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A B S T R A C T

Precompression stress, compression index, and swelling index are used for characterizing the compressive
behavior of soils, and are essential soil properties for establishing decision support tools to reduce the risk of soil
compaction. Because measurements are time-consuming, soil compressive properties are often derived through
pedotransfer functions. This study aimed to develop a comprehensive database of soil compressive properties
with additional information on basic soil properties, site characteristics, and methodological aspects sourced
from peer-reviewed literature, and to develop random forest models for predicting precompression stress using
various subsets of the database. Our analysis illustrates that soil compressive properties data primarily originate
from a limited number of countries. There is a predominance of precompression stress data, while little data on
compression index or recompression index are available. Most precompression stress data were derived from the
topsoils of conventionally tilled arable fields, which is not compatible with knowledge that subsoil compaction is
a serious problem. The data compilation unveiled considerable variations in soil compression test procedures and
methods for calculating precompression stress across different studies, and a concentration of data at soil
moisture conditions at or above field capacity. The random forest models exhibited unsatisfactory predictive
performance although they performed better than previously developed models. Models showed slight
improvement in predictive power when the underlying data were restricted to a specific precompression stress
calculation method. Although our database offers broader coverage of precompression stress data than previous
studies, the lack of standardization in methodological procedures complicates the development of predictive
models based on combined datasets. Methodological standardization and/or functions to translate results be-
tween methodologies are needed to ensure consistency and enable data comparison, to develop robust models for
precompression stress predictions. Moreover, data across a wider range of soil moisture conditions are needed to
characterize soil mechanical properties as a function of soil moisture, similar to soil hydraulic functions, and to
develop models to predict the parameters of such soil mechanical functions.

1. Introduction

Soil compaction caused by agricultural field traffic is recognized as
one of the most severe threats to soil quality in modern agriculture (FAO
and ITPS, 2015; Stolte et al., 2016), and the negative impacts of soil
compaction on crop productivity and soil functions are well documented
(Nawaz et al., 2013; Graves et al., 2015; Alaoui and Diserens, 2018). The
adverse impact of soil compaction, estimated to affect millions of hect-
ares of arable land worldwide (Schjønning et al., 2016; Schneider and

Don, 2019; Hu et al., 2021) is expected to worsen in the coming years
due to the ongoing trend towards the use of heavier machinery, thereby
increasing mechanical stress on the soil (Schjønning et al., 2015; Keller
et al., 2019). Given the persistence of soil compaction for years or de-
cades, particularly in the subsoil (Berisso et al., 2012), the environ-
mental and economic consequences of soil compaction are long-lasting,
affecting not only farmers but also the society at large. Restoring the
structure of compacted soil through mechanical methods such as deep
loosening is both energy and cost-intensive, and creates unstable soil
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conditions often with the risk of recompaction (Chamen et al., 2015;
Spoor, 2006). Therefore, preventing soil compaction is the most effec-
tive approach to preserve soil functionality.

Understanding a soil’s ability to resist compaction and determining
stress limits to prevent compaction requires knowledge of the
compressive behavior of the soil, which is characterized by a stress-
strain curve. This curve represents the changes in the soil volume as a
function of the applied stress and is commonly measured on cylindrical
soil samples in confined uniaxial compression equipment, also referred
to as an oedometer. The stress-strain curve provides three important soil
compression properties: the swelling or recompression index, the
compression index, and the precompression stress (Fig. 1). The
compression index is considered an indicator of the soil’s susceptibility
to compaction or its resistance to compression (Imhoff et al., 2004),
while the swelling or recompression index is used as a measure of
rebound and as an indicator of the soil’s mechanical resilience (Stone
and Larson, 1980). The precompression stress has been considered as an
indicator of the historical stress to which the soil had previously been
subjected and of its load support capacity (Lebert and Horn, 1991).

According to theory, soil deformation is assumed to be elastic and
recoverable if the stress applied is smaller than precompression stress.
However, if the load applied produces a higher stress than pre-
compression stress, it results in plastic deformation, leading to perma-
nent soil compaction (Lebert and Horn, 1991). Thus, soil compaction
caused by agricultural field traffic could in principle be prevented by
ensuring that the exerted stress does not exceed the given soil’s pre-
compression stress. The precompression stress concept has been applied
in various studies to derive soil strength and evaluate the risks of soil
compaction (e.g. van den Akker, 2004; Lamandé et al., 2018; Kuhwald
et al., 2022).

The labor-intensive nature of performing soil compression tests
limits the application of soil precompression stress across a wide range
of soil texture and soil moisture conditions. Consequently, pre-
compression stress is often derived through pedotransfer functions
(PTFs) (e.g. Lebert and Horn, 1991; Imhoff et al., 2004; Rücknagel et al.,
2012; Severiano et al., 2013; Schjønning and Lamandé, 2018;
Schjønning et al., 2023). These functions typically rely on readily
available soil properties such as soil bulk density, soil organic carbon
content, soil texture, and soil water content. However, some authors,
such as Lebert and Horn (1991), also used less accessible predictors,
including angle of internal friction, cohesion, and saturated hydraulic
conductivity, complicating the use of PTFs due the data demand.

Additionaly, these functions are typically developed for specific
geographic regions, based on few data, restricting their broader appli-
cability. Furthermore, when these functions are tested on independent
data, they often exhibit relatively poor predictive performance.

Machine learning algorithms, such as random forest, have been
employed by the soil science community to improve the prediction of
soil properties that involve complex, non-linear relationships, which
traditional statistical methods like multiple linear regression may not
capture effectively. These applications include predicting soil organic
carbon stock (Sarkodie et al., 2023), soil pH (Makungwe et al., 2021),
soil bulk density (Palladino et al., 2022), soil hydraulic properties
(Zhang et al., 2021), as well as digital soil mapping (van der Westhuizen
et al., 2023). Furthermore, random forest models have been used to
identify which co-variables influence soil water retention and flow
(Koestel and Jorda, 2014; Gao et al., 2018). To predict soil pre-
compression stress, random forest algorithms have been applied by
Ebrahimzadeh et al. (2023) with soil properties and remote sensing data
as predictors.

In this study, our aim was to develop a database of soil compressive
properties with additional information on soil properties, site charac-
teristics, and methodological aspects sourced from peer-reviewed liter-
ature. We present a synthesis of the available data, and develop
predictive models, using the random forest technique to predict pre-
compression stress from readily available soil and environmental in-
formation. Based on these analyses, we highlight current limitations to
the development of predictive models, identify key knowledge gaps, and
provide recommendations to advance future research.

2. Soil compressive properties database

2.1. Data collection

We searched published peer-reviewed journal articles in the data-
bases Web of Science and Scopus in February 2022. The search terms
used in the topic (title, abstract, keywords) were “soil precompression
stress”, “soil compression index”, “soil compaction index”, “soil
recompression index”, “soil swelling index”, “soil precompaction stress”
and “preconsolidation pressure”. A total of 1235 publications were
found. These references were added to the citation management appli-
cation Endnote Web for removing duplicates and exported to the VOS-
viewer bibliometric mapping software (van Eck and Waltman, 2010) to
create a network visualization of the most common terms used in the

Fig. 1. Example of soil compression curve, expressed in terms of void ratio as a function of the logarithm of applied stress. Soil deformation is plastic, irreversible
along the virgin compression line (VCL) and elastic and reversible along a swelling line (SL). The slope of the VCL is termed compression index, Cc; the slope of the SL
is termed swelling index, Cs (A). Determination of precompression stress (σpc) according the Casagrande (1936) and Dias Junior and Pierce (1995) methods (B).
Adapted from Keller et al. (2011).
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selected studies. After removing duplicates (437 studies), the references
were exported to the Rayyan software (Ouzzani et al., 2016) for
screening by title and abstract based on the following pre-defined
criteria: i) the article is peer-reviewed, with full text available, ii) soil
compressive properties were derived from laboratory confined uniaxial
compression tests on undisturbed soil samples, and iii) descriptive in-
formation about the soil(s) studied was provided. After these re-
strictions, 296 papers were selected for full-text reading. Language
restriction was not applied during the selection of the studies, but only
studies written in the Latin alphabet were selected. After a full-paper
review, we identified 127 papers where the data on soil compressive
properties were reported in numerical format or legible graphical format
and considered suitable for inclusion in the database. Details of the data
source papers, including the title, the authors, and the publication year
are given in Supplementary Table S1.

For each study, we systematically recorded data on soil compressive
properties, i.e. compression index, swelling index, and precompression
stress, as well as descriptive data categorized into four groups: (1) static
soil properties (e.g. soil texture), (2) soil moisture status indicators (i.e.,
water content and/or matric potential), (3) site characteristics, and (4)
methodological aspects. In total, we compiled 4644 individual data
entries.

In a number of cases, important information that was not presented
in the paper was obtained directly from the authors. If more than one
paper reported the same experiment, we selected the paper that pro-
vided more detailed information. However, we held on to both papers if
they provided complementary information. For studies that compared
several methods to calculate soil precompression stress, we only
collected the precompression stress data calculated by the Casagrande
(1936) method, which is widely accepted and used as a standard
method.

The WebPlotDigitizer software (Rohatgi, 2015) was used to extract
data from figures in original publications. The collected data were
converted to the same unit (e.g., precompression stress in kPa, water
content in kg kg− 1, matric potential in hPa, soil organic carbon in g kg− 1,
etc.) to allow comparing data of different studies. The following calcu-
lations were performed to standardize the data when deemed necessary:
i) in studies where only soil organic matter (SOM) was reported, the soil
organic carbon (SOC) was obtained assuming that SOC was 58 % of
SOM, ii) when only total soil porosity was provided, the soil bulk density
was calculated assuming a soil particle density of 2.65 Mg m− 3, iii) when
possible, soil water content data expressed on a volumetric basis were
converted to gravimetric basis by dividing it by the corresponding soil
bulk density, and iv) all texture data were standardized to the USDA
classification system, which defines the silt/sand boundary at 50 μm,
using a “k-nearest neighbor” type algorithm based on Nemes et al.
(1999).

A simplified climatic classification of the study locations was per-
formed using the latitude of each location. Areas located between the
latitudes 0◦ - 23◦, 23◦ - 35◦, and 35◦ - 66◦ (north or south) were
considered under tropical, subtropical, and temperate climate, respec-
tively. Table 1 shows a more detailed description of the data compiled in
this study. The complete database is published by Torres et al. (2023)
and can be accessed at https://zenodo.org/records/10060810. The
rights of use are defined by a creative commons license (CC BY 4.0).

2.2. Data analysis

We used descriptive statistics to summarize and diagnose the
collected data. Initially, we assessed the distribution of data entries on
soil compressive properties, i.e. compression index, swelling index, and
precompression stress. Due to the limited availability of data on soil
compression index and swelling index, subsequent analyses focused on
precompression stress data. Specifically, we examined the geographical
distribution and the representation of soil properties and conditions,
land use, and soil management, the diversity of methodological

procedures during uniaxial compression tests, and calculation methods
employed to obtain precompression stress data.

2.3. Overview of entries included in the database

The 127 published studies included in the database cover the pub-
lication period from 1992 to 2021 (Supplementary Table S1). Data
availability for soil compressive properties and descriptive data reported
in each paper exhibited high variability. This resulted in a heteroge-
neous database with varying dataset sizes for different variables, as
shown by available and missing data in Table 1.

Table 1
Overview of the included data in the soil compressive properties database.

Variable Unit Available Missing Description

Precompression
stress

kPa 4674 69 -

Compression index - 600 4143 -
Swelling index - 149 4594 -
Clay % 4566 177 -
Silt % 4410 333 -
Sand % 4410 333 -
Texture class - 4410 333 Soil textural classification

according USDA
Soil organic carbon g

kg− 1
2465 2278 -

Soil matric
potential

- 2099 2644 Soil water matric potential
expressed by log before
loading

Soil water content kg
kg− 1

3056 1687 Gravimetric soil water
content before loading

Bulk density Mg
m− 3

3528 1215 Soil bulk density before
loading

Depth 4336 407
Land use - 4630 113 Land use classified into

four categories: arable,
forest, grassland, and
native vegetation. The
latter includes forest,
grassland, and savanna

Tillage system - 2900 521 Tillage system for arable
soils, classified as
“conventional” and
“conservation”

Climate - 4618 125 Climatic regions classified
as temperate, tropical,
subtropical

Calculation
method of σpc

- 4642 101 Calculation method for
estimating precompression
stress (σpc)

Minimum stress kPa 4496 247 Minimum stress applied in
soil compression tests

Maximum stress kPa 4496 247 Maximum stress applied in
soil compression tests

Stress application
procedure

- 4707 36 Stress application type
during soil compression
tests classified as:
1=stepwise stress 2=one
sample per stress 3=strain
controlled

Number of steps - 4073 553 Number of steps in
stepwise stress application
procedure

Loading time min 1896 2736 Time for load application
in each step in stepwise
stress application and one
sample per stress procedure

D/H sample ratio - 3903 840 Ratio between diameter
and height of the soil cores

Soil compression
curve
components

- 3901 842 Component of the soil
compression curve related
to the soil packing state:
soil bulk density, void
ratio, and strain.
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2.3.1. Soil and site properties
In 98.5 % of data entries, precompression stress data were reported.

However, only around 13 % and 3 % of the total data entries represent
soil compression index and soil swelling index data, respectively. Our
analysis included soils from 20 countries, with a significant concentra-
tion of the studies originating from Brazil (approx. 52 %), followed by
Germany, Switzerland, Sweden, and Denmark collectively contributing
with 32 % of the studies. More than 74 % of data entries are from Brazil,
followed by Switzerland, Germany and Sweden, together accounting for
approximately 19 % of data entries. Hence, more than 90 % of all data
are from four countries only (Fig. 2). In temperate regions, Inceptisols
and Alfisols dominated, together accounting for about 67 % of the data.
In tropical and subtropical regions, predominantly represented by Bra-
zilian data, Oxisols comprised approximately 57 % of the entries, fol-
lowed by Ultisols with 20 %.

The contents of clay, silt, and sand ranged from 5 to more than 80 %,
covering a broad range of soil textures (Fig. 3). Clay was the predomi-
nant textural class in the database, accounting for 41 % of the entries,
followed by sandy clay loam, sandy loam, and silty loam with 20 %,
12 %, and 9 % of the entries, respectively (Fig. 3). The predominance of
the texture class clay is mainly due to data from Brazil, where 95 % of
the soils with clay texture originated. When examining the data of soil
textural distribution from different climatic regions, it became apparent
that the climatic regions represented distinct soil textural types. Soils
from tropical and subtropical regions are characterized by very low silt
content, whereas soils from temperate regions generally have greater silt

content, occupying a distinctly different area of the USDA soil texture
triangle (Fig. 4).

In most of the reviewed publications, several samples are associated
with the same combination of clay, silt and sand content. As a result,
different values of precompression stress exist for the same values of
sand, silt, and clay, which explains the smaller number of data points
displayed in the textural triangle (Fig. 4) compared to the number of
data entries shown in Fig. 3.

The majority of soil bulk density values ranged from 1.2 to 1.7 Mg
m− 3, and a great part of the soil samples (97 % of entries with available
SOC data) had a soil organic carbon content of less than 50 g kg− 1

(Fig. 3). The majority of data (72 %) are from arable soils, with 62 % of
those data from conventionally-tilled fields, i.e. ploughed fields.
Managed forest and grassland are the second and third most common
land use type represented in the database, accounting for approx. 17 %
and 6 %, respectively. Native vegetation accounts for approx. 3.5 % of
the data. Approximately 71 % of the entries are from the top 30 cm of a
soil (Fig. 3).

2.3.2. Soil conditions at the start of the compression tests
The initial soil water content was reported for 64 % of the pre-

compression data entries, whereas only 44 % provided information on
initial matric potential, expressed in our study by pF=log10(ψ [hPa]),
where ψ represents the soil matric potential. Only 18.8 % of the data
entries had both the soil water content and the soil water matric po-
tential. The gravimetric water content ranged from 0.02 to 0.89 kg kg− 1,

Fig. 2. Geographical distribution of studies and data entries for precompression stress included in the database.

L.C. Torres et al.
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while the matric potential ranged from saturation to wilting point
(pF~4.2). The most frequent initial matric potential was pF 1.8 (-60
hPa), representing 42 % of the pF data entries, followed by pF 2 (-100
hPa), which accounted for 17 % of entries (Fig. 3). Approximately 83 %
of the precompression stress values were measured on soil samples that
were wetter than pF 2.5 (-330 hPa). These values often represent what is
considered an approximation of matric potential at “field capacity” in
various countries (e.g. pF 1.8 in Germany and Switzerland, pF 2.0 in
most other European countries, and pF 2.5 in the US.).

2.3.3. Methodological procedures during uniaxial compression tests
The procedure used for stress application on the soil samples was

mainly the stepwise stress application method (98 % of data entries),

while the constant strain rate method was applied in only 1.6 % of the
entries. In the stepwise stress application method, the number of steps
ranged from 3 to 16, with most sequences having 7 steps. The loading
time ranged from 0.5 min to 1380 min, with 5 min and 30 min being
prevalent, representing 15.5 % and 10.5 % of the data, respectively
(Fig. 3). For around 50 % of the precompression stress data entries, the
stress was applied on soil samples until 90 % of the maximum defor-
mation was reached. For these samples, no loading time was reported.
The minimum stress applied during the compression tests was between 1
and 50 kPa, while the maximum applied stress ranged from 200 kPa to
4800 kPa. The most frequently applied maximum stresses were 1600
kPa with approximately 60 % of data entries, and 800 kPa, representing
15 % of the data (Fig. 3).

Fig. 3. Data distribution of supplementary variables for precompression stress data. BD: bulk density, SWC: soil water content, pF: log10(ψ [hPa]), N steps: number
of steps in stepwise stress application procedure, D/H ratio: ratio between diameter and height of the soil cores, curve components: component of the soil
compression curve related to the soil packing state, and textural class C: clay, CL: clay loam, L: loam, LS: loamy sand, S: sand, SC: sandy clay, SCL: sandy clay loam,
SL: sandy loam, Si: silt, SiL: silt loam, SiC: silty clay, SiCL: silty clay loam.

L.C. Torres et al.
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2.3.4. Compression curve representation and precompression stress
calculation methods

The component of the compression curve relating to the soil packing
state was most commonly represented by soil bulk density (approx.
52 %), followed by void ratio (approx. 22 %) and strain (approx. 9 %),
which refers to the change in the soil sample height (settlement) relative
to its original height (Fig. 3). The stress component of the compression
curve was represented in a logarithmic form in the entirety of the
entries.

The database comprised eight different methods for calculating
precompression stress from the stress-strain curve (Table 2). The
methods described by Dias Junior and Pierce, (1995) and Casagrande
(1936) were most commonly used, representing 52 % and 36 % of the
data entries, respectively. The method described by Lamandé et al.
(2017) showed the lowest number of data entries, but it is also the most
recently published method. The Casagrande (1936) method has been
applied in studies across different climatic regions, including temperate,
tropical, and subtropical areas. Other methods were associated with
certain regions. For example, the Dias Junior and Pierce (1995) method
was predominantly used in studies from the tropical region (Table 2).

Across all data, precompression stress ranged from approximately 5
to 1250 kPa (Fig. 5). Among the different precompression stress calcu-
lation methods, most showed similar distributions of precompression
stress, with the majority of the entries with values for precompression
stress smaller than 200 kPa. However, the Dias Junior and Pierce (1995)
method showed a data concentration at higher values of precompression
stress compared to those obtained with other methods (Fig. 5).

The initial moisture status was expressed in different units for the
two most represented methods. The entries in which the Casagrande
(1936) method was used, moisture status was predominantly expressed
in terms of the soil’s matric potential, while 90 % of the entries in which
the method of Dias Junior and Pierce (1995) was used had it expressed

Fig. 4. Distributions of climatic regions in the texture triangle of the
USDA system.

Table 2
Methods for calculation of precompression stress (σpc) and data entries for each
climatic region included in the database.

σpc calculation method Data entries

Temperate Tropical Subtropical

Casagrande (1936) 874 552 253
Dias Junior and Pierce (1995) 15 2029 277
Gregory et al. (2006) 103 210 0
ABNT (1990) 0 33 85
Casini (2012) 70 0 0
Culley and Larson (1987) 25 0 0
O’Sullivan and Robertson (1996) 0 10 0
Lamandé et al. (2017) 2 0 0

Fig. 5. Precompression stress (σpc) data entries through different methods of
calculation represented by boxplots. The median is represented by the line in
the box, the edges of the box indicates the quartiles, and the whiskers represents
the variability of the data outside the upper and lower quartiles. Points that are
located beyond the whiskers are often termed "outliers.".

Fig. 6. Distribution of soil water content (A) and matric potential (B) data
through the two most common methods for precompression stress (σpc) calcu-
lation in the database. N indicates the number of entries. The median is rep-
resented by the line in the box, the edges of the box indicates the quartiles, and
the whiskers represents the variability of the data outside the upper and lower
quartiles. Points that are located beyond the whiskers are often
termed "outliers.".

L.C. Torres et al.
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as soil water content (Fig. 6).

3. Random forest models for predicting soil precompression
stress

3.1. Random forest algorithm development

Random forest (RF) is a machine learning methodology designed for
regression and classification problems, constituting an ensemble of
classification and regression trees developed on randomized subsets of
the data (Breiman, 2001). To develop each individual tree model, a
subsample of data is selected randomly from the calibration dataset for
which the algorithm finds the best set of predictor variables that help
reduce variance in the output response within each tree node, and
maximize the variance between nodes. In the RF approach, the number
of trees and the number of predictor variables used are tuning param-
eters, i.e. parameters to be optimized. Due to the use of multiple trees
and random sampling, RF is less susceptible to issues such as overfitting
in the training process. Therefore, RF leads to robust results. In this study
we used the randomForest package (Liaw and Wiener, 2002) in the R
statistical software (version 4.3.2) to build the RF models.

Random forest models were developed using various subsets of the
database, as detailed below. Each subset was randomly divided into
training data (ca. 70 % of the data) and test data (ca. 30 % of the data)
through a random sampling approach. When dividing the data, we
considered that samples with identical soil properties were typically
assessed in multiple steps of applied stress, which means that such ob-
servations in the database are co-dependent. Therefore, we randomized
the data with the constraint that samples from the same study could not
be in both the training and the test data set. As a result, the targeted
70–30 % ratio could not always be accurately met, but the actual pro-
portions are being reported for each derived model (Table 3).

For each training dataset, a specific set of predictors (Table 3) was
chosen to formulate the random forest model. The database contains
numerous potential predictors, but because of missing data, there is a
trade-off between the number of predictors and the size of the usable

data set. Therefore, our choice of input variables was advised by their
expectable influence on the estimated variable, and the intention to
maximize data support to the resulting model.

Initially, we developed two distinct RF models, referred to here as
RF1 and RF2, using largely identical predictors (clay, silt, sand, SOC, BD,
SWC, pF, soil depth, method of calculation, and climate), with the only
difference being that RF1 includes data entries with soil water content
and RF2 includes data entries with soil matric potential as character-
ization of initial soil moisture status. Due to the limited overlap in the
available soil moisture indicators, incorporating both such indicators
would have resulted in a critically small number of selected samples.

Additional models, RF3 and RF4, were developed based on more
selective subsets. In order to test our approach on more homogeneous
data subsets, we limited the data to two subsets containing samples for
distinct climatic regions (temperate vs. subtropical and tropical) and we
limited the datasets to a single, dominant calculation method within
each such subset. Due to data availability, this selection also defined two
different soil moisture indicators to be used. As a result, the RF3 model
was developed using data from subtropical and tropical regions from
studies that adopted the precompression stress calculation method
developed by Dias Junior and Pierce (1995) and used soil water content
as moisture status indicator, while the RF4 model was built using data
from the temperate region that adopted the Casagrande (1936) method
for calculating precompression stress and used soil matric potential as
moisture status indicator. Description of the subset and predictors to
train and validate the random forest models are presented in Table 3.
The distribution of data used to develop and train the random forest
models are available in Supplementary material (Supplementary
Figs. S1-S8).

The described set of predictors was used to train the RF model for
each subset independently. The RF models were calibrated and inter-
nally assessed using 10-fold cross-validation. Evaluation metrics, such as
the coefficient of determination (R2) and root mean squared error
(RMSE) were averaged across the 10 validation folds. The mtry hyper-
parameter, which indicates the number of variables considered at each
split, was optimized based on minimizing the RMSE obtained on the
validation portion of the data. The number of trees was set to 300. The
results for RF models calibration are presented in Table 4.

To evaluate the importance of variables in the RF models, we used
the increase in node purity as criterion that accounts for reduction in
impurity in each tree node that results from splitting a particular vari-
able. Variables that cause the greatest reduction in impurity are
considered the most important.

3.2. Model evaluation using independent data

We evaluated the performance of the RF models on the independent
test data set for each model using RMSE and R2 as evaluation criteria.
Recognizing the sensitivity of these metrics to outliers, we also incor-
porated the median absolute percentage error (MAPE) as an additional
metric to evaluate the model performance. In addition to evaluating the
models derived herein, we compared the performance of our models
with some existing models that were developed from soils of similar
climatic regions and that used a comparable set of input variables.
Therefore, the RF3 model was compared with the pedotransfer function

Table 3
Subset and predictors details to train and validate the Random forest models.

Model Subset description Predictors Training
data

Test
data

RF1 All database Sand, silt, clay,
organic carbon,
bulk density, water
content, depth,
method of
calculation, climate
region, and land use

962 (16)* 249 (8)

RF2 All database Sand, silt, clay,
organic carbon,
bulk density, matric
potential, depth,
method of
calculation, climate
region, and land use

552 (28) 204 (12)

RF3 Data from tropical and
subtropical regions that
applied Dias Junior
and Pierce (1995)
method for calculation
of precompression
stress

Sand, silt, clay,
organic carbon,
bulk density, soil
water content,
depth, and land use

491 (8) 491 (4)

RF4 Data from temperate
region that applied
Casagrande (1936)
method for calculation
of precompression
stress

Sand, silt, clay,
organic carbon,
bulk density, matric
potential, depth, and
land use

285 (12) 40 (6)

* The number in parentheses indicates the quantity of studies from which the
data originated.

Table 4
The optimized random forest parameter (mtry), mean for the squared correlation
coefficient (R2) and root mean square error (RMSE) across the 10-fold cross-
validation.

Model mtry R2 ± std RMSE ± std

RF1 4 0.86± 0.007 56.90 ± 1.41
RF2 2 0.60± 0.006 34.35 ± 0.33
RF3 3 0.85 ± 0.009 62.04 ± 1.76
RF4 2 0.54 ± 0.005 31.98± 0.32
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proposed by Imhoff et al. (2004), and the RF4 model was compared with
the model proposed by Schjønning and Lamandé (2018).

In general, best predictive performance was observed for those
models that used soil water content as predictor, i.e. RF1 and RF3,
explaining 42 % and 48 % of the variability in precompression stress,
respectively (Fig. 7A and C). Models RF2 and RF4 used soil matric po-
tential as a predictor and explained 27 % and 43 % of the variability in
precompression stress (Fig. 7 B and D). Although the RF1 and RF3 model
exhibited the highest R2 value for the independent data, they recorded
the highest RMSE (87.21 and 90.96 kPa). The smaller MAPE values of
the RF1 and RF3 models (26.7 % and 18.3 %) compared to those of the
RF2 and RF4 models (29.0 % and 35.1 %) also signal their stronger
predictive capability (Fig. 7).

3.3. Variable importance for the precompression stress predictions

Variable importance ranking is presented in Fig. 8. In the RF1 and
RF3 models that are dominated by soils from (sub-) tropical regions, the
soil water content and silt content were the most important variables, as
well as the calculation methodology in case of RF1. In RF3, methodology
was not a variable as the data was restricted to one method, the Dias
Junior and Pierce (1995) method. All other variables had much less
significance in these two models. In RF2, climatic region, soil matric

potential and soil organic carbon content were the three most dominant
variables, but interestingly, when the data were restricted to the
temperate climatic region (RF4), the significance of soil bulk density and
soil depth became amplified and the relative importance of soil matric
potential reduced substantially.

3.4. Comparison of prediction performance of RF models and existing
pedotransfer functions

When applying the Imhoff (2004) model to the test data used to
validate the RF3 model, a considerable number of negative estimates for
precompression stress were obtained (Fig. 9A). This indicates a limita-
tion in this model’s applicability. When examined closer, the soil
moisture range of the data used to develop the Imhoff et al. (2004)
model was limited to the range of 0.08–0.28 kg kg− 1, whereas our test
data set contained samples with initial water contents up to 0.6 kg kg− 1.
In some cases such extrapolations do not yield obvious discrepancies,
but in this case the formulation of the Imhoff (2004) model hints why it
is not applicable beyond its original data range. The model uses a co-
efficient with a large negative number to multiply the soil moisture
value with (c.f. − 773.057 in Table 3 of Imhoff et al., 2004), which can
explain the very low (negative) predictions for samples of high water
content.

Fig. 7. Predicted precompression stress (σpc) by Random Forest models RF1 (A), RF2 (B), RF3 (C), and RF4 (D) versus measured σpc.
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The RF4 model (Fig. 7D) outperformed the pedotransfer function
developed by Schjønning and Lamandé (2018) (cf. Figs. 7D and 9B).
While the comparison involved selecting models developed using data
from similar climatic regions and with similar input variables, it is
important to note that differences in methodological approaches be-
tween our test data and the data used to develop these models may
impact their predictive power. For instance, our test data for RF3 and
RF4 models used the Dias Junior and Pierce (1995) and Casagrande
(1936) methods for estimating precompression stress, respectively. In
contrast, the Imhoff et al. (2004) model used for comparison with RF3
utilized the Casagrande (1936) method, while the Schjønning and
Lamandé (2018) model used for comparison with RF4 utilized the
Lamandé et al. (2017) method for estimating precompression stress.

4. Discussion

4.1. Data collection of soil compressive properties

4.1.1. Data gaps for most part of the world
The extensive data compilation predominantly features information

from only a few countries, namely Brazil, Germany, Switzerland, Swe-
den, and Denmark. This highlights a considerable underrepresentation
or even absence of data from many parts of the world. The high number
of studies from Brazil (64 papers included) can be partly attributed to
the inclusion of publications in Portuguese (24 studies). We considered
all peer-reviewed papers written with the Latin alphabet, but we only
found papers in English and Portuguese that fulfilled all selection
criteria. The large number of data entries for precompression stress from
Brazilian studies (Fig. 2) is due to several studies presenting data of
precompression stress from single soil samples for varying levels of soil

Fig. 8. Relative importance of the predictors for modeling precompression stress by random forest models, RF1 (A), RF2 (B), RF3 (C), and RF4 (D). SWC: soil water
content, MP: soil matric potential, SOC: soil organic carbon, BD: soil bulk density, LU: land use.
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water content, obtained by air drying soil samples over a range of time
(see e.g. Araujo-Junior et al., 2011; Guimarães Júnnyor et al., 2019 -
Table S1). Other studies have primarily reported mean values of pre-
compression stress for specific soil matric potentials or for field moisture
conditions (see e.g. Keller et al., 2004; Pesch et al., 2020;Supplementary
Table S1), which results in a smaller number of data entries (i.e., pre-
compression stress and corresponding matric potential or corresponding
water content).

4.1.2. Lack of data entries for compression index and recompression index
In our literature search, we found much more data on pre-

compression stress than on compression index or recompression index.
While compression and recompression indexes are relevant for under-
standing the soil resistance and resilience to compression forces (Imhoff
et al., 2004; Kuan et al., 2007), for characterizing the soil stress-strain
behavior and hence for modelling soil deformation, the pre-
compression stress represents a limit of mechanical stress above which
soil deformation becomes permanent (Lebert and Horn, 1991). The
dominance of precompression stress data in our dataset can be attrib-
uted to its direct applicability in risk assessment for preventing soil
compaction. Consequently, scientists have prioritized quantifying this
soil property over compression and recompression indexes, despite these
indexes being derived from the same stress-strain curve.

The strong prevalence of precompression stress data from topsoils
(0–30 cm soil depth) of conventionally tilled arable fields could reflect a
negligence of the soil compaction threat in other tillage systems, e.g.
reduced tillage and no-till, in other ecosystems such as forests and
grassland, and of deeper soil layers (subsoil compaction) (Fig. 2). The
latter observation is particularly interesting, and at the same time per-
plexing and worrying. While topsoil compaction is not negligible, sub-
sequent tillage practices can, to some extent, mitigate compaction
effects. In contrast, there is documented evidence of long-term (decades
to centuries) persistence of subsoil compaction and associated negative
consequences on soil functioning (Berisso et al., 2012; Keller et al.,
2019). Consequently, information on precompression stress seems less
relevant for conventionally tilled topsoils than for subsoils. Our
compilation and analyses of published information reveals a critical
need for obtaining precompression stress data from subsoil layers in
order to provide guidance for avoiding subsoil compaction.

4.1.3. Methodological inconsistences
Various studies employed different procedures to perform soil

compression tests, as evident in our data compilation (Fig. 2). It is well
known that methodological aspects significantly impact soil deforma-
tion during compression tests, thus influencing the magnitude of
compressive properties derived from them. Previous studies have re-
ported the effects of soil-cylinder wall friction on vertical stress during
compression tests (Koolen, 1974) and its interaction with sample di-
mensions (Lima and Keller, 2019). Lebert et al. (1989) demonstrated
that precompression stress increases with loading time, and that this
influence is higher in more fine-textured soils.

Besides the influence of procedures to perform compression tests,
consistent findings, including those by Keller et al. (2004), Cavalieri
et al. (2008) and De Pue et al. (2020), highlighted that different calcu-
lation methods yield varying values for precompression stress.
Furthermore, discrepancies in precompression stress values have been
observed when different variables are used to represent soil packing
state in compression curves. The use of void ratio and strain yields the
same precompression stress value, given their linear relationship.
However, the use of bulk density to represent soil structural changes
during compression leads to higher precompression stress values
(Mosaddeghi et al., 2003; Rücknagel et al., 2010).

The lack of standardization in the methodological procedures for
obtaining precompression stress undermines the usability of pre-
compression stress and difficulties in the development of models for
prediction of precompression stress based on combined datasets. Since a
complete standardization may be considered difficult to achieve for
practical reasons, given the variability in equipment and resources
among different soil laboratories, conversion functions that translate
results from one method to another would be of great value.

The predominance of data for moist to wet initial soil conditions (pF
1.8–2.5) is linked to the fact that soil is most prone to compaction under
moist conditions. For this reason, it is most important to have infor-
mation on precompression stress in such moist conditions. It is impor-
tant to recognize that soil mechanical properties are a function of soil
moisture, much like soil hydraulic properties. To accurately estimate
this relationship, we argue that data at the "dry end" are equally
essential. We may illustrate this in analogy with soil hydraulic functions:
if we only measured water retention at pF values lower than 2.5, we
would not be able to predict or parameterize the complete soil water

Fig. 9. Predicted precompression stress (σpc) by the models proposed by A) Imhoff et al. (2004), and B) Schjønning and Lamandé (2018) versus measured σpc.
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retention function. Similarly, the lack of data at the dry end for pre-
compression stress results in incomplete information and hinders our
understanding of soil mechanical behavior across a wider soil moisture
range.

To address this limitation, we propose exploring the development
and parameterization of precompression stress functions, e.g. σpc = f (ψ),
similarly to soil water retention functions (i.e. soil water content as a
function of matric potential). This approach could provide a more
comprehensive understanding compared to attempting to predict pre-
compression stress for single matric potential.

Most of the entries included in the database developed and presented
here have expressed precompression stress as a function of soil water
content to quantify the effect of soil moisture on precompression stress.
Although some studies have proposed that understanding the mechan-
ical behavior of the soil may be better achieved by considering both
matric potential and degree of saturation, based on the effective stress
theory, rather than soil water content that is confounded with textural
differences (Berli et al., 2015; Schjønning et al., 2023), we acknowledge
that equilibrating soil samples at a broader range of matric potentials is
more labor and cost-intensive. The procedure of obtaining a wider range
of soil moisture by drying soil samples over various time intervals, as
commonly performed in many Brazilian studies yields precompression
stress data for a broad range of soil moisture but only provides data for
soil water content. Obtaining similar datasets for both precompression
stress and matric potential might be impractical due to the laborious and
time-consuming nature of equilibrating numerous samples to different
matric potentials. This is because it is not possible to reuse a sample once
it has been used in a compression test. We suggest that the installation of
microtensiometers in the soil samples would facilitate the collection of
more data points for precompression stress across a wider range of
matric potential, following a similar approach to determining soil hy-
draulic properties by the evaporation method (e.g. Hohenbrink et al.,
2023).

Moreover, considering the interplay between mechanical stresses
and hydraulic properties during loading, the installation of micro-
tensiometers during oedometer tests is recommended to monitor
changes in pore water pressure throughout the loading process. This
enables adjustments to loading times to prevent excessive pore water
pressure in less conductive soils, and helps to better understand soil
deformation during compression, aiding in the interpretation of pre-
compression stress values. Only a few studies, such as Horn et al. (2023)
and Faloye et al. (2021), have considered the effect of pore water
pressure on soil compressive behavior. The importance of considering
the time-dependency of load application for more realistic predictions of
compressive properties has been demonstrated by Peth et al. (2010).

4.2. Random forest models for precompression stress predictions

The better performance of the RF models that incorporated soil water
content as a predictor, i.e. RF1 and RF3, is likely attributed to the wider
variation in soil water content in the training data, ranging from wet to
very dry soil conditions (Supplementary Figs. S1 and S5), since the soil
water content emerged as the most important predictor for the models.
We assume that the relatively high RMSE is partially attributable to the
inclusion of data with drier initial conditions, resulting in greater pre-
compression stress values associated with greater estimation errors. The
poorer correspondence (R2) shown by the RF2 and RF4 models could be
attributed to the limited variation in available matric potential values
within the training data, i.e. concentration of data measured at a single
matric potential value of pF=1.8 (Supplementary Figs. S3 and S7).

The importance of the calculation method in predicting pre-
compression stress shown in RF1 and RF2 models aligns with existing
studies (Cavalieri et al., 2008; De Pue et al., 2020), consistently
emphasizing the impact of calculation methods on precompression
stress results. This highlights the challenge of developing robust models
for predicting precompression stress based on an international database,

as methodological variations introduce confounding factors. This also
limits us in exploring and delineating the effect of e.g. environmental
covariates, such as climate and topography.

Refining models by limiting the underlying data to those obtained by
a specific precompression stress calculation method, i.e., RF3 and RF4,
showed a small enhancement in predictive power compared to models
RF1 and RF2 (Fig. 7). This is an indication to what extent a methodo-
logically homogeneous data set may yield improved results. The trade-
off is a limited data set that presents a limited statistical power. Unfor-
tunately, the prevalent precompression stress calculation method and
soil moisture status indicator (water content vs. matric potential)
differed among the delineated climatic regions, which did not allow us
to fully explore all influential factors independently of each other.

In general, the developed RF models emphasized the importance of
soil moisture (expressed by matric potential or soil water content), as a
key-predictor for estimating precompression stress. This observation
aligns with findings from previous studies (Imhoff et al., 2004;
Schjønning and Lamandé, 2018; Schjønning et al., 2023). The exception
observed in the case of the RF4 model, where soil matric potential
exhibited lower importance in predictions, could be attributed to the
data used to train the model, which was heavily dominated by a single
value of matric potential, pF=1.8 (Supplementary Fig. S7).

The relevance of the climate region in the models, especially in RF2,
could be related to the predominance of specific soil types in each of
these climate regions: Oxisols in the sub/tropical regions, and Incepti-
sols and Alfisols in the temperate region. Oxisols, being very old soils,
differ from temperate soils by containing kaolinite (a 1:1 clay mineral)
as well as iron (Fe) and aluminum (Al) oxides, which affects their
resistance to deformation under external loads. The effect of the soil
structure associated with the clay mineralogy on the soil precompression
stress was shown by Ajayi et al. (2009a), (2009b).

Our models identified other important soil properties as predictors,
such as soil texture (clay, silt, sand), soil organic carbon content, and
bulk density (Fig. 8). Although our study does not aim to define the
mechanisms by which these variables affect precompression stress,
existing studies provide insights into their impacts. For instance, soil
texture can influence soil mechanical strength, with clay-rich soils
typically exhibiting higher precompression stress due to their cohesive
nature (Gregory et al., 2006; Saffih-Hdadi et al., 2009). However, in
Brazilian Oxisols studied by Severiano et al. (2013), soil precompression
stress decreased with increasing clay content. This was attributed to
their granular structure due to microaggregation, which promotes
greater macroporosity. The increased macroporosity, directly related to
the clay content, results in fewer contact points compared to other soil
structures, leading to lower resistance to soil deformation. Several
studies (e.g. Mosaddeghi et al., 2003) have found that higher bulk
density lead to greater precompression stress. Soil organic carbon
positively affects aggregate stability, thereby enhancing soil strength.
However, soil organic carbon also improves soil water retention, which
may increase soil susceptibility to compaction by decreasing pre-
compression stress (Pereira et al., 2007).

4.2.1. RF models versus existing models in literature
The models developed in this study presented better performance

than the two selected models from the literature. Although our selection
of an independent test data set ensured that no soils were present in the
training and test data sets simultaneously, the database-dependent
preferential behavior of a new model cannot be ruled out. Historic
models are often trained on data of different range/domain, and there-
fore may show biased behavior when tested on independent data of a
new source. This highlights the need to pre-assess whether a predictive
model is used on data that is included within the data domain (e.g.,
within the soil texture and moisture range) of the historic data behind
the model.

L.C. Torres et al.



Soil & Tillage Research 244 (2024) 106225

12

5. Conclusion

Despite the existence of numerous studies on soil compressive
properties, their geographical distribution remains limited. Moreover,
our data compilation revealed the urgent need to determine pre-
compression stress of subsoil layers to prevent subsoil compaction.
While our database covers a broader range of precompression stress data
compared to other studies, the low standardization in methodological
procedures, calculation methods, and data reporting poses challenges in
combining data from different laboratories. Hence, while technically our
RF models gave more accurate predictions than existing pedotransfer
functions, their performance is deemed to be unsatisfactory. The need
for methodological standardization or functions to translate results be-
tween methodologies is urgent to ensure consistency, facilitate data
comparison, and enable the development of robust and generalizable
models for more accurate precompression stress predictions. Therefore,
achieving consensus on specific boundary conditions of soil compression
tests, including loading time, applied stress level, sample dimension, and
calculation methods, along with proper description of methodology
could lead to a more unified approach in studying soil compressive
properties. There is a concentration of available precompression stress
data measured at soil moisture conditions at or above field capacity,
signaling that relevant research has prioritized conditions relevant to
compaction risk. It is important to realize, however, that soil mechanical
properties are functions of soil moisture, much like soil hydraulic
functions, and understanding of soil mechanical properties and param-
eterizing soil mechanical functions requires data across a wider soil
moisture range, including the "dry end".

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This study was partially funded by Formas (grant no. 2022-00544),
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Pereira, J.O., Défossez, P., Richard, G., 2007. Soil susceptibility to compaction by
wheeling as a function of some properties of a silty soil as affected by the tillage
system. Eur. J. Soil Sci. 58, 34–44. https://doi.org/10.1111/j.1365-
2389.2006.00798.x.

Pesch, C., Lamande, M., de Jonge, L.W., Norgaard, T., Greve, M.H., Moldrup, P., 2020.
Compression and rebound characteristics of agricultural sandy pasture soils from
South Greenland. Geoderma 380, 114608. https://doi.org/10.1016/j.
geoderma.2020.114608.

Peth, S., Rostek, J., Zink, A., Mordhorst, A., Horn, R., 2010. Soil testing of dynamic
deformation processes of arable soils. Soil Tillage Res 106, 317–328. https://doi.
org/10.1016/j.still.2009.10.007.

Rohatgi A., 2015. WebPlotDigitizer (Version 3.9). 〈https://automeris.io/WebPlotDigitiz
er.html〉.

Rücknagel, J., Brandhuber, R., Hofmann, B., Lebert, M., Marschall, K., Paul, R., Stock, O.,
Christen, O., 2010. Variance of mechanical precompression stress in graphic
estimations using the Casagrande method and derived mathematical models. Soil
Tillage Res 106, 165–170. https://doi.org/10.1016/j.still.2009.11.001.

Rücknagel, J., Christen, O., Hofmann, B., Ulrich, S., 2012. A simple model to estimate
change in precompression stress as a function of water content on the basis of
precompression stress at field capacity. Geoderma 177–178, 1–7. https://doi.org/
10.1016/j.geoderma.2012.01.035.

Saffih-Hdadi, K., Defossez, P., Richard, G., Cui, Y.J., Tang, A.M., Chaplain, V., 2009.
A method for predicting soil susceptibility to the compaction of surface layers as a
function of water content and bulk density. Soil Tillage Res 105, 96–103. https://
doi.org/10.1016/j.still.2009.05.012.
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