Comparing remote and proximal platforms for crop N sensing in winter wheat

F. Argento¹, G. Perich², Q. Merz², T. Anken¹, A. Walter², and F. Liebisch¹ ¹ Water Protection and Substance Flows / Digital Production, Agroscope, 8046 Zürich, Switzerland

² Institute of Agricultural Sciences, ETH Zürich, 8092 Zürich, Switzerland

Isaria Reflectance Measurement Index (IRMI) maps of a field at BBCH 37 (15-05-2019) for the five different spectral devices and the respective ranges of variation.

2. Power regression of N_{up} on the spectral indices NDRE and IRMI (n = 104) (left panels). Passing-Bablok regression between measured and predicted N_{up} (right panels).

Highlights

- 1. **Spectral information** among five different optical sensor platforms **is comparable**, despite different properties (e.g. type, spatial and radiometric resolution and distance to crop).
- For all optical sensors the correlation (CCC and r) between measured and predicted N_{up} was in the range 0.80 0.88. The RMSE for the power regression ranged from 29 to 37 kg N ha⁻¹.
- 3. The resulting N-status map had a wider range of distribution of N application (kg N ha⁻¹) for the two UAV platforms compared to the satellite platform, in this case study.

References

CCC = 0.79r = 0.815**

> Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF Agroscope