

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER

Agroscope

The effect of agglomeration bonus schemes on biodiversity

Maximilian Meyer, **Petyo Bonev**, Franziska Zimmert Research Group *Managerial Economics in Agriculture*

FRIES Seminar - ETH 11.04.2024

www.agroscope.ch I good food, healthy environment

Introduction

- Agricultural activities threat to biodiversity (Maxwell et al., 2016)
- Conservation efforts needed!
- Connected habitats suggested for biodiversity conservation (Eisner et al., 1995)
- One policy tool for creating connectedness: incentivize coordination of private conservation through coordination payments to farmers ("agglomeration bonus payments")
- Our Project "Network" aims at <u>understanding the benefits of connected habitat</u> and of agglomeration bonus payments as a policy instrument

Biology point of view

- What is the effect of connecting habitats on biodiversity?
- Which species react how sensitively?
- How quick is a recovery?
- What type of connected habitat benefits which species?
- How does the effect depend on properties of the habitat?

Biology point of view

- What is the effect of connecting habitats on biodiversity?
- Which species react how sensitively?
- How quick is a recovery?
- What type of connected habitat benefits which species?
- How does the effect depend on properties of the habitat?

Econ point of view

- What possible coordination «devices» can be used?
- What is the role of norms and trust for coordination («commons» point of view)?
- Can a coordination payment solve the coordination problem?
- Does an optimal payment size exist and how can the planer choose it?
- What happens if the payment is too low (multiple equilibria) or too high (windfall gains)?

Biology point of view

- What is the effect of connecting habitats on biodiversity?
- Which species react how sensitively?
- How quick is a recovery?
- What type of connected habitat benefits which species?
- How does the effect depend on properties of the habitat?

Ag Econ point of view

- How do farmers choose plots to connect?
- How large are the forgone profits?
- Which institutions and rules lead to successful coordination

Econ point of view

- What possible coordination «devices» can be used?
- What is the role of norms and trust for coordination («commons» point of view)?
- Can a coordination payment solve the coordination problem?
- Does an optimal payment size exist and how can the planer choose it?
- What happens if the payment is too low (multiple equilibria) or too high (windfall gains)?

Biology point of view

- What is the effect of connecting habitats on biodiversity?
- Which species react how sensitively?
- How quick is a recovery?
- What type of connected habitat benefits which species?
- How does the effect depend on properties of the habitat?

habitat fragmentation per se

Connecting habitat is (something like) the reverse process of fragmentation of habitat

- Unsettled question: having the same size of land, is it better to have it fragmented or connected?
- Different from «Is more habitat better». Size is held fixed.
- No clear evidence: e.g. Fahrig et al. (2019):
 - Most responses to habitat fragmentation per se are **non-significant**.
 - Most significant responses to habitat fragmentation per se are **positive**.
 - Sets of small habitat patches with a large total area have high conservation value.

Biology point of view

• What is the effect of connecting habitats on biodiversity?

- Which species react how sensitively?
- How quick is a recovery?
- What type of connected habitat benefits which species?
- How does the effect depend on properties of the habitat?

Recent contributions:

- Moor et al. (2022) PNAS: creation of new ponds leads for some species to higher populations in better connected than in worse connected ponds, while for others the reverse effect
- Meier et al. (2024) AGEE: plots in agglomeration projects have higher biodiversity. CAN BE BOTH due to land selection and connecting.
- Rich literature on **edge effects**: e.g. Laurance et al. (2007)

These studies do not rely on experimental or quasi-experimental evidence.

Remains an open question.

Theory of coordination:

- Spatial externalities lead to divergence between individual incentives (through market prices) and collective payoff (Swallow and Wear, 1993)
- Spatial externalities create multiple Nash equilibria on which parcels to enroll (Helfland and Rubin, 1994)
- Models on coordination payments: Bell et al. (2016), Drechsler et al. (2016), Bareille et al. (2022), Drechsler (2023). Main finding: coordination payments potentially effective

Evidence on effect of payments on coordination:

- Lab experiments: Parkhurst et al. (2002), Parkhurst et al. (2007): coordination payment + communication upfront leads to optimal Nash equilibrium
- Further lab experiments on coordination: Ferre et al. (2022), Banerjee et al. (2011, 2015), Bamiere et al. (2013)

Econ point of view

- What possible coordination «devices» can be used?
- What is the role of norms and trust for coordination («commons» point of view)?
- Can a coordination payment solve the coordination problem?
- Does an optimal payment size exist and how can the planer choose it?
- What happens if the payment is too low (multiple equilibria) or too high (windfall gains)?

Need for empirical evidence with observational data «in the field»

Ag Econ point of view

- How do farmers choose plots to connect?
- How large are the forgone profits?
- Which institutions and rules lead to successful coordination
- What are the nonmonetary bariers to enrollment (norms, attitudes, «literacy»)

- Huber et al. (2021): conservation costs drive enrollment
- Need for empirical evidence

. . . .

.

RESULT OF HUBER ET AL. (2021) HIGHLIGHTS THAT ENDOGENOUS SITE SELECTION IS A POTENTIAL ISSUE WHEN ASSESSING EFFECT ON BIODIVERSITY

Research question in this talk

What is the effect of agglomeration projects in Switzerland on «landscape» fauna diversity?

• Aim: provide causal evidence with a clear and credible identification design

• Aim 2: understand the (habitat and farm) drivers behind the effect

The effect of agglomeration bonus schemes on biodiversity | FRIES Seminar ETH Zurich Maximilian Meyer, Petyo Bonev, Franziska Zimmert

11

Institutional setup (1)

- Three main types of agri-environmental payments to farms:
 - a) Action-based payments ("Q1")
 - b) Result-based payments ("Q2")
 - c) Aglomeration bonus ("Vernetzungsbeiträge"): paid on
 - top of a) and b)

Agroscope

Requirements for c): slightly stricter than for a) (almost equivalent).

Institutional setup (2)

Eligibility for agglomeration **bonus** payments: two steps

- 1. Municipality participates in an agglomeration project
- 2. Farmers within an agglomeration **project** sign a contract for participation (and

get agglomeration **bonus** payments) for **any chosen plot(s)**.

Remark: setup slightly differs from the typical coordination setup in the literature.
Neither true connectedness nor threshold required (as in e.g. Drechsler (2023)).
Remark 2: in this talk, effect of project (and not of bonus payment) on

Agglomeration Project Cycle: a complex picture

Area of study: cantons Aargau and Zürich

14

The effect of agglomeration bonus schemes on biodiversity | FRIES Seminar ETH Zurich Maximilian Meyer, Petyo Bonev, Franziska Zimmert

Novel dataset

We match these geo-referenced datasets to obtain a unique dataset:

- Municipality & ABS project data:
 346 municipalities or projects
- 2. Farm-level data: ~ 7700 farms (2002 2022)
- 3. Plot-level data: ~ 210,000 plots (2021)
- 4. Biodiversity: ~100,000 fauna observations (1923 2021)

Treatment and outcome

- Treatment: municipality/region participating in an ABS project
- Outcome:
 - 1. Fauna species abundance and diversity
 - 2. Area under action- and results-based AES (as share of total farm
 - land)

Treatment and outcome

- Treatment: municipality/region participating in an ABS project
- Outcome:
 - 1. Fauna species abundance and diversity
 - Area under action- and results-based AES (as share of total farm land)

Agglomeration projects (current status)

The effect of agglomeration bonus schemes on biodiversity | FRIES Seminar ETH Zurich Maximilian Meyer, Petyo Bonev, Franziska Zimmert

V Treatment and outcome

Treatment: municipality participating in an ABS project

• Outcome:

- 1. Fauna species abundance and diversity
- Area under action- and results-based AES (as share of total farm land)

20

Outcome: species richness

• Species considered: 5 groups fauna species

- 1. Amphibia
- 2. Gastropoda
- 3. Insecta
- 4. Mammalia
- 5. Reptilia

Outcomes:

- 1. Number of species seen in a region within a given year
- 2. Shannon Index (considers number of species and abundance of each category)

Outcome: we assigned biodiversity observation to municipalities/regions

V Treatment and outcome

Treatment: municipality participating in an ABS project

• Outcome:

1. Fauna species abundance and diversity

2. Area under action- and results-based AES (as share of total farm

land) (WHY WE USE IT: LATER!).

Identification (1): use staggered implementation

UIdentification (2): assuming parallel trends

CONTROL GROUP: NEVER TREATED

U Identification (3): assuming parallel trends

WE USE A STAGGERED DIFF-IN-DIFF APPROACH

Results: effect of agglomeration projects on species

Mechanisms

- Main question: is the positive effect due to (1) higher habitat connectedness or (2) more habitat?
 - Hard econometric/identification problem;
 - Two pieces of indirect evidence:
 - 1. Have agglomeration projects increased total habitat?
 - 2. Have agglomeration projects provided connected habitat at all?

Effect of agglomeration projects on habitat surface

Parallel trends very likely to hold as estimates before treatment are very close to zero.

Have agglomeration projects lead to high connectedness?

Association of ABS schemes participation with plot connectivity and perimeter to plot area ratio (potential edge effects)

Number	Treatment:	Share of	Share of	Mean	Mean	Mean plot
of	ABS	action-	result-based	Moran's I of	Moran's I of	perimeter to
municip	participation	based AES	AES area on	action-	result-based	plot area
alities		area on total	total	based AES	AES areas	ratio
		agricultural	agricultural	areas		(potential
		area	area			edge effect)
280	1	0.17	0.08	0.25	0.26	0.17
74	0	0.13	0.05	0.23	0.24	0.13

Have agglomeration projects lead to high connectedness?

Warning: 7450 observations are neighborless.

Mechanisms

- Main question: is the positive effect due to (1) higher habitat connectedness or (2) more habitat?
 - Hard econometric/identification problem;
 - Two pieces of indirect evidence:
 - Have agglomeration projects increased total habitat? Yes, by much!
 - 2. Have agglomeration projects provided connected habitat at all? Not entirely clear yet, seems not to be the case.

Next steps in this project

- Study the effect for separate species: which species react most sensitively?
- Study effect heterogeneity for different initial habitat conditions
- Study effect heterogeneity for different "farm landscapes" (which farming type dominates the subregion?
- \$1.000.000 question: disentangle the effects of area and connectedness

PROJECT «NETWORK»: a bundle of projects

GOAL 1: extend the analysis on the whole of Switzerland (work in progress)

GOAL 2: add matched FADN data to study forgone profits due to participation in agglomeration projects (work in progress)

GOAL 3: link to further datasets (future task)

GOAL 4: study properties of coordination Nash equilibria

GOAL 5: provide a comprehensive dataset on agglomeration projects to the research community and establish a network research programm (double network...)

Thank you for your attention

Petyo Bonev petyo.bonev@agroscope.admin.ch

Agroscope

Agroscope good food, healthy environment www.agroscope.admin.ch

Literature

- Bareille, F., Zavalloni, M. and Viaggi, D. (2022). Agglomeration bonus and endogenous group formation. *American Journal of Agricultural Economics* 105(1): 76–98.
- Callaway, B., and Sant'Anna, P. H. (2021). Difference-in-differences with multiple time periods. *Journal of Econometrics* 225(2): 200–230.
- Drechsler, M. (2023). Ecological and economic trade-offs between amount and spatial aggregation of conservation and the cost-effective design of coordination incentives. *Ecological Economics* 213: 107948.
- Eisner, T., Lubchenco, J., Wilson, E. O., Wilcove, D. S., and Bean, M. J. (1995). Building a scientifically sound policy for protecting endangered species. *Science* 269(5228): 1231–1232.
- Huber, R., Zabel, A., Schleiffer, M., Vroege, W., Brändle, J. M. and Finger, R. (2021). Conservation costs drive enrolment in agglomeration bonus scheme. *Ecological Economics* 186: 107064.
- Kuhfuss, L., Préget, R., Thoyer, S. and Hanley, N. (2016). Nudging farmers to enroll land into agrienvironmental schemes: the role of a collective bonus. *European Review of Agricultural Economics* 43(4): 609–636.

Literature

- Krämer, J. E., and Wätzold, F (2018). The agglomeration bonus in practice—an exploratory assessment of the Swiss network bonus. Journal for Nature Conservation 43: 126–135.
- Maxwell, S. L., Fuller, R. A., Brooks, T. M., and Watson, J. E. (2016). Biodiversity: The ravages of guns, nets and bulldozers. *Nature* 536(7615): 143-145.
- McEvoy, D., Jones, M., McKee, M. and Talberth, J. (2014). Incentivizing cooperative agreements for sustainable forest management: experimental tests of alternative structures and institutional rules. *Forest Policy and Economics* 44: 34–41.
- Meichtry-Stier, K. S., Jenny, M., Zellweger-Fischer, J. and Birrer, S. (2014). Impact of landscape improvement by agri-environment scheme options on densities of characteristic farmland bird species and brown hare (lepus europaeus). Agriculture, Ecosystems & Environment 189: 101–109.
- Parkhurst, G. M., Shogren, J. F., Bastian, C., Kivi, P., Donner, J., and Smith, R. B. (2002). Agglomeration bonus: an incentive mechanism to reunite fragmented habitat for biodiversity conservation. *Ecological Economics* 41(2): 305-328.

Literature

- Perkins, A. J., Maggs, H. E., Watson, A. and Wilson, J. D. (2011). Adaptive management and targeting of agri-environment schemes does benefit biodiversity: a case study of the corn bunting emberiza calandra. *Journal of Applied Ecology* 48(3): 514–522.
- Wätzold, F. and Drechsler, M. (2014). Agglomeration payment, agglomeration bonus or homogeneous payment? *Resource and Energy Economics* 3: 85–101.