
Computers and Electronics in Agriculture 224 (2024) 109128

A
0

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Original papers

Remotely sensing inner fruit quality using multispectral LiDAR: Estimating
sugar and dry matter content in apples
Tomislav Medic a,∗, Pabitro Ray a, Yu Han a, Giovanni Antonio Lodovico Broggini b,
Simon Kollaart c

a Institute of Geodesy and Photogrammetry, ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland
b Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
c Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland

A R T I C L E I N F O

Keywords:
Point clouds
Chemometrics
Spectroscopy
Reflectance
Soluble solid content
Hyperspectral

A B S T R A C T

Diffuse reflectance spectroscopy is a well-established non-destructive technique for in-situ estimation of internal
fruit quality properties. However, the operating range of the conventionally used instruments is limited to a
few cm and often requires direct surface contact with the fruit. Alternative non-destructive approaches, such as
hyperspectral imaging, allow for space between the sensor and the object, but in return, they require controlled
illumination conditions commonly realized using dark chambers. In this work, we present a novel approach
toward remote sensing of relevant fruit quality parameters on the case study of estimating total soluble solids
(TSS) and dry matter content (DMC) in apples using a prototype supercontinuum-based multispectral LiDAR
(MSL). Experimental results are acquired over a stand-off range of 0.5 m under uncontrolled illumination
conditions. The spectral data is acquired across the 580–900 nm spectral range of the supercontinuum source,
and 𝑅2 of 0.73 is achieved for estimating TSS and DMC using a random forest regression. These results on
the estimated parameters are comparable to those reported previously in the literature for in-house developed
prototypes relying on fruit contact or immediate proximity. In contrast, our experiments demonstrated TSS
and DMC estimation at larger distances relative to typical reflectance spectroscopy instruments and without
controlled illumination conditions typically mandated by hyperspectral imaging. Moreover, we demonstrate
how our results translate to the estimation of TSS and DMC from experimentally generated multispectral 3D
point clouds at a stand-off range of 5 m, demonstrating the potential of simultaneous acquisition of spectral
and geometrical data at even higher ranges, showcasing the possibility of new use-cases.
1. Introduction

Scanning LiDAR (Light Detection and Ranging) is widely used for
plant-focused remote-sensing e.g. in agriculture, and forestry (Eitel
et al., 2016a; Jin et al., 2021). Traditionally, LiDAR is primarily used
to extract structural plant traits by analyzing the geometrical data of
3D point clouds. Despite notable development over the recent years,
the reflectance profiles or intensity of backscattered light are still
under-exploited (Eitel et al., 2016a), where plant phenotyping could
particularly benefit from further advancements (Jin et al., 2021).

Scientific efforts on LiDAR-based spectral plant phenotyping have
primarily focused on observing leaf properties, where LiDAR intensity
has been successfully used as a proxy for monitoring: leaf water sta-
tus (Elsherif et al., 2018; Gaulton et al., 2013; Junttila et al., 2021);
plant’s nutrition status, primarily related to nitrogen concentration (Du
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et al., 2016; Eitel et al., 2016b); and the status of photosynthetic
apparatus (Eitel et al., 2010) together with related chlorophyll fluo-
rescence (Magney et al., 2014). The abovementioned studies used one
to two commercial, single-wavelength TLSs (terrestrial laser scanners),
while the studies using in-house built multispectral prototypes are
emerging (Hakala et al., 2012; Junttila et al., 2015; Sun et al., 2017). In
several investigations, multispectral LiDAR (MSL) has been successfully
used to extract plant vegetation indices with an accuracy comparable to
existing multi- and hyperspectral camera-based techniques (Chen et al.,
2010; Hakala et al., 2015; Li et al., 2014; Nevalainen et al., 2014;
Niu et al., 2015; Puttonen et al., 2010; Sun et al., 2017). However,
MSL offers additional benefits, such as illumination invariance and high
measurement ranges, and is thus advantageous for diurnal and in-field
observations (Jin et al., 2021), as well as some other niche applications.
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So far only one study investigated the potential of estimating fruit
quality using LiDAR intensities (Saha and Zude-Sasse, 2022), where
banana ripeness was estimated based on the intensity data obtained
with a commercial monochromatic (670 nm) automotive scanner.

Monitoring fruit quality metrics is relevant for different stages of the
food production chain, such as plant breeding, tracking fruit health and
progress during a growth season, indicating the right harvest time, fruit
sorting based on quality parameters related to consumer experience,
and monitoring during storage. Some of the relevant quality metrics are
related to sugar content or TSS (total soluble solids); titratable acidity,
starch content, fruit firmness and texture, internal or external color,
and dry matter content (DMC). For example, DMC is an important
indicator of fruit maturity and can be used for detecting optimal harvest
time (Musacchi and Serra, 2018; Watada, 1993).

Fruit quality parameters are commonly estimated by destructive
methods either in the laboratory or during the sorting process using
automated machines such as Pimprenelle (Azodanlou, 2001). How-
ever, a substantial number of parameters can be estimated using
non-destructive techniques as well (Abasi et al., 2018). Some of the
most prominent non-destructive methods are imaging methods such
as Raman imaging, hyperspectral imaging, magnetic resonance imag-
ing (MRI), and laser light backscattering imaging (LLBI) (Mahanti
et al., 2022; Pathmanaban et al., 2019). Although these methods
show promising results in controlled laboratory conditions, they are
often conducted in dark chambers to mitigate effects due to ambient
light variations, exhibit a relatively low throughput, limited or no
portability, and have challenges for practical on-tree (on-site) use. Even
hyperspectral imaging, routinely used for remote sensing in natural
environments (Pu, 2017), suffers from some of these drawbacks when
fruit quality estimation is in question (Abasi et al., 2018; Srivastava
and Sadistap, 2018). For example, even the state-of-the-art portable
solutions, supported by deep learning data processing pipelines, re-
quire specialized dark chambers and a relatively short distance to the
object (Mishra et al., 2023), limiting the potential use-cases.

In contrast to imaging methods, diffuse reflectance spectroscopy es-
tablished itself as the most widely used non-destructive method for in-
situ observations, including on-tree estimation under the uncontrolled
ambient illumination (Abasi et al., 2018; Srivastava and Sadistap,
2018). The method reached high maturity, signalized by the availabil-
ity of different commercial systems, mostly handheld devices using a
broadband light source in the visible (VIS) and near-infrared (NIR)
spectrum coupled to a spectrometer (Goisser et al., 2021). Such devices
are routinely used for estimating fruit quality parameters, e.g., TSS and
DMC of different fruits and vegetables (Goisser et al., 2021). Although
offering non-destructive on-site estimation, they require direct contact
or high proximity (centimeters) with a fruit, which limits their on-
field applicability only to the physically accessible subsets of fruits.
Moreover, the data acquisition is relatively time-consuming, limiting
the acquired sample size.

MSL presents an alternative approach for non-destructive estimation
of fruit quality parameters, addressing the challenges of both hyper-
spectral imaging and diffuse reflectance spectroscopy. Due to its active
sensing principle using the energy-dense and focused laser light of
known spectral power profile, it can be deployed in uncontrolled and
varying ambient light conditions and can provide point-wise spectral
data on larger distances (Vosselman and Maas, 2010). Hence, it en-
ables remote reflectance spectroscopy (Hakala et al., 2012) with no
undamental limitations for in-situ and on-tree estimation (Malkamäki
t al., 2019). Moreover, if used with a scanning unit on a mobile
apping platform, it allows for on-field remote estimation of fruit

uality with high sampling frequency augmented with geometrical
ata. Such geometrical data can then be used for estimation of further
uality parameters, e.g. shape and size, and for directly 3D mapping
he distribution of the values of interest and uncovering eventual
eterogeneities within a fruit, tree, or orchard. This makes MSL a
2

ingle-sensor system with relevant capabilities beyond the ones offered
Table 1
Summary of the fruit samples information: number of fruits (𝐹#), acquired spectral
rofiles (𝑆#), mean and standard deviation of total soluble solids (TSS) and dry matter
ontent (DMC) values per cultivar and overall.
Cultivar 𝐹# 𝑆# �̄�𝑇𝑆𝑆 𝜎𝑥𝑇𝑆𝑆 �̄�𝐷𝑀𝐶 𝜎𝑥𝐷𝑀𝐶

Golden 10 60 12.93 1.35 15.05 1.47
Gala 6 36 11.94 0.95 13.83 1.17
Jazz 5 30 13.39 0.85 15.26 0.90
GDa 39 234 16.24 2.91 18.56 3.24
Green Star 10 60 12.93 1.35 13.21 0.58
Pink Lady 9 54 14.44 1.18 16.74 1.07
Juliet 5 30 13.74 1.54 16.20 1.74
Gravenstein 1 6 12.70 0.26 14.70 0.16
ALL 80 480 14.62 2.79 16.83 3.03

a GD = Golden Delicious.

y hyperspectral imaging and typical reflectance spectroscopy systems.
mploying this technology for in-situ remote estimation of fruit quality
ould present a relevant contribution toward high-throughput plant
henotyping (HTPP).

Motivated by the latter, we conducted an early investigation of
sing an MSL, an in-house developed prototype of a mode-locked
emtosecond supercontinuum (SC) LiDAR system (Han et al., 2022b;
alido-Monzú and Wieser, 2018), to estimate fruit quality. In particular,
e remotely estimate the sugar (TSS) and dry matter content (DMC) of

tore-bought apples at a stand-off distance of 0.5 m using point-wise
iDAR measurements under uncontrolled ambient light conditions.
e analyzed the accuracy of estimating TSS and DMC in the single

ultivar and multiple (eight) cultivar cases to test for generalizability
nd compared the results with the state-of-the-art success of competing
nstruments. Finally, we paired the prototype with a scanning unit to
emonstrate the potential of deriving TSS and DMC from multispectral
D point clouds of apples at a 5 m stand-off distance.

Hence, to the best of the authors’ knowledge, we present the first
uccessful demonstration of using MSL for remote spectroscopy of
ruit quality metrics, enabling their estimation under uncontrolled il-
umination conditions and up to 5 m distances. These results give
he first evidence that MSL could be a viable alternative technology
or fruit quality estimation, mitigating some of the challenges related
o hyperspectral imaging and diffuse reflectance spectroscopy, while
imultaneously augmenting these estimates with 3D geometrical data
f the analyzed fruits.

This article is structured as follows: Section 2 presents the exper-
mental design 2.1, LiDAR prototype 2.2, acquired data 2.3, and data
rocessing workflow 2.4. Section 3 presents the results of TSS and DMC
stimation and demonstration of multispectral scanning. Discussion and
ain conclusions are presented in Sections 4 and 5.

. Materials and methods

.1. Experiment design

Within the experiment, we sampled 80 apples of 8 different cul-
ivars (Table 1) bought in a local supermarket. We acquired spectral
rofiles using a MSL and reference values for TSS and DMC using
he established destructive methods. We followed the experimental
esign commonly used for calibrating commercial VIS-NIR handheld
iffuse reflectance spectrometers for estimating fruit quality metrics,
.g. Zhang et al. (2019). Different cultivars were used to test for the ro-
ustness of the estimation method concerning variation within this fruit
pecies. One cultivar had a disproportionally larger number of samples
39 apples, roughly 50%) to test if the estimation accuracy is altered
hen the regression model is fitted to a particular cultivar, reducing the
ariability of fruits’ properties. The exact number of fruits per cultivar
as not pre-determined before the experiment (Section 2.3).

We used a limited number of samples compared to the typical
L (machine learning) regression sample sizes due to limited lab
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Fig. 1. Left: Experimental setup (1 – laser, 2 – filter wheels, 3 – rotation stage with samples, 4 – parabolic mirror, 5 – APDs, 6 - alternative setup for scanning demo, 7 – indication
of the position of scanning unit, 8 – indication of position of scanning samples). Right: Scanning unit.
availability and long measurement duration. Namely, acquiring each
spectral profile with a LiDAR prototype took approximately 3 min
(Section 2.2). As the spectral measurements are sensitive to tempera-
ture (Peirs et al., 2019), the apples were acclimatized in the laboratory
under a controlled temperature of 20 ◦C for around 4 h before the
measurements.

A picture of the main laboratory setup is presented in Fig. 1, left.
The point-wise spectral measurements for generating the TSS and DMC
estimation (regression) model were acquired using the parts of the
setup marked with the numbers 1–5, while the remaining part was used
later for multispectral scanning (Section 2.2).

The apples were measured at a distance of approximately 0.5 meters
(Fig. 1, left) at 3 evenly distributed locations per fruit (to account
for the inhomogeneity of the sugar distribution) marked (simple dash)
roughly at their equator and separated by approx. 120◦. Each location
was measured twice with LiDAR: once approx. perpendicular (0◦) and
once with 20◦ angle of incidence (AOI) with respect to the line of sight.
The angle was altered using a rotation stage (Fig. 1, ‘‘3’’).

Besides collecting redundant observations at each location, this
procedure was used for two additional reasons. First, to investigate
the sensitivity of the results considering the small changes of inci-
dence angle, as it was indicated as an important influencing factor in
the Kaasalainen et al. (2016) and Kaasalainen et al. (2018). Second, the
literature indicated possible bias or distortion of the spectral profiles
at incidence angles close to 0◦ due to specular reflection in some
cases (Zhu et al., 2015). Implementing this measurement procedure
resulted in gathering 6 spectral profiles per fruit (2 × 3 locations) over
approx. 20 minutes.

Destructive reference measurements immediately followed spectral
data acquisition. We carved out cylindrical samples (2.7 cm in diameter
and 2 cm in height) with a borer around the marking indicating
the location of spectral measurements as done e.g., in Zhang et al.
(2019). This sample diameter is an order of magnitude larger than
the laser beam footprint diameter (approximately. 6–8 mm) and the
sample height is higher than the nominal penetration depth of the light.
However, we presume no rapid changes in TSS and DMC within the
fruit, and these sample sizes assured sufficient substance to acquire the
measurements with the available instrumentation.

Each apple sample was first peeled and then split into two ap-
proximately equal halves. The first half was used for estimating TSS
using a digital handheld pocket refractometer for the measurement of
soluble solids in fluids (model PAL-1, ATAGO Co., Ltd., Japan). We
pressed the apple juice using an ordinary metal kitchen garlic press
and applied it to the refractometer. The measurements were repeated
three times and averaged (median) to control for eventual errors. The
acquired reference values for TSS are expressed in Brix degrees (1 ◦Brix
= 1 g of soluble solids in 100 g of solution), where the instrument’s
3

measurement range is from 0 to 60 ◦Brix, accuracy is ±0.2 ◦Brix,
and resolution 0.1 ◦Brix. Additionally, the instrument has internal
temperature calibration for the readings.

The DMC was calculated as the ratio (%) of the dry and wet
mass of the second halves of the cylindrical fruit samples. The sam-
ples were weighted using an analytical balance (model KUBEI 996,
HuaZhou DaMing Weighing Co., Ltd., China), with a readout resolution
of 0.001 g and an accuracy of 0.003 g. The wet weight measurements
were done immediately after carving out the sample (preceding the
refractometer measurements). The samples were then dried at 65 ◦C
in a fruit dehydrator (Graef model DA506EU) for 24 h and their dry
mass was measured as in Kumar et al. (2015).

2.2. Multispectral LiDAR prototype

We present a brief description of the in-house developed MSL
(Fig. 1, left), while more detailed information can be found in Han
et al. (2022b) and Salido-Monzú and Wieser (2018). A supercontinuum
frequency comb laser enclosed in the blue box (Fig. 1, ‘‘1’’) emits
coherent light in the range between 580 nm and 900 nm. This spectral
range is comparable to the common handheld spectrometers (Goisser
et al., 2021) and is thus desirable for sensing fruit quality. Overall 33
10 nm wide spectral bands are sequentially transmitted using a set of
optical bandpass filters mounted in the rotational filter wheels (Fig. 1,
‘‘2’’). For each spectral band, 10% of the output power is used to
establish a local reference path for distance measurements while the
rest 90% is used for probing the fruit samples.

The probing beam interacts with the sampled object (Fig. 1, ‘‘3’’)
and the backscattered light is collected and focused on the probing
avalanche photodiode - APD (Fig. 1, ‘‘5’’) using a parabolic mirror
(Fig. 1, ‘‘4’’), while the reference beam is directly detected by the
reference APD. The distance of the sampled object is estimated by
the phase difference between the electric outputs of the two APDs
according to the inter-mode beating approach of frequency comb (Mi-
noshima and Matsumoto, 2000; Salido-Monzú and Wieser, 2018). A
Spectralon (SG 3070, SphereOptics) reflection standard plate with 60%
reflectance flips in and out in front of the sampled object, and the
optical intensity backscattered from the plate provides a reference to
calculate the reflectance and compensates the time-dependent power
variation of the laser source.

The resulting reflectance spectra (Fig. 3, top) were used as the
input for the estimation of TSS and DMC and for generating the results
presented in Sections 3.1 and 3.2. To ensure the same surface position
is probed under the different angles of incidence, the sampled object is
mounted on a rotation stage and the sampled position is at the rotation
axis (Fig. 1, ‘‘3’’).

The unique feature of the described measurement setup is the
possibility to generate spectrally resolved range measurements (Han
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et al., 2022b; Salido-Monzú and Wieser, 2018). We investigated if
supplementing the reflectance spectra with such range spectra could
enhance the TSS and DMC estimation accuracy and the results are
presented in Section 3.3.

We also demonstrate that remote estimation of TSS and DMC over
several meters is feasible using the proposed supercontinuum laser-
based approach. Further experiments are carried out using an in-house
developed scanning unit (Fig. 1, right), which is directly coupled to the
SC output. The scanning unit allows for spatial mapping of the acquired
range and spectral profiles of the target (fruit samples), which is in our
case placed 5 m away. Similar to the configuration above, the distance
information is estimated by monitoring the relative phase delay of
the intermode beats. However, in this case, the target back-reflection
is acquired over the entire 580–900 nm band with 0.17 nm spectral
resolution using a Czerny-Turner CCD spectrometer (Thorlabs CCS
175). This setup de facto enables hyperspectral laser scanning, however
at the expense of losing the abovementioned spectrally resolved range
measurements. A detailed description of the scanning unit can be found
in Ray et al. (2023). For simplicity, we will refer to the acquired 3D
point clouds as multispectral. The initial results that demonstrate the
possibility of point-wise (pixel-wise) estimation of TSS and DMC from
the acquired 3D point cloud are presented in Section 3.4.

2.3. Acquired data

The reference values for the TSS and DMC are generated as de-
scribed in Section 2.1, where some observations (less than 1%) were
marked as outliers based on the laboratory log and removed from
further processing. To acquire an adequate dataset for the regression
problem, we aimed at obtaining uniformly distributed TSS and DMC
values, avoiding long underrepresented tails at extreme values. This
was achieved by real-time adjusting of the sample sizes for different
apple cultivars, where the cultivar with the highest variability in the
reference values was strongly overrepresented for single-cultivar TSS
and DMC predictions. The achieved distributions of the reference values
are presented in Fig. 2.

Initial data analysis revealed that the collected reference values for
TSS and DMC were highly correlated (𝜌 = 98%), which is a common
occurrence recorded in the literature, e.g. Mcglone et al. (2003). How-
ever, TSS and DMC are still used as separate parameters of fruit quality.
Hence, there is a high likelihood that the TSS and DMC values we
estimated using MSL infer a single joint property of the investigated
apple samples. Nevertheless, in the following sections, we present the
results for both TSS and DMC for comparability with related literature.

The obtained spectral profiles used to remotely estimate TSS and
DMC are presented in Fig. 3. As stated in Section 2.2, we acquired spec-
trally resolved reflectance and range data, where ranges are normalized
by subtracting the mean (absolute values not purposeful due to differ-
ent apple sizes, and hence the absolute distance to the instrument). The
red and blue curves represent medians of 10 uniformly sampled spectral
profiles, separated according to TSS (DMC directly comparable) with a
spacing of 0.1 ◦Brix between them, centered around extremely low and
extremely high ◦Brix values (11 ◦Brix and 19 ◦Brix). The transparent
colors represent the distribution of values as 1x MAD (median absolute
deviation from the median).

When analyzing the reflectance spectra, a few clear distinctive
features exist between fruits with high and low TSS. One is that the
backscattered light has lower intensity across all spectral channels if
TSS is low. This is due to less solid and higher water content, as water
absorbs light in varying degrees across all observed wavelengths (Vos-
selman and Maas, 2010). However, using this information requires
exhaustive radiometric calibration, i.e., accounting for all external and
internal systematic factors causing the fluctuations in the backscattered
intensity.

The most prominent spectral feature is a significant reduction in
reflectance centered around 670 nm wavelength for low TSS. This
4

Fig. 2. Histograms of TSS and DMC values; samples of all cultivars together (red) and
of overrepresented cultivar alone (purple).

phenomenon can be attributed to a high chlorophyll A concentration
in the mesocarp, typically a few mm under the fruit skin. Namely, it
is known that chlorophyll A has an absorption peak at 670 nm and
its concentrations are highly correlated with some of the relevant fruit
properties related to fruit ripening and maturity (Musacchi and Serra,
2018). For example, the study mentioned in the introduction, which fo-
cuses on estimating banana ripeness using commercial LiDAR relies on
this feature (Saha and Zude-Sasse, 2022). Moreover, IAD, the index of
absorption difference between 670 nm and 720 nm, is frequently used
for tracking fruit maturity (Musacchi and Serra, 2018). It is commonly
done by specialized bichromatic handheld spectrometers (Musacchi
and Serra, 2018), e.g. DA Meter (Sinteleia, Bologna, Italy). Hence, we
presume that our TSS and DMC estimates will primarily exploit this
spectral feature. To confirm and expand these visual observations we
conducted a feature importance analysis in Section 3.2.

The range spectra are somewhat less discriminative between low
and high TSS fruits. However, the main spectral feature is again the
difference at 670 nm, but with higher variability within the TSS classes.
This similarity between reflectance and range spectra probably indi-
cates that a drop in power induces a negative systematic shift in range
measurements, which could be due to power-to-phase coupling. To
analyze this hypothesis we computed the per-wavelength correlations
between reflectance and range spectra over all fruit samples. For the
wavelengths in the 580–690 nm range, the spectral channels were
significantly correlated (P < 0.01) with an average correlation of 57%,
which indicates that both modalities carry similar information. Because
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Fig. 3. Apples’ reflectance and normalized range spectral profiles: bold lines - median
of 10 uniformly sampled profiles centered around extreme TSS values (red – high TSS,
blue – low TSS, solid - observations at 0◦ incidence angle, dashed at 20◦); transparent
regions – 1x MAD around respective medians.

of that, in Section 3.1, we will primarily focus on the reflectance spec-
tra, which is more generalizable across hyperspectral LiDAR prototypes
presented in the literature.

Finally, as visible in Fig. 3, we observed no notable difference be-
tween the spectral profiles at 0◦ and 20◦ AOIs, alleviating the concerns
related to specular reflection (details in Section 2.1). To confirm the
visual inspection we computed the correlations (Pearson’s) between
corresponding spectral profiles at 0◦ and 20◦ AOI, which showed an
average correlation of 99.3% (P < 0.01).

2.4. Data processing

No extensive data transformation and preprocessing were performed
on the acquired spectral profiles. Finding the optimal combination of
different preprocessing steps, e.g. signal transformations and smooth-
ings, is a part of the ongoing research efforts (Mishra et al., 2021a;
Mishra, 2022) and it is out of the scope of our work. However, we
made a preprocessing analysis of a limited scope (more at the end of
this section).

In our main analysis, we tested 10 different regression approaches
for predicting TSS and DMC (Table 2). We tested the possibility of
TSS/DMC estimation using a single wavelength, 670 nm (Section 2.3),
to check if using a monochromatic LiDAR would be sufficient. Also,
we derived the IAD index and used it as a single predicting variable
5

to mimic the handheld IAD meters. Finally, we tested 8 different
regression approaches using the full spectrum.

The related works predominantly use PLS (Partial Least Squares),
a standard in chemometrics (Wold et al., 2001). Besides PLS, we
implemented Lasso linear regression (L1-norm regularization on the
coefficients of linear regression), Random Forest (RF), and boosted
decision trees algorithm (BOOST) to utilize their inherent capabilities
for feature selection (Section 3.2). Feature importance analysis was
carried out to better understand the relationship between MSL spectral
profiles and variables of interest.

RF and boosted trees were additionally included as they were
proven to be the best-performing algorithms for the regression and
classification tasks based on simple tabular data with a limited num-
ber of explanatory variables (Grinsztajn et al., 2022). Finally, SVM,
FFNNs and GPR (Table 2) were added because they can learn more
complex functional relationships between variables, and they are better
at interpolation than decision trees algorithms.

For the training and evaluation of all regression methods, we used
a 20/80% test-train split, where the splits were done on the per-fruit-
basis to avoid eventual overfitting if the samples of the same fruit would
be present in both test and train datasets. Additionally, for some of
the ML approaches (Table 2) we used z-score feature normalization,
as it is a recommended procedure for assuring efficient algorithm
convergence (LeCun et al., 2012).

We compared the predictive performance of all the algorithms using
the common evaluation criteria R2 value and mean absolute error
(MAE). To generate robust estimates and to account for the limited sam-
ple size (especially in the case of test data), we repeated the procedure
100 times and reported averaged values for the abovementioned sta-
tistical quantities. A subset of the used algorithms allows for hyperpa-
rameter tuning. The optimal hyperparameters (Table 2) were searched
for using the Bayes optimization algorithm (Snoek et al., 2012) over
200 iterations. A 10-fold cross-validation was implemented to ensure
a robust hyperparameter selection while preventing overfitting. The
analysis was implemented in MatLab.

We did some preliminary tests on data utilization before the main
analysis described above. In these tests (10 instead of 100 runs of the
described procedure) we confirmed that using spectral profiles at inci-
dence angles of 0◦ and 20◦ as separate explanatory variables does not
benefit the estimation. Hence, we pooled all acquired spectral profiles
to increase the number of samples for training and testing. Similarly,
we verified that applying basic data preprocessing did not noticeably
impact the estimation success (abovementioned statistical quantities).
More specifically, we tested independently (disregarding eventual in-
terference) following preprocessing procedures that are common in the
related literature (Jiao et al., 2020): spectral profiles normalization by
subtracting the mean reflectance, generating 1st and 2nd derivative of
the spectral profiles, and smoothing the spectrum (moving average,
Savitzky–Golay, and Gaussian filters). As a result, no spectral pro-
file preprocessing was applied to obtain the results presented in the
following chapter.

3. Results

In Section 3.1 we present the main results of estimating TSS and
DMC using reflectance spectra presented in Fig. 3 (top), while Sec-
tion 3.2 gives related feature importance analysis to better understand
the estimation procedure and the observed quantities. In Section 3.3 we
analyze if range spectra (see Section 2.2) can support TSS and DMC es-
timation, while Section 3.4 gives a demonstration of the transferability
of our results on multispectral scanning of apples at larger distances.

3.1. Estimating TSS and DMC

The summary of our main findings is presented in Table 3. The
analysis from Section 2.4 was done once for all 8 cultivars together
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Table 2
Tested regression methods for estimating TSS and DMC: their abbreviations, fixed and tunable (hyper-)parameters (italic = fixed) and an
indication of used z-score normalization (Y = Yes, N = No).
# ABR. Algorithm Parameters (tunable, FIXED) NR.

1 x670 Simple linear regression x = 670 nm N
2 IAD Simple linear regression x = 670/720 nm N
3 PLS Partial least squares number of components = 20 N
4 LASSO Lasso linear regression Regularization parameter lambda N
5 RF Random forest nr. of learning cycles, min. leaf size, max. number of splits, nr. of

variables to sample
N

6 BOOST Boosted trees nr. of learning cycles, min. leaf size, max. number of splits, nr. of
variables to sample, learn rate

N

7 GPR Gaussian process regression basis function, kernel function, kernel scale, sigma Y
8 SVM Support vector machines box constraint, kernel scale, epsilon, kernel function = gaussian Y
9 FFNN Feed forward neural network Regularization parameter lambda, layer sizes, layer nr. (1–3),

activation function = sigmoid, fully connected
Y

10 Esb. Average solution (#3–9) – –
Table 3
Summary of the main results of estimating TSS [◦ Brix] and DMC [%] with 10 different regression methods (average of 100 runs): generalized
regression across 8 apple cultivars (‘‘All Cult.’’); regression fitted to single cultivar (‘‘Single Cult.’’); S – single spectra estimates; F – per-fruit
mean estimates.

S/F STATS. VAR. X670 IAD PLS LASSO RF BOOST GPR SVM FFNN ESB.

All Cult.

S

R2 TSS 0.24 0.3 0.41 0.48 0.61 0.59 0.58 0.56 0.6 0.64
R2 DMC 0.25 0.29 0.38 0.45 0.61 0.56 0.48 0.56 0.47 0.63
MAE TSS 1.85 1.8 1.52 1.53 1.30 1.34 1.38 1.42 1.36 1.27
MAE DMC 2.02 1.99 1.73 1.73 1.40 1.50 1.64 1.56 1.64 1.42

F

R2 TSS 0.28 0.36 0.56 0.57 0.73 0.73 0.68 0.66 0.69 0.71
R2 DMC 0.31 0.36 0.52 0.54 0.73 0.7 0.62 0.65 0.63 0.7
MAE TSS 1.77 1.69 1.33 1.41 1.10 1.12 1.23 1.27 1.19 1.17
MAE DMC 1.88 1.87 1.54 1.60 1.19 1.25 1.41 1.37 1.41 1.28

SINGLE CULT.

S

R2 TSS 0.48 0.42 0.41 0.46 0.54 0.5 0.46 0.44 0.46 0.53
R2 DMC 0.43 0.38 0.3 0.41 0.5 0.46 0.29 0.42 0.2 0.47
MAE TSS 1.51 1.56 1.60 1.56 1.37 1.45 1.49 1.54 1.54 1.45
MAE DMC 1.70 1.75 1.88 1.77 1.57 1.63 1.83 1.70 1.92 1.66

F

R2 TSS 0.65 0.57 0.57 0.58 0.69 0.66 0.60 0.58 0.59 0.64
R2 DMC 0.62 0.54 0.47 0.53 0.66 0.63 0.50 0.56 0.43 0.60
MAE TSS 1.27 1.38 1.36 1.41 1.18 1.23 1.31 1.35 1.33 1.28
MAE DMC 1.41 1.53 1.64 1.61 1.35 1.41 1.54 1.46 1.61 1.41
(multi-cultivar case) and once for a single overrepresented cultivar
(single-cultivar case). Additionally, we evaluated the estimation success
once for each individual spectral profile (single observations) and once
for per-fruit average TSS and DMC estimates. The latter are computed
by averaging both the reference and the estimated TSS and DMC values
per single fruit (before computing statistics). The main findings are
summarized in the following three subchapters.

3.1.1. Main results and comparison of regression models
On average, the best results were achieved by the RF algorithm,

reaching a mean R2 of 0.73 (MAE of 1.10◦ Brix and 1.19%) for per-
fruit (F) averages, in the multi-cultivar case. The values are comparable
for both TSS and DMC (97% correlated), with minor deviations due to
uncorrelated errors in reference measurements (technique dependent,
see Section 3.1.3). These results are similar to the state of the art
achieved by other in-house developed prototypes, however with several
advantages that will be discussed in detail in Section 4.1.

The estimates based on the single spectral profiles S are degraded
relative to per-fruit averages F (- 0.12–0.16 R2). As averaging can
notably reduce estimation uncertainty, we presume a strong presence
of random noise in measurements. This means that the estimates can be
improved by further averaging spectral profiles. This will be feasible in
the future use of the MSL technology, as multispectral point clouds can
contain many redundant acquisitions per single fruit (see Section 3.4).

The ensemble of estimators (ESB.) marginally overperformed rela-
tive to RF (R2 of 0.64 and 0.63 vs. 0.61) in the case of single spectral
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profiles (S), while other estimators underperformed. This indicates that
further estimation improvements are possible by using a more complex
regression model supported with a higher sample size.

The underperformance of PLS and LASSO regression relative to RF
indicates that simple linear relationships between the reflectance values
and the TSS and DMC are insufficient to model their association. Hence,
without adequate prior data transformations and preprocessing, using
PLSs is sub-optimal, despite being among the most established methods
in the related literature.

Furthermore, using single variable predictors (x670 and IAD)
showed limited success in modeling the distribution of TSS and DMC in
the multi-cultivar case, requiring high generalizability of the regression
model. Hence, the use of multispectral values brings significant benefits
(R2 of 0.73 vs. 0.28–0.36).

3.1.2. Single vs. multi-cultivar estimation
The most interesting observations are related to comparing the

estimation success in the case of a model trained for all cultivars vs.
a single cultivar. First, the results of RF are somewhat worse in the
case of a single cultivar, which is unexpected. Namely, it is assumed
that the variability of the observable fruit properties is smaller when
constraining to a single cultivar, making training the estimation model
easier. However, the RF successfully learned to generalize across dif-
ferent cultivars and it benefited from the increased sample size in the
multi-cultivar case.

We made a brief investigation to confirm that the values reported
in Table 3 for a multi-cultivar case are indeed representative of all



Computers and Electronics in Agriculture 224 (2024) 109128T. Medic et al.
Fig. 4. The best case TSS and DMC estimation results (1 out of 100 runs) with the best performing algorithm (RF): estimate based on individual observations, i.e. spectral profiles
(left); estimate based on per-fruit average of 6 observations (right).
cultivars in our dataset, as some of them are over and some underrepre-
sented considering the sample size. For that, we used a bootstrapping-
inspired approach where we computed per-cultivar MAEs based on all
test data residuals and compared them. Although we observed some
variability in the MAE values, the average MAE of eight cultivars
(value not influenced by the sample size) was comparable to the
values reported in Table 3 (approx. 10% lower). Hence, although, some
variations in the estimation success can be expected for different apple
cultivars, the data presented herein can be considered representative of
all cultivars. The small mismatch in the reported MAEs can be partially
attributed to the higher MAE of the overrepresented apple cultivar
relative to others (see Table 1), which could explain the observable
underperformance of the estimation model tuned for the single cultivar
case.

A striking observation is that in the single-cultivar case, the sin-
gle variable estimators only marginally underperform relative to RF.
Hence, it seems that the main advantage of multispectral data is
the possibility of generalization. The multispectral data is used for
the internal classification of apples within the estimation algorithm,
while it contributes less to the regression of the TSS and DMC values
themselves.

This observation has a strong implication for the potential use cases.
Namely, if the sufficient homogeneity of the fruits can be guaran-
teed, using a mono- or bichromatic LiDAR can be an effective way
of remotely estimating TSS and DMC in apples. Additionally, using
IAD vs. 670 nm alone showed no obvious benefits. Hence, our results
suggest that a monochromatic LiDAR could be used as a substitute
for handheld IAD devices allowing remote observations of certain fruit
quality metrics. These observations will be further validated by a
feature importance analysis in Section 3.2.

3.1.3. Best-case results and sample distribution
In Fig. 4 we present the best regression results using RF for a single

most favorable test-train split out of 100 runs. This was done to increase
the comparability of our results with similar studies that report statis-
tics of a single run and have restricted sample size, e.g. Fan et al. (2020)
and Mishra and Passos (2022). In this best-case scenario, the achieved
R2 of 0.91 and MAE of 0.61 ◦Brix for the per-fruit averaged TSS are
already on the level sufficient for use in practice and are comparable
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to the state-of-the-art results achieved using handheld spectrometers
(Section 4).

Visualizing the distribution of the individual estimates relative to
reference values before and after averaging additionally highlights how
effectively the results can be improved through per-fruit averaging,
which is well achievable in the scanning setting as demonstrated in
Section 3.4.

Finally, a noticeable difference in the distribution of corresponding
data points for TSS and DMC shows that their estimates are not directly
interchangeable despite high correlation. This indicates that the noise
of the reference values is significantly contributing to overall variance
in the data and that one of the limiting factors of the presented
experiment is the lack of rigorous acquisition of the reference values
in the dedicated laboratory, which could further positively impact the
estimation results. However, we had no access to such facilities for our
study.

3.2. Feature (wavelength) importance

The results of the feature importance analysis are summarized in
Fig. 5. To achieve a more generalizable valuation, and, hence, a less
dependent on the selected regression algorithm, we used five different
mechanisms for feature importance estimation which are inherent to
some of the implemented regression methods. More specifically, we
estimated feature importance by: the absolute value of the weights of
LASSO regression, variable importance in projection (VIP) scores in
PLS, permuting out-of-bag observations (OOB), and summing gains in
the mean squared error due to splits on each predictor (MSE) in RF,
as well as MSE for the boosted decision trees. All 5 feature importance
scores are normalized within the 0–1 range and stacked together.

The patterns observed in the figure support several hypotheses pre-
sented in the previous sections. First, the regression models for TSS and
DMC are supported by the same wavelengths. Second, the whole width
of the spectrum is used in the multi-cultivar case, while in the single-
cultivar case, there is a clear peak centered around 670 nm related
to the Chlorophyll A absorption. This explains the high estimation
accuracy of a single-wavelength regression model in a single-cultivar
case presented in Table 3, and confirms that multispectral data is of
benefit for obtaining a more generalizable estimation.
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Fig. 5. Feature importance scores for all wavelengths calculated using 5 different mechanisms inherent to some of the used regression algorithms, normalized (0–1) and stacked
together for generalizability: (a) TSS all cultivars, (b) DMC all cult., (c) TSS single cult., (d) DMC single cult.
In particular, the multivariate regression models use the whole
observable region of the visible spectrum (580 nm – 750 nm) and only a
few targeted wavelengths above 700 nm (740, 790, 800, 850, 890 nm).
In Tran and Fukuzawa (2020), the authors reported that the following
wavelengths were the highest contributors to the estimation of TSS (R2

of 0.86): 680, 730, 760, 900 nm. Some overlap between the values
exists, but it is not direct and further analysis needs to clarify if this
is due to particular instrument properties, e.g., the favorable signal-to-
noise ratio at particular wavelengths, due to fruit properties spawning
through neighboring spectral channels, or both.

3.3. Range spectral profiles

Table 4 compares the results of TSS and DMC estimation in the
following three cases: using reflectance spectra - RL (33 features), using
reflectance and range spectra - RL + RG (66 features), and using range
spectra alone - RG (33 features). The results are computed using the
best performing algorithm (Random Forest) using all apple samples (All
Cult.) and with the data processing as described in Section 2.4. The
main observation is that range spectra do not improve the estimation
results. On the contrary, likely due to the larger number of non-
informative explanatory variables, the performance of the RF with 66
features is somewhat degraded (drop in R2 of 1% for single spectra
estimates and 6% for per-fruit mean estimates).

There are several possible hypotheses as to why the range spectra do
not support the estimation. The first one is that the ranges do not carry
information on TSS and DMC. However, this can be dismissed based on
visual inspection of Fig. 3 (bottom) and observed correlations between
range and reflectance spectra (Section 2.3). The second hypothesis is
that range and reflectance carry the same information about TSS and
DMC due to power-to-phase coupling, which was already suspected
based on pre-analysis in Section 2.3. This hypothesis is supported by the
estimation results based on range spectra alone (Table 4). The estimates
are comparable to the RL ones, however, further degraded (drop in R2

of 10%–15%). These observations are also reinforced by the feature
importance analysis revealing that the same set of explanatory variables
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Table 4
Estimating TSS [◦Brix] and DMC [%] for all cultivars using RF by: reflectance (RL);
reflectance and range (RL + RG); range spectra (RG); S – single spectra estimates; F –
per-fruit mean estimates.

S/F STATS. VAR. RL RL + RG RG

S

R2 TSS 0.61 0.61 0.55
R2 DMC 0.61 0.60 0.52
MAE TSS 1.30 1.33 1.41
MAE DMC 1.40 1.47 1.61

F

R2 TSS 0.73 0.69 0.63
R2 DMC 0.73 0.69 0.62
MAE TSS 1.10 1.19 1.27
MAE DMC 1.19 1.31 1.45

was used to make the predictions (visualization omitted as the plot is
directly comparable to Fig. 5). Therefore, an additional investigation
of this phenomenon will be necessary to eventually benefit from the
spectrally resolved ranges in this use case. At this stage, they did not im-
prove the regression results, although our previous work demonstrated
that they can support the material classification (Han et al., 2022c).

There is a plausible reason why using range spectra was not advan-
tageous in this work, although it was helpful in material classification.
Namely, the laser beam of our prototype falls at somewhat different
locations on the sampled surface depending on the wavelength. The
positional changes of the footprint location are approx. of the same
size as the footprint diameter (6–8 mm). For reflectance data, this
poses no issues as apple properties change gradually (inhomogeneity
becomes apparent only over larger distances). However, as apples have
varying surface curvatures, the measured ranges do not depend only
on the material properties, but also on the local surface curvature.
Hence, the information related to TSS and DMC could be superimposed
by the information about the apple’s shape. This limitation of the
current prototype needs to be overcome to take advantage of spectrally
resolved range measurements when measuring non-planar surfaces.
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Fig. 6. Apples scanned with our multispectral LiDAR prototype at ≈ 5 m stand-off
range; RGB image with average TSS value in ◦Brix provided for each fruit (top);
corresponding 3D point clouds colored by per-point IAD values (middle) and AoI values
(bottom).

3.4. Demo of scanning capabilities

We additionally conducted a demonstration of how the results
presented in Section 3.1 relate to a prospective use case of multispectral
laser scanning of fruits at larger distances. The spectral profiles were
collected using the setup with a scanning unit (Fig. 1, right) and a spec-
trometer (Section 2.2), while reference measurements were acquired
along the whole scanned surface of eight apples (6 samples per fruit;
procedure as described in 2.1).

Fig. 6 presents an RGB image and point clouds of eight apples
scanned at a 5 m distance. We semi-arbitrarily chose two fruit samples
of four cultivars, governed by the fruit availability in the local super-
market and by a desire to achieve noticeable variability in TSS and
DMC values. The samples of different cultivars were distributed in two
corresponding rows with the following distribution from left to right:
2x Kanzi, 2x Greenstar, 2x Kiku, 2x Braubern (Fig. 6 (top)).

Fig. 6 (middle) presents the point cloud colored by the IAD index
values calculated from the per-point obtained spectral profiles. We
used IAD instead of TSS or DMC predictions based on the models
from Section 3.1 as the spectral profiles collected with this setup were
discretized by 1914 channels of 0.17 nm bandwidth (see Section 2.2).
Hence, this data and the trained regression models are not compat-
ible. Also, we did not use the reflectance at 670 nm alone due to
instrument-related systematic effects, which were partially canceled out
by introducing a spectral index, as they had a similar impact across all
wavelengths.

The IAD index was successful in approximating TSS and DMC based
on the multispectral 3D point cloud data. The IAD indices in Fig. 6
(middle) show a clear distinction between the fruits with different
TSS and DMC, which corresponds to the destructive reference mea-
surements given in Fig. 6 (top). We used per-single-point (S) and
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per-fruit averaged (F) IAD values to estimate TSS and DMC using simple
linear regression. Fig. 7 presents the results for TSS (DMC directly
comparable).

The per-fruit averaged IAD values (F) can successfully approximate
TSS with R2 of 0.74, which is directly comparable to the results
presented in Section 3.1.1. The statistics based on 8 data points (Fig. 7,
blue diamonds) has limited power, however, both LiDAR and reference
values were generated by averaging many observations (3 readings
at 6 locations per fruit for reference values and averaging all single
points per fruit; Fig. 7, orange points). Hence, although the exact
statistical quantities cannot be well generalized, they indicate that
the results presented in Section 3.1 can be extended to measurements
at higher distances with simultaneous acquisition of geometrical data
(i.e. acquisition of point clouds).

With this setup, we achieved good initial results in modeling relative
TSS and DMC content across four different apple cultivars using a
single variable predictor, the IAD index. This is contradictory to the
observations presented in Table 3, where IAD performs well only in
the single-cultivar case. Moreover, the achieved MAE of 0.58◦ Brix is
47% smaller than the best one achieved in Section 3.1.1. If this is due
to averaging a higher number of spectral and reference observations,
changes in our experimental setup (e.g. higher sensitivity of narrower
spectral bands) or related to the properties of the four sub-selected
apple cultivars should be further investigated.

The per-single-point (S) IAD values are notably more scattered
(Fig. 7, orange points) than per fruit averages (F), resulting in the
R2 of only 0.44. We argue that the reason for this is partially the
noise of the individual point estimates (corroborated by the drop in
MAE of 32% through point averaging) and partially the systematic
effects superimposing our IAD values, primarily, the angle of incidence
(AoI) effect. The AoI is known to significantly impact the spectral
measurements of plant materials regardless of the used measurement
technology (Behmann et al., 2016) and it cannot be canceled by gener-
ating simple ratios between the spectral channels (e.g. by IAD index),
as the effect depends on the wavelength.

The simultaneous acquisition of geometrical and spectral data in the
form of the 3D multispectral point clouds (Fig. 6) allows for calculating
the angle of incidence between the light beams and the fruit surface,
enabling the possibility of investigating the relationship between AoI
and spectral data.

Fig. 6 (middle) vs. (bottom) shows that the distribution of IAD
values roughly follows the distribution of AoIs. This observation is
corroborated by the significant negative correlations (Spearman’s rank
correlation coefficient, > 99% probability) between AoIs and IAD val-
ues for each of the eight fruits, reaching values of −68% (−48% in
average). This points out that increasing the quality of per-single-point
(S) TSS estimation and mapping local variations of fruit properties
will require further research related to the radiometric calibration of
backscattered light. Such efforts are out of the scope of this work.
However, the technology presented herein provides the tools for fa-
cilitating this research, as the simultaneous acquisition of geometry
and spectrum allow for establishing functional relationships between
the variables and eventually establishing the data-driven radiometric
correction approaches.

4. Discussion

We demonstrated that TSS and DMC can be estimated remotely
from spectral profiles acquired by a multispectral LiDAR instrument,
achieving minimum uncertainty (MAE) of 1.10 ◦Brix for TSS and 1.19%
for DMC, and 𝑅2 value of 0.73 for both fruit quality parameters. These
results fall somewhat short of the recent results achieved with com-
mercial handheld spectrometers (Table 5). However, they are achieved
with the fruit samples measured at 0.5 m stand-off distance under
uncontrolled illumination, hence, not requiring direct contact with the
fruit nor dark chambers to facilitate successful measurements.
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F

Fig. 7. Estimation of TSS by IAD values (extracted from multispectral 3D point clouds) using simple linear regression: S – based on individual spectral profiles (single data points),

– based on per-fruit averages.
Table 5
Summary of the reported fruit TSS and DMC estimation successes using portable spectrometers working in VIS/NIR range (Cultivars: S – single cult., M – multiple cult., Instrument
‘‘I.’’: C – commercial, P - prototype).

Value Amount CULT. Data Data processing I. REF.

𝑅2
𝑇𝑆𝑆 0.81 S 17004 samples, 1 orchard, 3 seasons PLS, no preprocessing C Biegert et al.

(2021)
𝑅2

𝐷𝑀𝐶 0.91 M 2252 samples, 1 orchard, 1 season,
rigorous reference measurements

extensive preprocessing, PLS C Mishra and
Passos (2021)

𝑅2
𝐷𝑀𝐶 0.83, 0.89 M 2252 samples, 2 seasons PLS, preprocessing C Teh et al.

(2020)
𝑅2

𝑇𝑆𝑆 0.95b, 0.85c S 625 samples PLS, extensive vs no preprocessing C Mishra et al.
(2021a)

𝑅2
𝑇𝑆𝑆 ;𝑅

2
𝐷𝑀𝐶 0.55–0.81a;

0.83–0.88a
M 1400 samples, 1 orchard, multiple seasons PLS, preprocessing, differing

training/validation splits
C Kumar et al.

(2015)
𝑅2

𝑇𝑆𝑆 ;𝑅
2
𝐷𝑀𝐶 0.90; 0.92 M 1575 samples, multiple orchards, multiple

seasons
PLS C Zhang et al.

(2019)
𝑅2

𝑇𝑆𝑆 ; 𝑅2
𝐷𝑀𝐶 0.88; 0.81 S 551 samples, 1 local vendor 1D-CNNs, best run report C Mishra (2022)

𝑅2
𝑇𝑆𝑆 0.77 S 440 samples, 3 vendors PLS, preprocessing, 1 run report with random

data split
P Fan et al.

(2020)
𝑅2

𝑇𝑆𝑆 0.86 S 80 × 2 samples, 1 supermarket PLS, preprocessing P Tran and
Fukuzawa
(2020)

𝑅2
𝑇𝑆𝑆 ; 𝑅2

𝐷𝑀𝐶 0.73; 0.73 M 80 × 6 samples, 1 supermarket Random-forest, no preprocessing P Ours

a R2 values of different training and validation splits (estimated based on the reported correlation coefficients).
b Extensive preprocessing.
c No preprocessing.
To summarize information from Table 5, combining established
hardware and software regularly achieves the performance of around
0.85–0.90 𝑅2 for both values of interest, while the maximum perfor-
mance with sophisticated regression models and extensive preprocess-
ing reaches 0.95 𝑅2. However, the studies analyzing the performance
of self-developed prototypes report a success of 0.75–0.85 𝑅2, which is
comparable to our results. Since we deploy a novel sensing technique,
which brings all the technical challenges of early development, a fur-
ther increase in estimation accuracy can be expected (see Section 4.1).
In contrast, the spectrometers paired with active illumination by broad-
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band incoherent light sources (e.g. LED lights) and requiring direct
contact with the fruit are present and continuously developing within
this domain for more than three decades (Watada, 1993).

Furthermore, in Section 3.4 we demonstrated TSS and DMC es-
timation at even larger stand-off distances (≈ 5 m), which could
technologically be further expanded to tenths or hundreds of meters.
This could allow sensing at distances that are out of reach of competing
technologies, such as hyperspectral cameras, and would, therefore,
allow for new use cases, primarily related to outdoor on-tree estimation
over whole fruit orchards.

Finally, we demonstrated the possibility of simultaneous acquisition

of geometrical (3D point clouds) and spectral data. The latter capability
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opens possibilities of simultaneously monitoring inner (e.g. demon-
strated TSS and DMC) and outer (shape and size) fruit quality factors,
which are of relevance for a number of applications as well (Musac-
chi and Serra, 2018). An additional important aspect of acquiring
geometrical data along with spectral is facilitating the radiometric
correction due to the angle of incidence effect. The effect is known
to systematically impact the acquired spectral data (see e.g. results in
Section 3.4), irrespective of the used sensor type, and is recognized as
a significant hindrance in plant phenotyping (Behmann et al., 2016).
Facilitating such a radiometric correction for hyperspectral imagery is
not trivial, as it would require the deployment of additional sensors
for 3D geometry acquisition and elaborate data integration workflows.
Hence, this highlights the additional relevant advantage of the MSL
relative to the established imaging technologies.

In the discussion above, we have highlighted the main advantages of
using the demonstrated sensing technology relative to the state-of-the-
art solutions. In the following sub-chapters, we discuss the limitations
of our study, the possibilities for future improvements, and the aspects
related to the generalizability and transferability of our findings to
prospective use cases.

4.1. Study limitations and future improvements

Multiple limitations of our study are potentially impacting the
estimation success in the conducted experiment, such as: limited sample
size for training regression models; lack of sophisticated preprocessing;
limited accuracy of reference measurements; limited precision of in-
dividual spectral profiles; acquired spectral data either missing some
information for estimation or being superimposed by other systematic
effects (e.g. disproportionally strong direct reflection from the fruit sur-
face relative to the beams penetrating to fruit tissue, angle of incidence
effect); sub-optimal experiment design choices (e.g. inconsistency of
2 cm thick apple samples for destructive measurements relative to
the expected light penetration depth, or using too wide bandwidths of
individual spectral channels).

However, there are many possibilities for addressing these chal-
lenges, besides conducting a more rigorous experiment. First, simply
acquiring a higher sample size would allow for training more complex
regression models, where deep learning algorithms, such as CNNs, were
proven to achieve state-of-the-art performance (Mishra and Passos,
2021). Additionally, algorithms such as 3D CNNs and PointNet could
be directly applied to multispectral point clouds of individual fruits and
eventually extract further information from the spatial variations in the
reflectance values. Alternatively, averaging more spectral profiles per
fruit, feature engineering, and intelligent preprocessing, e.g. by utiliz-
ing the PORTO method, can enhance the signal and dampen the noise
impact of irrelevant spectral features (Mishra et al., 2021b). Finally,
signal-to-noise ratio and sensitivity could be enhanced by further ma-
nipulation of LiDAR components and settings, e.g. by exchanging our
components with incoherent supercontinuum lasers or new generation
supercontinuum frequency comb lasers, adjusting power distribution
over spectral profiles, increasing integration time, optimizing beam
properties (focal point, beam waist, and divergence angle), etc.

Furthermore, the LiDAR data could be supplemented by additional
information provided by inexpensive sensors such as RGB cameras. We
presume that this could help to separate superimposed signals at the
most critical wavelengths centered around 670 nm, particularly the
superimposed signals of visible fruit color and absorption of chlorophyll
A in fruit mesocarp.

Also, additional information can be obtained already by further ex-
ploiting the observations of the herein-presented active remote sensing
technique. As demonstrated, the prototype we used provides spec-
trally resolved range measurements which are proven to carry addi-
tional information about material properties relative to the reflectance
data (Han et al., 2022c). Although that information source did not
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support the estimation results in this work, it is possible that this
could be changed if the technical limitations of the setup are resolved
(Section 3.3).

Besides range spectra, there is a possibility of using a rotating
linear polarizer in the MSL prototype (Han et al., 2022a) to separate
the polarized and unpolarized components of the backscattered light
from objects, which could decouple the signal directly reflected from
the surface of the fruit and the part of the signal de-polarized by
scattering from inner fruit tissue. This could help resolve the mentioned
problems of super-imposed signals, as well as increase the sensitivity to
the components of the signal that are of primary interest. Moreover,
this technology allows for tracking the angle and degree of linear
polarization as additional signal features, which were proven to be
useful for enhanced material probing (Han et al., 2023) and could
support fruit quality estimation as well.

4.2. Generalizability and transferability of the results

An important aspect of our results requiring attention is that using
multiple spectral channels instead of one primarily helps with regres-
sion model generalizability. This is relevant, as ideally, the TSS and
DMC estimation should be applicable across fruit cultivars, maturity
stages, and orchards with different soil and atmospheric properties, as
well as across growing seasons, without extensive recalibration of the
estimation models.

Nevertheless, relative TSS and DMC within a specific homogenous
subspace seem to be to a large degree explained by a single wavelength.
This is important information for the practitioners, as monochromatic
LiDAR is readily available, it is cheaper, and it could be already
implemented, as it was demonstrated in the case of monitoring banana
ripening (Saha and Zude-Sasse, 2022). This approach would, however,
require repeated model calibrations for specific datasets.

Another aspect relevant to the transferability of our results to real
application cases is the likely necessity for calibrating the TSS and DMC
estimates for the impact of temperature. Based on the experiences with
comparable reflectance spectroscopy devices, such calibration could
be simply facilitated by incorporating additional observations of the
ambient temperature into the regression model (Peirs et al., 2003).
However, investigating this is out of the scope of our work, as our
prototype is currently not portable and we cannot notably manipulate
the ambient temperature in our laboratory.

Finally, in our work, we focused on a subset of fruit quality metrics
that had strong evidence supporting their estimation using VIS-NIR
reflectance spectroscopy. Current research suggests that commercial
handheld spectrometers are either less sensitive or not fit for estimating
further relevant fruit metrics such as titratable acidity, fruit firmness,
and starch (Wang et al., 2015).

Active sensing with LiDAR can potentially offer more opportunities
than handheld spectrometers by exploiting the information beyond
reflectance. Firstly, spectrally resolved ranges, which among others
carry the information about laser beam penetration depth, could be
related to the material properties such as material density (Han et al.,
2022b), which could be linked to the fruit firmness. Secondly, we plan
to investigate if tracking the changes in the polarization of the emitted
laser beam could hold some proxies for further quantities of interest.
However, the sizeable benefits of the latter exploration will likely re-
quire substantial further instrumental development and research efforts
due to the high complexity of the interaction of polarized light with
biological tissues (Ghosh, 2013).

5. Conclusion

Within this work, we demonstrated that multispectral LiDAR, work-
ing in the VIS-NIR spectral range, can be used to remotely sense
certain fruit quality metrics. This bypasses the requirement of (near-

)direct contact with the fruit or controlled illumination conditions (dark
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chambers), which are prerequisites of standard methods used in chemo-
metrics. We demonstrated this in a case study of estimating total soluble
solids (TSS) and dry matter content (DMC) of store-bought apples of
different cultivars at a distance of approximately 0.5 m. Random forest
regression models topped the performance of commonly used partial
least squares (PLS) and achieved 0.73 𝑅2 for estimating both values
of interest, with a mean absolute error of 1.10 ◦Brix for TSS and
1.19% for DMC. Further analysis revealed that the main contribution
in the estimation can be credited to chlorophyll A absorption peak at
670 nm, which is a key component of the IAD index used to track fruit
maturity. Moreover, in the case when the regression was done only on
a single cultivar, the reflectance at 670 nm alone had a comparable
performance relative to the random forest estimates. This indicates that
the primary role of further spectral channels is in assuring a more
generalizable regression model. Finally, in a small-scale additional
experiment, we generated multispectral 3D point clouds of several
apples at a 5 m distance. We demonstrated that the abovementioned
observations are transferable to sensing at larger distances and to
multispectral scanning, which allows for the simultaneous acquisition
of spectral and geometrical data on analyzed fruits with a single system.

Our work presents a first attempt at using a mode-locked fem-
tosecond supercontinuum-based multispectral LiDAR in this application
domain. Hence, the study has its limitations, primarily a relatively
small sample size compared to similar investigations in the literature.
In future work, we aim to generate a more robust and generalizable
evaluation of the methodology potential for estimating fruit quality
metrics by expanding the number and diversity of measurement sub-
jects. Furthermore, we plan to explore the possibility of enhancing
the results and estimating further relevant fruit quality parameters
by supplementing the input data with phase delay spectral profiles,
by exploring the benefits of tracking the laser light polarization, and
by integrating further measurements of inexpensive additional sensors
such as RGB cameras.
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