobile nutrients could be 
achieved with electrical signal modelling. Regarding the 
findings, it is noteworthy that an early transient “stress state” 
was predicted 3 and 4 days after shortage of Fe and Mn, 



578 Horticulture, Environment, and Biotechnology (2024) 65:567–580

respectively, was imposed. It was followed by an adaptation 
state (Fig. 5 and Fig. S1). Plants have developed sophisti-
cated regulatory systems to ensure uptake of all essential 
nutrients. The response to nutrient starvation is guided by a 
complex signaling network and involves metabolic adjust-
ments (Schachtman and Shin 2007). The most successful 
prediction was found for calcium deficiency with a model 
prediction less than 1 day after removal in nutrient solution 
(Fig. S1). Calcium is known to play fundamental role in 
biological process and particularly for tomato crop, lack of 
calcium leads to blossom-end rot if deprivation last several 
days (Tonetto de Freitas et al. 2014). This latter being of eco-
nomic importance for growers since fruit are non-marketable 
therefore, early detection is important.

Future investigations should be done to confirm and 
consolidate these findings for an extended cohort of tomato 
plants. An evaluation on other crops and on other nutri-
ents should also be completed to better understand plant 
nutrition. Additional studies could include recordings done 
prior to the appearance of the visual symptoms for eventual 
refinements of the distinction between different stress levels. 
Furthermore, datasets acquired for analyzing the deficit of 
an individual nutrient could be combined to model a clas-
sifier recognizing a stress related to any nutrient deficiency 
in general. The findings presented indicate that such analy-
sis should include features from both the temporal and fre-
quency domains calculated for different window lengths.

5  Conclusion

Overall, this study suggests a novel path to explore for 
achieving early and automated detection of nutrient defi-
ciencies before visual symptoms would appear that could 
further lead to more optimal crop nutrition and, conse-
quently, enhanced crop production in terms of both quality 
and quantity. A semi-invasive electrical signal sensor could 
represent a real-time monitoring system of the nutritional 
status of crops that could allow timely application of ferti-
lizers to optimize for growth and yield at different periods 
of the plant’s life cycle and manage precision management.

Supplementary data are available online.
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