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A B S T R A C T

Canopy temperature (CT) is an integrative trait, indicative of the relative fitness of a plant genotype to the
environment. Lower CT is associated with higher yield, biomass and generally a higher performing genotype.
In view of changing climatic conditions, measuring CT is becoming increasingly important in breeding and
variety testing. Ideally, CTs should be measured as simultaneously as possible in all genotypes to avoid any
bias resulting from changes in environmental conditions. The use of thermal cameras mounted on drones
allows to measure large experiments in a short time. Uncooled thermal cameras are sufficiently lightweight to
be mounted on drones. However, such cameras are prone to thermal drift, where the measured temperature
changes with the conditions the sensor is exposed to. Thermal drift and changing environmental conditions
impede precise and consistent thermal measurements with uncooled cameras. Furthermore, the viewing
geometry of images affects the ratio between pixels showing soil or plants. Particularly for row crops such as
wheat, changing viewing geometries will increase CT uncertainties. Restricting the range of viewing geometries
can potentially reduce these effects. In this study, sequences of repeated thermal images were analyzed in
a multi-view approach which allowed to extract information on trigger timing and viewing geometry for
individual measurements. We propose a mixed model approach that can account for temporal drift and viewing
geometry by including temporal and geometric covariates. This approach allowed to improve consistency and
genotype specificity of CT measurements compared to approaches relying on orthomosaics in a two-year field
variety testing trial with winter wheat. The correlations between independent measurements taken within
20min reached 0.99, and heritabilities 0.95. Selecting measurements with oblique viewing geometries for
analysis can reduce the influence of soil background. The proposed workflow provides a lean phenotyping
method to collect high-quality CT measurements in terms of ranking consistency and heritability with an
affordable thermal camera by incorporating available additional information from drone-based mapping flights
in a post-processing step.
1. Introduction

Canopy temperature (CT) of wheat (Triticum aestivum L.) is an
integrative trait ‘‘being associated with yield in a range of condi-
tions’’ (Reynolds et al., 2012). ‘‘It is indicative of the relative fitness
of a genotype to the environment’’ (Reynolds et al., 2012). Lower
CT is associated with higher yield, biomass and generally a higher
performing genotype. CT is tightly linked to stomatal conductance (e.g.
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Deery et al., 2019) and different traits might lead to low CT, e.g. a root
system that increases water supply to the plant, high intrinsic radiation-
use efficiency, photo-protective mechanisms that increase radiation-use
efficiency and green area throughout the growth cycle or a late senes-
cence and consequently a larger green area during later stages (Perich
et al., 2020; Reynolds et al., 2012). Therefore, CT can be used as an
indirect selection criterion for yield (e.g. Das et al., 2021a).
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Thermal measurements have been proposed for breeding programs
at least since the 1980s (Blum et al., 1982; Lepekhov, 2022), but stan-
dard procedures with handheld thermometers have their shortcomings,
especially because distortions by rapidly changing environmental con-
ditions should be avoided (Deery et al., 2016; Pask et al., 2012). Main
sources of short-term variability in environmental conditions include
wind, sunlight, clouds, and air temperature (Reynolds et al., 2012).
Thus, genotypes should be measured within a short period, e.g. within
0min (Wang et al., 2023), but this number is highly dependent on
he rate of change in environmental conditions. Thermal infrared (TIR)
ameras mounted on unmanned aerial vehicles are therefore an inter-
sting option to measure many experimental units in a relatively short
ime and thus reduce the short-term variability of measurements.

CT is linked to vapor pressure deficit and consequently air tem-
erature (Idso et al., 1981). A higher air temperature leads to higher
T differences which increases ratio of genotypic variability of CT to
esidual variability of CT. So, thermal surveys pose challenges when
pplied in temperate climates where hot and dry conditions (i.e. a
igher VPD) are less frequent and therefore CT differences between
enotypes less distinct (Messina and Modica, 2020).

To get accurate CT measurements, calibrated TIR cameras must
e used. Cooled TIR cameras are accurate but heavy and cannot be
ounted on a lightweight drone (Deery et al., 2016). Uncooled cal-

brated TIR cameras must be calibrated with reference temperature
argets (Aragon et al., 2020; Kelly et al., 2019; Nugent et al., 2013), it
akes specific system knowledge to operate them (Perich et al., 2020),
ut they still have limited accuracy (Kelly et al., 2019; Perich et al.,
020) and might need recalibration after having been operating for
ome months (Aragon et al., 2020). However, there are uncalibrated
IR cameras that can be operated with standard drones and stan-
ard software. Such sensors are not well suited to measure absolute
T accurately, but they hold the potential to measure relative CT
onsistently (Kelly et al., 2019). Measuring such relative differences
ight be sufficient in cases where genotype differences are to be

dentified (Jones et al., 2009), e.g., in breeding and variety testing.
et, the relative differences must be consistent for measurements taken
ithin a short interval, e.g. 30min.

Uncooled TIR cameras are prone to thermal drift problems (Kelly
t al., 2019; Mesas-Carrascosa et al., 2018; Wang et al., 2023; Yuan and
ua, 2022) where the TIR measurement changes are influenced by the

emperature of the sensor. This introduces another source of variance
f CT which is not related to the state of the canopy itself or the canopy
nvironment. Additional confounding effects include vignetting, i.e. dis-
ortions caused by the lens optics where image edges appear darker
or cooler for thermography) than the central regions (Kelly et al.,
019; Yuan and Hua, 2022). The summation of all effects makes it
hallenging to derive accurate temperature data with both uncalibrated
r calibrated uncooled TIR cameras (Kelly et al., 2019; Malbéteau et al.,
021). Research is tackling this issue by different approaches.

Nugent et al. (2013) highlight the importance to include the sensor
emperature in the analysis of TIR images, and Ribeiro-Gomes et al.
2017) and Kelly et al. (2019) demonstrate how this inclusion can
e achieved in field environments. However, sensor temperature is
ot always available and Yuan and Hua (2022) proposed a simplified
orrection for non-uniformity and vignetting based on a single image
aken after a flight. Mesas-Carrascosa et al. (2018) and Wang et al.
2023) used drift correction methodology based on features that appear
n multiple overlapping images to create corrected orthomosaics. Mal-
éteau et al. (2021) corrected for temporal trends by normalizing data
f single flight lines to previous flight lines of the same flight on
rthomosaics. As wind is one of the most important environmental
rivers of sensor temperature, Kelly et al. (2019) and Yuan and Hua
2022) examined the relation between wind and sensor temperature
hile Malbéteau et al. (2021) showed how different wind conditions

esult in different CT estimates.
 e

722 
Perich et al. (2020) used uncorrected orthomosaics to extract plot-
ased values. They then proposed including spatial correction with the
-package SpATS (Rodríguez-Álvarez et al., 2018) to account for spatial
nd temporal trends simultaneously in a subsequent step. However,
hey observed that temporal effects of rapidly changing environmental
onditions remain a challenge. While parts of temporal effects are
bsorbed in the spatial correction process and confound the spatial
rend and its interpretability, others remain uncorrected and bias the
IR signal. To overcome these limitations, temporal effects need to be
itigated when creating the orthomosaics, as done by Malbéteau et al.

2021), Mesas-Carrascosa et al. (2018) or Wang et al. (2023) prior to
rthomosaic analysis. While promising correction approaches exist for
rthomosaics, they are often based on assumptions such as the similar-
ty of surface temperature within a specific land cover type (Wang et al.,
023). Such assumptions are not valid in wheat variety testing as CT
ariances are examined within the same land cover type. In addition,
ny artifacts of an erroneous correction are propagated to the analysis
n orthomosaics but the information on the correction applied is not
vailable with the final CT estimate.

To the best of our knowledge, airborne TIR imaging in agriculture
as either based on single images (e.g. Deery et al., 2016) or ortho-
osaics, i.e. large composite images of a series of images with large

verlap (e.g. Das et al., 2021b; Francesconi et al., 2021; Malbéteau
t al., 2021; Messina and Modica, 2020; Perich et al., 2020; Wang
t al., 2023). The advantages and disadvantages of these methods are
iscussed in Perich et al. (2020). In short, single images are limited in
esolution, and therefore only a limited land surface can be captured at
nce. When creating orthomosaics, the information of multiple images
as to be blended into a single large orthomosaic and the different
lending methods may lead to different results (Aasen and Bolten,
018; Malbéteau et al., 2021; Perich et al., 2020). Furthermore, in-
ormation is lost in the aggregation process, as spots that appear on
ultiple images with specific viewing geometries are blended into a

ingle pixel on the orthomosaic.
An alternative is to skip the orthomosaic processing step and work

ith original image sequences, a novel method for thermal imaging
roposed in this study. To avoid the loss of information in the orthomo-
aic blending process, Roth et al. (2018) developed a method to analyze
GB drone images without the need to merge individual images into
n orthomosaic. Single images can be examined with respect to trigger
iming and the geometric relations between the experimental unit, sun
tand, and drone position. Transferring such an approach to thermal
maging will provide the means to analyze sources of variation in CT for
ield experiments. With multi-view imaging, temporal and geometric
rends are not disregarded at the creation of orthomosaics but are
sed to improve the statistical analysis of CT data. The information
n the correction applied is available with the final CT estimate and
an be consulted when results are inconsistent. All together, multi-
iew imaging enables to handle confounding factors that affect the
nterpretation of CT. Such an informed analysis is crucial in variety
esting and breeding as temporal, spatial, and geometric trends of CT
ight mask effects of genotypes or treatments otherwise. By estimating

he different sources of variation, they can be corrected for, revealing
he actual effects of the experiment that are of interest.

Mixed models are a widely used statistical tool to separate and
stimate different sources of variance in agronomic trials (e.g. Gilmour
t al., 1997; Piepho and Williams, 2010; Piepho et al., 2012). Estimat-
ng continuous covariate effects such as spatial or temporal trends is
ften done with auto-regressions and/or smoothing splines (e.g. Cullis
t al., 2006; Rodríguez-Álvarez et al., 2018; Velazco et al., 2017).
t is hypothesized that post-processing multi-view images with mixed
odels will improve CT measurements on wheat in plot experiments.
he step of correcting an orthomosaic in pre- or post-processing can
e skipped. Instead, the correction can be integrated in the analysis
f the experiment directly, using common tools to analyze designed

xperiments, namely, mixed models.
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In addition to including covariates in the estimation of CT, knowing
the viewing geometry for each measurement allows for the selection of
measurements with preferable viewing geometries. Das et al. (2021a)
and Pask et al. (2012) described the impact of soil on the measurement
of apparent CT. It is hypothesized that by selecting for oblique (i.e. less
ertical) viewing angles and measurements perpendicular to the sowing
ow direction, the fraction of plants visible in TIR images can be
ncreased, and the influence of soil on measurements can be reduced.

This study sought to improve the measurement of genotype re-
ated CT variance in the context of wheat variety testing by a drone-
ased thermography lean phenotyping approach. TIR images from an
ffordable uncooled and uncalibrated off-the-shelf TIR camera were
eoreferenced and information on trigger timing and on geometric
elations between the sun, the region of interest (ROI) and the drone
as exploited in a multi-view approach. It was tested if the integration
f such temporal and geometric covariates in mixed models allows to
ccount for the different sources of variance of CT measurements and
hereby to correct for unwanted sources of variance. We hypothesized
hat this correction enables an improved quality of thermal measure-
ents in terms of consistency and heritability with relatively simple

quipment and without the need for in-field reference procedures.

. Methods

.1. Field experiments and data acquisition

TIR measurements were conducted on wheat variety testing exper-
ments of winter wheat for two consecutive years (2020–2021 and
021–2022) on fields of the agricultural research station of Agroscope,
t Changins, Switzerland [46°23′55.4′′N 6°14′20.4′′E, 425 m.a.s.l., the

World Geodetic System (WGS) 84]. The soil of the experimental site is
a shallow Calcaric Cambisol (Baxter, 2007; de Cárcer et al., 2019).

Air temperature, rainfall, radiation, wind speed, wind direction, rel-
ative humidity and vapor pressure deficit (VPD) were obtained from a
weather station of Meteoswiss which was located about 800m from the
experimental site at Changins [46°24′3.7′′N 6°13′39.6′′E, 458 m.a.s.l.,
WGS 84].

The two years showed very contrasting weather conditions (Fig.
A2). While 2021 was a relatively cool year with almost 700mm of
precipitation from the beginning of the year to harvest, there was
just 280mm precipitation for the same period in 2022. The average
temperature between beginning of May and harvest was 2.9 °C warmer
in 2022 than 2021. Therefore, wheat developed faster in 2022 and
heading and harvest occurred earlier.

The measurement periods were between onset of heading and early
senescence. The trial comprised 30 modern registered European winter
wheat varieties and is further referred to as the EuVar trial. The same
varieties were sown over the two years. Three treatment regimes were
applied to these genotypes in both years. In the ‘‘maximal’’ treatment,
one growth regulator and one fungicide treatment were applied. In the
‘‘medium’’ treatment, there was just the growth regulator application
and not the fungicide application. In the ‘‘minimal’’ treatment, neither a
growth regulator nor a fungicide were applied. Fertilization and herbi-
cides were applied according to the Proof of Ecological Performance
(PEP) certification guidelines (Swiss Federal Council, 2013), which
represent a minimal standard for best practice conventional agriculture
in Switzerland. Each variety-treatment combination was repeated three
times in plots of 1.05m × 8m each. Each plot contained eight sowing
rows of the same wheat genotype with a spacing of 15 cm between
them. The genotypes were randomly distributed within blocks of 3
by 10 plots and these blocks randomly nested within three treatment
replicates. Each treatment replicate contained three blocks and every
block was treated with one of the three treatments. The 270 plots of the
experiment span over 27 rows (which followed tractor track direction)

and 10 columns (Fig. A1).

723 
The two experiment-year combinations are further referred to as
EuVar21 and EuVar22 according to year of harvest. Table A1 gives
an overview on the different treatments and the most important field
interventions and Table A2 displays details of the chemical products
used.

Flights were conducted between onset of flowering and early senes-
cence at two and four dates in 2021 and 2022 respectively. On specific
dates, multiple flights were conducted at different time slots. To ac-
count for short term variability, within each time slot at least two,
mostly three flights were conducted with the same settings. A group of
flights that were conducted at one time slot and date is further called a
flight campaign. In total, 39 flights were performed (for more details,
see Appendix section A5).

A description of the equipment and the settings used and of the
flight planning can be found in Appendix section A6. Heading of drone
and TIR camera remained relatively stable throughout the flight and
did not change with flight path direction changes. The resulting flight
duration was between 7 and 9min depending on wind conditions and
the total area recorded. The experiments were neighbored by border
plots and other experiments. To fully profit from the advantages of
the methodology proposed in this study, flights covered not just the
experiments but all wheat plots in the respective field surroundings,
i.e. border plots and other experiments on the same field. This allowed
to reduce border effects by taking advantage of temporal and spatial
corrections, as will be described later on. Appendix section A7 summa-
rizes the pre-flight procedure. In short, the camera was turned on 15min
before each flight in 2021 and 30min in 2022 to allow the temperature
signal to stabilize. The TIR images were saved as radiometric JPG
format.

For post-processing in the Structure-from-Motion-based photogram-
metry software Agisoft Metashape (Agisoft LCC, St.Peterburg, Russia)
and to allow time series analysis, thermal ground control points (GCPs)
were distributed in the field in an evenly spaced shifted grid pattern (for
more details, see Appendix section A8).

For the multi-view approach, digital elevation models (DEM) were
needed on which the images could be projected. TIR images often do
not provide enough spatial detail to generate DEMs with sufficient
quality (e.g. Malbéteau et al., 2021). TIR based DEMs may appear flat
with no distinct plot pattern. Therefore, flights were also conducted
with a Micasense RedEdge-MX Dual multispectral sensor, which allows
for more spatial detail. Although this sensor produces multispectral
data with 10 bands, only the RGB bands were used for this study, and
the data is further referred to as RGB data.

2.2. TIR data processing overview

The multi-view approach allowed to include covariates such as trig-
ger timing and viewing geometry parameters of single measurements
in the analysis. To examine if this allowed to better compensate for
temporal and spatial trends, different multi-view approaches were com-
pared to the standard orthomosaic approach (Fig. 1). First, TIR images
were georeferenced. TIR data was then extracted from georeferenced
orthomosaics as well as georeferenced single images. For the multi-view
approach, trigger timing was extracted along with covariates related
to viewing geometry for each plot on each image (green section in
Fig. 1). TIR data was then treated by different statistical approaches
(blue section) and the approaches were compared to each other (violet
section).

2.3. TIR image pre-processing

Radiometric JPG format contains an 8-bit gray scale JPG image
as well as a 14-bit array with digital numbers (DN), which repre-
sent the magnitude of TIR radiation (Kelly et al., 2019). The DNs in
the 14-bit arrays of the radiometric JPGs were transformed to TIFF
files representing temperature in ◦C × 1000 by using a Python 3.8
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Fig. 1. Overview on the different steps of TIR data processing methods that were compared in this study. Orthomosaics were composed by different blending modes. After
image pre-processing (green section), TIR information was analyzed on orthomosaics or with different multi-view approaches (blue section). Plot values were estimated based on
multi-view data by using mixed models of different complexity. In addition, multi-view data was aggregated to plot values by relatively simple aggregations methods. The results
were compared to each other by means of correlation, genotype ranking consistency and heritability of plot-wise apparent CT (violet). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
script (van Rossum and Drake, 2009) and a modified version of the
Flir Image Extractor (https://github.com/ITVRoC/FlirImageExtractor),
which allowed for batched processing.

The 14-bit TIFF files of the radiometric image as well as the RGB
images were aligned in the structure-from-motion-based software Ag-
isoft Metashape Professional (Agisoft LLC, St. Petersburg, Russia) and
georeferenced (for details, see Appendix section A9). Plot masks were
created for each plot in Qgis 3.16 (QGIS Development Team, 2022), to
determine the ROIs from which data was used for analysis. To account
724 
for border effects in the field and for inaccuracies of georeferencing
and superimposition of different flights, a border buffer of 25 cm was
applied to all masks on plot width. On plot length, the buffer was up
to 1m, leaving at least a surface of 2.1m2 to be analyzed in each plot.
The plot masks were saved to GeoJSON format.

Imaging techniques deliver pixel values in a 2-D space. In order to
evaluate experimental units, pixels within ROIs in this 2-D space must
be analyzed. Usually, this is done using zonal statistics, i.e., the pixels
within ROIs are reduced to single values using statistical aggregation

https://github.com/ITVRoC/FlirImageExtractor
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functions. In this work, an empirically determined specific percentile
for each year was used.

As selection criteria for percentile determination, generalized her-
itability (Oakey et al., 2006, Eq. (10), Eq. A1, Eq. A2) of different
percentiles was calculated for each flight. The values within the ROIs
were reduced to a single value by using the respective percentile. For
each percentile, heritabilities were calculated in SpATS (Rodríguez-
Álvarez et al., 2018), which is an easy-to-use tool for spatial analysis
commonly used in agricultural research and thermography (Anderegg
et al., 2020; Deery et al., 2019; Perich et al., 2020), which also
includes a mixed model for experimental design factors. The resulting
percentile-heritability relations were plotted for graphical comparison.
Two quantitative criteria were used to select the percentiles: Select a
percentile in the center of a percentile region where (1) the heritability
is close to the maximum, and (2) closely adjacent percentiles have
similar heritabilities, i.e. the heritability is stable in the respective per-
entile region. For each year, the optimal percentile was determined.
he values within the ROIs were reduced to a single value by using the
ptimal percentile for all flights within one year. One value per plot
as then used as plot-wise CT value in further analysis.

The internal temperature of the sensor is constantly changing, due
o the interplay of heating sensor electronics and an ever changing
xposure to sun and wind during flights. This is leading to constantly
hanging non-uniformity effects which mix up with vignetting and
istort TIR images (Kelly et al., 2019; Yuan and Hua, 2022).

Yuan and Hua (2022) proposed to use a single image taken shortly
fter a drone flight with a TIR sensor to correct for these effects.
e considered this procedure too complex for day-to-day operations.

nstead, it was tested if a simplified, overall vignetting mitigation could
mprove measurement quality. To that end, a mean overall vignetting
ffect was estimated by calculating a mean vignetting effect over
13 images in an indoor experiment (procedure described in detail
n Appendix section A10). The image corresponding to a mean esti-
ated vignetting effect was subtracted from all the TIR images to get

ignetting-corrected images (e.g. Figs. A3 & A4). Subsequent analysis
as conducted on images with and without vignetting correction for
oth, the orthomosaic and multi-view methods.

.4. DEM creation

DEMs were created on the basis of aligned images in Agisoft
etashape and could be derived from thermal data in 2021, but not in

022. Therefore, DEMs in 2022 were generated from RGB data. Both
ethods allowed generating DEMs of sufficient positioning precision

positioning RMSE vertical: 2.5 cm, horizontal: 1.5 cm based on Agisoft
lignment error estimates for ground control points). For each year, a
epresentative DEM was chosen that was created from images taken
fter the wheat stem elongation phase and before early senescence,
hen the canopy height remained stable. The quality of the DEMs was

hecked by visually inspecting the plausibility of the positioning of the
asks projected on single images in multi-view pre-processing. The
rojected masks needed to be centered within plots and of rectangular
hape (e.g. Fig. 2). In 2021, the DEM was based on the second flight of
he thermal campaign flown on 2021-06-12 at 12:30, at a flight height
f 40m. The ground sampling distance (GSD) of the TIR images was
.15 cm∕pix and the spatial resolution of the DEM was 41 cm∕pix. With
his coarse resolution, inconsistencies such as holes in the DEM could
e leveled out. The DEM used in 2022 was based on the data generated
n 2022-06-04 with the Micasense sensor at a flight height of 40m. The
SD of the images was 2.71 cm∕pix. The DEM did not exhibit holes and
he spatial resolution of the DEM was set to 2.71 cm∕pix too. e
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2.5. Orthomosaic pre-processing

TIR orthomosaics were created by the three blending modes avail-
able in Agisoft Metashape, as described in the Agisoft Metashape pro-
fessional edition user manual (Agisoft, 2023):

• Mosaic: A two-step approach where larger features are composed
based on multiple images while details are taken from a single
image.

• Average: A weighted average for all pixels on the orthomosaics.
• Disabled: Pixels are taken from a single close-to-nadir image.

The blending modes in orthomosaic composition were compared to
each other by means of generalized heritability (Oakey et al., 2006)
similar to Perich et al. (2020). TIR data was aggregated within ROIs
by multiple percentiles and heritabilities were calculated for multiple
percentiles on each flight for the three different blending modes. The
resulting percentile-heritability relations of the three blending modes
were plotted for graphical comparison.

The best performing blending mode was then applied to determine
the optimal percentile for data aggregation by zonal statistics. The
percentile-heritability relations were analyzed on all flights within one
year. The optimal percentile for each year was applied for all flights
within this year.

2.6. Multi-view pre-processing

The camera positions (longitude, latitude, height) and orientations
(pitch, roll, yaw) at the moment of triggering for the single images
were estimated in an indirect sensor orientation approach (Benassi
et al., 2017) in Agisoft Metashape after aligning images. Using the
previously estimated trigger positions, the single images were projected
on the DEMs (Fig. 2) by ray tracing as described in Roth et al. (2018)
and Roth et al. (2020). This allowed to project geographic coordinates
(e.g. EPSG:2056 reference system) to image coordinates. As a result,
plot masks of ROIs were created for each trigger position (i.e. for each
mage) where at least one plot was entirely inside the field of view
FOV) of the camera. As coordinates were identical for 8-bit JPG images
nd 14-bit intensity value arrays, the image-wise masks could directly
e applied to the temperature TIFF files. This approach of identifying
he ROIs for each plot on every single image is referred to as multi-view.
or each plot on each TIFF file, all percentiles were extracted with a
ython 3.8 script and saved to a CSV file.

As plot-wise data was extracted for each image, the trigger timing
ould be determined from image meta data. By knowing the trig-
er timing of each image and the position of the experiment, the
osition of the sun could be determined as azimuth and elevation
ngle in Python using a script by John Clark Craig (https://levelup.
itconnected.com/python-sun-position-for-solar-energy-and-research-
a4ead801777, 2021). As Cartesian (i.e. orthogonal) coordinates were
sed and the position of the sun, the position of the plot centers and the
osition and orientation of the camera at the moment when the image
as triggered were known, this allowed to calculate the geometric

elations between sun, plot and drone by trigonometry as listed in
able 1 and illustrated in Fig. 3.

.7. TIR data post-processing

After data extraction, TIR data was processed by different methods
ith the aim of finding a robust, yet simple processing method for
IR multi-view data (blue section of Fig. 1). In the following, the
ifferent processing steps of the different methods are described. The
resentation of single steps follows the structure of Fig. 1. TIR data
as processed with the standard orthomosaic method which served as
baseline. This method was compared to several multi-view methods,

tarting with relatively simple multi-view aggregation and going to
pproaches including statistical models of increasing complexity to

stimate plot-wise CT.

https://levelup.gitconnected.com/python-sun-position-for-solar-energy-and-research-7a4ead801777
https://levelup.gitconnected.com/python-sun-position-for-solar-energy-and-research-7a4ead801777
https://levelup.gitconnected.com/python-sun-position-for-solar-energy-and-research-7a4ead801777
https://levelup.gitconnected.com/python-sun-position-for-solar-energy-and-research-7a4ead801777
https://levelup.gitconnected.com/python-sun-position-for-solar-energy-and-research-7a4ead801777
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Fig. 2. Example of a TIR image, projected on a DEM. The DEM (gray-scale, in the background) defined the surface on which the TIR image (blue margin) was projected on. Plots
were defined for the whole field (shaded in yellow). Plot shapes that fell entirely within the extent of the TIR image (green margins) were projected to image coordinates and all
plot-wise TIR percentiles were extracted. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
List of covariates calculated from multi-view data and used in the mixed model.
Covariate Description Metric

Trigger timing The time stamp when each TIR image was taken seconds from start of flight
Lateral dist row dir. Lateral distance of the plot relative to the drone in

sowing row direction
meters from planar position of drone

Lateral dist sun dir. Lateral distance of the plot relative to the drone in sun
direction (i.e. orthogonal to principle plane of the sun)

meters from planar position of drone

Longitudinal dist row dir. Longitudinal distance of the plot relative to the drone
in sowing row direction

meters from planar position of drone

Longitudinal dist sun dir. Longitudinal distance of the plot relative to the drone
in sun direction (i.e. in the principle plane of the sun)

meters from planar position of drone

Sensor x X coordinate of the plot center on the sensor plane
(image coordinates)

pixel no. in x from bottom-left

Sensor y Y coordinate of the plot center on the sensor plane
(image coordinates)

pixel no. in y from bottom-left
Fig. 3. By knowing the position of the sun, the position of the plot and the position and orientation of the camera when an image is triggered, different geometric relations can
be calculated, such as the position of the plot relative to the drone in row (or sowing) direction (a) or relative to the sun (b). The dimensions of interest and related covariates
are shown in orange. Important angles related to drone and sun are named. Small black angle marks and short parallel black lines indicate perpendicularity and parallelism,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
726 
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2.7.1. Multi-view simple aggregation post-processing
The orthomosaic method only yielded one value per plot to be

analyzed in a final statistical analysis. In contrast, the multi-view
method provided several values for each plot (originating from dif-
ferent images), which were aggregated by different methods prior to
final analysis. As shown in Fig. 1 (blue section), the simplest way
to aggregate values from different images 𝑗 to plot values 𝜃𝑝 is by
calculating the mean or median of all measurements per plot 𝑝, and
ignoring the effects of genotype (𝑖), treatment (𝑘) and replication (𝑛),

�̂�𝑝_𝑚𝑒𝑎𝑛 = mean(𝜃𝑗𝑝) . (1)

�̂�𝑝_𝑚𝑒𝑑𝑖𝑎𝑛 = median(𝜃𝑗𝑝) . (2)

A more complex way is to correct for the effect of trigger timing
with a simple linear model simultaneously for all images (Eq. (3)),
e.g., in Base-R (R Development Core Team, 2022). Here, the measured
temperature 𝜃𝑗𝑝 of the 𝑝th plot on the 𝑗th image is composed of an
estimated image effect 𝜈𝑗 , a plot effect 𝜙𝑝 and an error 𝑒𝑗𝑝, ignoring
𝑖, 𝑘 and 𝑛,

𝜃𝑗𝑝 = 𝜈𝑗 + 𝜙𝑝 + 𝑒𝑗𝑝. (3)

The image effect 𝜈𝑗 estimates an image-specific CT contribution at
trigger time j. 𝜙𝑝 corresponds to a plot-specific CT contribution of the
𝑝th plot. In the model fitting process, the error term is minimized by
varying the estimated values of the two effects. The temporal variance
is assumed to be attributed to the image effects. The estimated plot
effect can then be used for further processing as estimate of relative
plot CT without the temporal effect,

�̂�𝑝_𝐿𝑀 = 𝜙𝑝. (4)

For the simple linear model, further denoted LM, all the plots within
the fields were analyzed. Different experiments were covered as well as
border plots.

2.7.2. Multi-view mixed models post-processing
The repeated plot-values originating from the multi-view method

allow to model relations to geometric covariates and trigger timing.
Including these relations might increase the explained variance of TIR
measurements.

To include these covariates, mixed models were applied. With mixed
models, a response variable can be modeled by explanatory categorical
factors, covariates and an error term representing variance that cannot
be explained by the model. The data is clustered according to categor-
ical factors, and regression parameters in mixed models can be cluster
specific as well. This enables for example the modeling of genotype-
and treatment-specific responses. The factors can either be fixed or
random. Within the random factors, effects are cluster-specific. Fixed
factors have fixed effects, and regression parameters apply to the whole
population at observation (Hartung and Piepho, 2007; Wu, 2010).

Mixed models of varying complexity were fitted in ASReml-R (But-
ler, 2019). The parameters of the mixed model (Eq. (5)) are explained
in Table 2. The terms were grouped by types of terms (‘‘Design-
Factors’’, ‘‘Spatial-Autoregression’’, ‘‘Spatial-Smoothing-Spline’’, etc.).
Note that not all models included all term types. Table 3 describes the
different models and which term types were included in each model.
The index 𝑗 is written in parentheses to represent both, models that do
consider trigger timing and those that do not (‘‘MM Base‘‘, ‘‘MM Full
spatial’’).

Modeling started with the baseline ‘‘MM Base’’ model where only
experimental design factors (genotype, treatment, replicate, plot posi-
tion, plot) were included. This model was then increased in complexity
by iteratively including a subset of additional factors as well as tem-
poral and geometric covariates (Table 1). This led to nested models
where simpler models were fully included in more complex models,
culminating in the most complex model,
727 
𝜃𝑖(𝑗)𝑘𝑛𝑝 = 𝜃𝑖 + 𝜏𝑘 + 𝜙𝑝 + 𝑟𝑛 + (𝜏𝑟)𝑘𝑛+ (Design-Factors)

(𝛼𝛽)𝑐(𝑝)𝑟(𝑝) + 𝛼𝑐(𝑝) + 𝛽𝑟(𝑝)+ (Spatial-Autoregression)

𝑓spl×spl
(

𝑐(𝑝), 𝑟(𝑝)
)

+ 𝑓spl(𝑐(𝑝)) + 𝑓spl(𝑟(𝑝))+ (Spatial-Smoothing-Spline)

𝑓spl(𝑗)+ (Temporal-Trend)

𝑓spl×spl(𝜆lon,Row,jp, 𝜆lat,Row,jp)+ (Row-Direction-Trend)

𝑓spl×spl(𝜆lon,Sun,jp, 𝜆lat,Sun,jp)+ (Sun-Direction-Trend)

𝑓spl×spl(𝑠𝑥,𝑗𝑝, 𝑠𝑦,𝑗𝑝)+ (Sensor-Plane-Trend)

𝑒𝑖(𝑗)𝑘𝑛𝑝 (Residuals)

(5)

Just like with the LM, the CT was assumed to be influenced by
ategorical factors. In contrast to the LM, more than two factors were
ncluded. These factors and their rationale are described in the follow-
ng.

In addition to the plot effect, the design factors included genotypes,
reatments, replications, and an interaction between treatment and
eplication, since treatments could react differently within replications.
or the spatial part, an effect of the spatial coordinates, described as
olumns 𝑐(𝑝), rows 𝑟(𝑝) and their interaction (i.e., a two-dimensional
rid) was assumed to impact the CT values. This impact was assumed to
e autocorrelated, i.e. the spatial effect of the plot at a specific position
as assumed to be more closely related to that of its neighbor plot

han to a more distant plot. The ‘‘Full Spatial’’ model contained, in
ddition to autocorrelated effects, a spatial model, assuming the effects
f columns and rows to follow independent smoothing splines in both
irections, and in addition a two-dimensional smoothing spline in both
irections. With the ‘‘Full Spatial’’ model, it was tested whether a model
ith more degrees of freedom in the spatial dimension provides a better

it.
In addition to design factors, temporal and geometric covariates

ere added. The temporal trend, defined along the trigger timing
n seconds after the start of the respective flight, was modeled as

smoothing spline. Geometric covariates for three geometric dimen-
ions were included as three independent two-dimensional smoothing
plines. The first two dimensions, ‘‘Row-Direction-Trend’’ and ‘‘Sun-
irection-Trend’’ (Fig. 3), represented the position of the plot below

he drone, described in a Cartesian coordinate system with the drone
osition defined as the origin of the coordinate system. 𝑥 and 𝑦 of the
oordinate system were the lateral and longitudinal distances in the
espective dimension. The third geometric dimension, ‘‘Sensor-Plane-
rend’’, described the position of the plot center on the image with 𝑥
nd 𝑦 coordinates, where the origin was bottom left of the image.

The models were fitted for every flight separately, as the impact
f covariates was assumed to vary between flights. As for the LM, all
lots within the fields were analyzed. To account for this in mixed
odels, varieties were given unique names within each experiment, so

he same variety name did not appear in two different experiments,
hich reduced the complexity of the models. A simple additive effect

or treatments was assumed for the estimation of plot-wise CT as some
odels with an interaction between treatments and genotypes proved

o be too computationally intensive at this stage.
With the Bayesian information criterion (BIC), the quality of the

odel fit was compared. BIC was preferred over pure likelihood as
t penalizes complex models and therefore over-fitting. It was also
referred over the Akaike Information Criterion (AIC) as BIC penalizes
omplex models with redundant variables stronger than AIC. Lower BIC
alues indicate preferable models (Schwarz, 1978; Stoica and Selen,
004).

After fitting the models (Eq. (5)), plot-wise CT values were esti-
ated in a similar approach as for the other, simpler models (Eq. (1),

2) & (4)). Specifically, �̂� were estimated as sum of genotype effects
𝑝_𝑀𝑀
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Table 2
Terms of the mixed models (Eq. (5)). Note that not all term types are used in all models.

Term type Term Description Part

Design-Factors: 𝜃𝑖 Genotype effect of the 𝑖th genotype (unique for
each experiment within field)

Random

𝜏𝑘 Treatment effect of the 𝑘th treatment (unique for
each experiment within field)

Fixed

𝜙𝑝 Effect of the 𝑝th plot Random

𝑟𝑛 Effect of the 𝑛th replication Random

𝜏𝑟𝑘𝑛 Interaction of the 𝑘th treatment and the 𝑛th

replication
Random

Spatial-Autoregression: (𝛼𝛽)𝑐(𝑝)𝑟(𝑝) Two-dimensional spatial autocorrelation model
based on row and column position in the field

Random

𝛼𝑐(𝑝) One-dimensional autocorrelation model for
columns in the field (orthogonal to tractor track
direction)

Random

𝛽𝑟(𝑝) One-dimensional autocorrelation model for rows in
the field (in tractor track direction)

Random

Spatial-Smoothing-Spline: 𝑓spl×spl
(

𝑐(𝑝), 𝑟(𝑝)
)

Two-dimensional spatial smoothing spline model
based on row and column position in the field

Random

𝑓spl(𝑐(𝑝)) One-dimensional smoothing spline model for
columns in the field (orthogonal to tractor track
direction)

Random

𝑓spl(𝑟(𝑝)) One-dimensional smoothing spline model for rows
in the field (in tractor track direction)

Random

Temporal-Trend: 𝑓spl(𝑗) Trigger timing smoothing spline along the 𝑗
sequential trigger events

Random

Row-Direction-Trend: 𝑓spl×spl(𝜆lon,Row,jp , 𝜆lat,Row,jp) Two-dimensional spatial smoothing spline model
based on longitudinal and lateral distance of the
plot relative to the drone in row direction

Random

Sun-Direction-Trend: 𝑓spl×spl(𝜆lon,Sun,jp , 𝜆lat,Sun,jp) Two-dimensional spatial smoothing spline model
based on longitudinal and lateral distance of the
plot relative to the drone in sun direction

Random

Sensor-Plane-Trend: 𝑓spl×spl(𝑠𝑥,𝑗𝑝 , 𝑠𝑦,𝑗𝑝) Two-dimensional spatial smoothing spline model
based on plot center position on the sensor plane
of the thermal sensor in x and y (image
coordinates)

Random

Residuals: 𝑒𝑖(𝑗)𝑘𝑛𝑝 Residual term for the 𝑖th genotype, the 𝑗 th trigger
event, the 𝑘th treatment, the 𝑛th replication and
the 𝑝th plot

Random
(𝜃𝑖), treatment effects (𝜏𝑘), plot effects (𝜙𝑝), and replication effects (𝑟𝑛),

�̂�𝑝_𝑀𝑀
= 𝜃𝑖 + 𝜏𝑘 + 𝜙𝑝 + 𝑟𝑛 . (6)

As with the LM, the term related to the temporal trend 𝑓spl(𝑗) was not
included in the prediction. In addition, terms related to spatial effects of
columns or rows and geometric trends were discarded. �̂�𝑝_𝑀𝑀

therefore
represents the plot values corrected for temporal or geometric trends
and for spatial trends related to columns and rows.

2.8. Methods comparison

The final results of the different methods were single plot values per
flight. To compare the quality of the different methods, the plot-wise CT
values were compared to each other after a spatial correction (Fig. 1,
violet section).

The plot values of the orthomosaic method, the aggregated plot-
wise multi-view values (Eq. (1), (2)), the multi-view values estimated
with the LM (Eq. (4)) and the plot-wise results from the CT estimations
with the mixed models (Eq. (6)) were first fitted with a spatial model
(Eq. (7)) in the R package SpATS (Rodríguez-Álvarez et al., 2018).
Because of the low absolute temperature accuracy of uncooled and
uncalibrated TIR cameras, the retrieval of accurate absolute CT is
very challenging, especially if larger field trials are covered (Jones
et al., 2009; Kelly et al., 2019). Therefore, relative temperature differ-

ences were analyzed, as relative temperature differences are commonly
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used for the grading of plant performance, assuming that CT rankings
are reproducible and consistent between measurements under similar
conditions (Jones et al., 2009; Prashar and Jones, 2014; Das et al.,
2021c).

Just CT estimates of plots belonging to EuVar were used as input
to the SpATS-models and plots of other experiments and border plots
were skipped at this stage.

�̂�𝑝 = �̂�𝑖𝑘𝑛𝑝 = 𝜃𝑖 + 𝜏𝑘 +
(

𝜃𝑛𝜏𝑛
)

𝑖𝑘 + 𝜙𝑝 + 𝑟𝑛+ (base model)
𝜏𝑟𝑘𝑛+ (repl. × treat. (just EuVar))
𝑓
(

𝑐(𝑝), 𝑟(𝑝)
)

+ 𝜓𝑐(𝑝) + 𝜓𝑟(𝑝)+ (spatial model)
𝑒𝑖𝑘𝑛𝑝 (error term)

(7)

A smooth bi-variate surface which was defined by the positions of
the plots within columns and rows (𝑓 (𝑐(𝑝), 𝑟(𝑝))) was included in the
model together with a random effect for columns and rows (𝜓𝑐(𝑝)+𝜓𝑟(𝑝)).
With SpATS models just covering plots of respective experiments, they
included an interaction between the 𝑖th genotype and the 𝑘th treatment
(𝜃𝑛𝜏𝑛)𝑖𝑘. The remaining terms were equal to the terms in Eq. (5)
and can be looked up in Table 2. While ASReml-R also provides the
functionality to calculate heritabilities and predict single plot values,
the inclusion of the full experimental design as in Eq. (7) in one stage
proved to be too computationally intensive due to the interaction term
(𝜃𝑛𝜏𝑛)𝑖𝑘. Therefore, the two-stage approach for the mixed models with

a subsequent analysis in SpATS was applied, but in contrast to the
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Table 3
Term type combinations used in plot-wise CT estimation with mixed models (Eq. (5)). Starting with a simple ‘‘Base’’ model, models increase in complexity further down by
including different sets of term types. For detailed information on the terms in each term type, see Table 2. The prefix ‘‘MM’’ has been omitted in mixed model names in the table
for simplicity.

Mixed model (MM) Term types Description of model

Base Design-Factors
+ Spatial-Autoregression
+ Residuals

Includes the experimental design (genotypes,
treatments, replications) and a simple spatial
model.

Full Spatial Design-Factors
+ Spatial-Autoregression
+ Spatial-Smoothing-Spline
+ Residuals

The ‘‘Base’’ model enhanced by a complex spatial
model in the style of Velazco et al. (2017) which
includes a random term for each row and column,
an autocorrelated interaction term and a bi-variate
smoothing spline between the two.

Full spatial + Trigger Design-Factors
+ Spatial-Autoregression
+ Spatial-Smoothing-Spline
+ Temporal-Trend
+ Residuals

‘‘Full spatial’’ model enhanced by the temporal
dimension of trigger timing.

Trigger Design-Factors
+ Spatial-Autoregression
+ Temporal-Trend
+ Residuals

The ‘‘Base’’ model enhanced by the temporal
dimension of trigger timing.

Trigger + RowDir Design-Factors
+ Spatial-Autoregression
+ Temporal-Trend
+ Row-Direction-Trend
+ Residuals

Integrates the relative position of the plot in row
(i.e. sowing) direction in the ‘‘Trigger’’ model.

Trigger + SunDir Design-Factors
+ Spatial-Autoregression
+ Temporal-Trend
+ Sun-Direction-Trend
+ Residuals

Integrates the relative position of the plot in sun
direction in the ‘‘Trigger’’ model.

Trigger + RowDir + SunDir Design-Factors
+ Spatial-Autoregression
+ Temporal-Trend
+ Row-Direction-Trend
+ Sun-Direction-Trend
+ Residuals

Integrates the ‘‘Trigger + RowDir’’ and the
‘‘Trigger + SunDir’’ models into one model.

Trigger + RowDir + SunDir + Sensor Design-Factors
+ Spatial-Autoregression
+ Temporal-Trend
+ Row-Direction-Trend
+ Sun-Direction-Trend
+ Sensor-Plane-Trend
+ Residuals

Integrates the spatial dimensions of the sensor
plane (image coordinates) in the ‘‘Trigger +
RowDir + SunDir’’ model.
b
c
s
a
i

c
c
t
w
w
t

𝜎

simpler methods in the comparison, most of the spatial correction was
done within the mixed model before SpATS spatial correction. This two-
stage approach furthermore allows a full comparability of the mixed
model approach with simpler methods since all approaches relied on
the SpATS model.

From the SpATS formula, plot-wise values are predicted as genotype
effect 𝜃𝑖, treatment effect 𝜏𝑘 and the error 𝑒𝑖𝑘𝑛𝑝, where the error
epresents variance that could not be explained with the SpATS model,

̂𝑝_𝑆𝑝𝐴𝑇𝑆 = 𝜃𝑖 + 𝜏𝑘 + 𝑒𝑖𝑘𝑛𝑝 . (8)

To test the quality of CT estimates, Pearson correlation, genotype
ank consistency, and heritability were used as quantitative criteria,
s done in other studies (Oakey et al., 2006; Jones et al., 2009;
odríguez-Álvarez et al., 2018).

The correlations were calculated between flights within years. To
void inflated correlations, dominant treatment effects were removed
efore correlation calculations by subtracting estimated treatment ef-
ects from plot-wise CT values. If measured under similar conditions,
igh correlations between flights taken close to each other are indica-
ive of the consistency of the method, which means that the ranking
f CT estimates remains similar between two flights. The correlation
etween flights within the same campaign is therefore an important
riterion of consistency and quality. High correlations between flights
aken at distinct times or dates, i.e. between different campaigns, are in-

icative of CT consistency as a measurement over time. The consistency
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etween campaigns might be affected by changes in meteorological
onditions, but also phenology, when taken at different dates. Although
trong correlations might also be expected between campaigns, they
re, therefore, less indicative of the consistency of the used method
tself than correlations within campaigns.

Along with the correlations and CT ranking, the genotype ranking
onsistency between flights within treatments allows for robust con-
lusions about genotypes’ CT. To capture this measure quantitatively,
he measurement means per genotype were ranked for each flight
ithin each treatment, and the consistency of the genotype ranking
as examined as the standard deviation (sd) of the genotype ranking

hroughout the flights of one campaign, defined as:

𝑔𝑒𝑛_𝑟 =

√

√

√

√

1
𝑛 − 1

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝑥)2 , (9)

where 𝑥 corresponds to the ranking of a genotype mean of one flight
𝑖, 𝑥 to the mean of the genotype rank of that respective genotype
across all flights within one campaign and 𝑛 to the total number of the
flights within one campaign. The sd of genotype ranking 𝜎𝑔𝑒𝑛_𝑟 (Eq. (9))
provided a tangible metric of ranking consistency, and a lower value
indicated greater consistency. 𝜎𝑔𝑒𝑛_𝑟 was calculated within the three
treatments separately. One value was calculated for each genotype
within each treatment for all campaigns of selected methods before and

after correction in SpATS. The values were visualized in box plots for
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comparison and pairwise t-tests were applied to examine whether the
different methods produced significantly different 𝜎𝑔𝑒𝑛_𝑟 values.

Heritability served as a measure to determine how well the methods
re suitable to detect genotype-specific differences in CT. It is a measure
hat quantifies how much of the total phenotypic variance (i.e. the

variance of the observed values, e.g. CT) is explained by the geno-
types (Oakey et al., 2006; Rodríguez-Álvarez et al., 2018). Standard
heritability is the fraction of genotypic variance 𝜎2𝑔 and the sum of
enotypic variance and error variance 𝜎2𝑒 divided by the number of
eplications 𝑟:

2
𝑠 =

𝜎2𝑔

(𝜎2𝑔 +
𝜎2𝑒
𝑟 )
. (10)

The possible value of heritability ranges from 0 to 1. A high heri-
ability means that a trait can be selected for, as the variance between
enotypes is considerably larger than within genotypes. A heritability
f 0 indicates that the variance is not related to the genotype at all,
nd therefore a trait with 0 heritability is not interesting in breeding
r variety testing.

The heritability provided in SpATS is an extension of Eq. (10) which
an be used for more complex variance structures, e.g., unbalanced de-
igns, the so-called generalized heritability (Oakey et al., 2006). While
q. (10) showcases the principles of heritability, for the interested
eader, the formula framework of generalized heritability is provided in
q. A1 & Eq. A2. For more details on generalized heritability, see Oakey
t al. (2006) and Rodríguez-Álvarez et al. (2018).

Except for the orthomosaic-based data, weights were included in the
itting process in SpATS where the weights 𝑤 were equal to the inverted
lot-wise standard error (se) estimates (𝑤 = 𝑠𝑒−1) of the respective
lot-wise CT estimation (Roth et al., 2021).

.9. One-stage approach

All methods described so far were two-stage approaches where
lot-wise CT values were estimated first with a subsequent spatial
orrection in SpATS. To offer a pragmatic solution, an additional one-
tage approach was tested where the multi-view raw data was directly
itted in SpATS. To that end, the term 𝜈𝑗 was added to Eq. (7) for the
ffect of the 𝑗th trigger event (Eq. (11)).

̂𝑖𝑗𝑘𝑛𝑝 = 𝜃𝑖 + 𝜏𝑘 +
(

𝜃𝑛𝜏𝑛
)

𝑖𝑘 + 𝜙𝑝 + 𝑟𝑛+ (base model) (11)
𝜏𝑟𝑘𝑛+ (repl. × treat.)
𝑓
(

𝑐(𝑝), 𝑟(𝑝)
)

+ 𝜓𝑐(𝑝) + 𝜓𝑟(𝑝)+ (spatial model)
𝜈𝑗+ (trigger timing)
𝑒𝑖𝑗𝑘𝑛𝑝 (error term)

As with the other approaches, plot-wise CT values were then pre-
dicted with Eq. (8) for comparison.

2.10. Data quality improvements by data selection

Using a multi-view approach allows to select measurements accord-
ing to values of geometric covariates as well as to modify the number
of the measurements included in the analysis.

When changing from a nadir oriented view to a more oblique view,
the avoidance of the most nadir oriented measurements leads to a
reduction of apparent soil cover and therefore soil signal in the more
oblique measurements (Aasen and Bolten, 2018; Pask et al., 2012;
Perich et al., 2020). Whether and how the selection of a specific
viewing-geometry impacts the CT estimates was tested by excluding
most nadir oriented data in a data-treatment experiment. Pearson cor-
relations and heritability were used to estimate how the nadir exclusion
influences the quality of the results with regard to consistency and
genotype specificity. Most nadir oriented measurements were excluded

for every flight in swaths in direction of sowing. Swath width of
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exclusion was 0m (i.e. no exclusion), 2m, 4m and 6m from the line
parallel to sowing direction directly below the drone. This led to swath
widths of 0m, 4m, 8m and 12m. The measurements for every flight
were then fitted with the ‘‘MM Trigger’’ model (Table 3) and SpATS
according to Eq. (7) in a two-stage approach. The fitted plot-wise values
were correlated to all other flights of the same swath width of nadir
exclusion and heritabilities were calculated for comparison.

Excluding measurements reduces the number of observations avail-
able for the analysis. To examine the effect of a reduction of the
number of observation included in analysis, the number of observations
for each plot in each flight was varied from 1 to 9 observations per
single plot in a data-treatment experiment. The observations were
chosen randomly and the procedure was repeated five times for each
number of observation. Values were fitted with the pragmatic one-stage
approach (Eq. (11)) in SpATS as ‘‘MM Trigger’’ produces very erratic
estimates of temporal trends when number of observations is low. The
fitted plot-wise values were correlated to all other flights of the same
number of observations and heritabilities calculated. Correlation values
and heritabilities were grouped over all flights for each number of
observations for comparison.

3. Results

3.1. TIR data processing and processing comparison

3.1.1. Example of selected correction steps
Fig. 4 provides an overview on how some of the methods and the

spatial correction in SpATS affected the CT estimates. Three methods
were chosen for a comparison. The ‘‘Ortho’’ method provides a base-
line for comparison, ‘‘Agg.-Mean’’ is a multi-view approach without
correction before SpATS, and ‘‘MM Trigger’’ is a multi-view approach
using trigger timing as a covariate for corrections of thermal drift in a
mixed model. As case example, relative CT values were visualized for
the first flight of the campaign on 2022-05-18 at 16.00.

The field maps of �̂�𝑝_𝑶𝒓𝒕𝒉𝒐
and �̂�𝑝_𝒎𝒆𝒂𝒏

before spatial correction in
SpATS contain strong trends. While these trends at first sight appear to
be spatial, they are in reality composed of both spatial and temporal
trends. The CT estimates span wide ranges within genotypes. After
correcting for temporal and also most dominant spatial trends, CT
estimates based on �̂�𝑝_𝑴𝑴

do not show strong trends anymore and the
within-genotype variance decreased. These ‘‘�̂�𝑝 before SpATS’’ values
were the input values for the spatial correction in SpATS. The estimates
after the spatial correction �̂�𝑝_𝑺𝒑𝑨𝑻𝑺

are show on the right side of Fig. 4.
No strong trends could be detected anymore for any of the three meth-
ods after spatial correction and within-genotype variance decreased for
all three. The within-genotype variance of ‘‘MM Trigger’’ is already
lower before final spatial correction in SpATS than for the ‘‘Ortho’’
method after spatial correction. The ranking of the genotypes is very
similar between the three methods after SpATS, but not before, where
�̂�𝑝_𝑶𝒓𝒕𝒉𝒐

and �̂�𝑝_𝒎𝒆𝒂𝒏
show similar general trends of ranking between the

two methods but not compared to �̂�𝑝_𝑴𝑴
.

3.1.2. Percentile choice for data aggregation and blending mode choice in
orthomosaic composition

To find the best suited percentile for the aggregation, percentile-
heritability relations of all flights were visualized for both, orthomosaic
(Fig. A5b & Fig. A6b) and multi-view method (Fig. A7).

The median (i.e. the 50th percentile) fulfilled the two criteria of high
heritability and stability of heritability over closely adjacent percentiles
in both years. Differences in heritabilities of different percentiles be-
tween the orthomosaic (Fig. A5b & Fig. A6b) and multi-view (Fig.
A7) methods were small. Hence, the 50th percentile was chosen for
both methods for later method comparison. The orthomosaic blending
mode ‘‘Mosaic’’ led to the highest and most stable heritabilities and was

therefore chosen for further analysis.
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Fig. 4. Data visualization of CT differences from mean CT within the first flight of the campaign on 2022-05-18 at 16.00. CT was estimated with the orthomosaic method (�̂�𝑝_𝑶𝒓𝒕𝒉𝒐
),

the ‘‘Agg.-Mean’’ aggregation method (�̂�𝑝_𝒎𝒆𝒂𝒏
) and the ‘‘MM Trigger’’ mixed model (�̂�𝑝_𝑴𝑴

). Values are shown before spatial correction (�̂�𝑝 before SpATS) and after SpATS (�̂�𝑝_𝑺𝒑𝑨𝑻𝑺
).

The field maps show the measured CT differences of the plots at their specific location in the field. The box plots show the values ordered by the 30 genotypes (G1...G30).
Genotypes were arranged in decreasing order of values according to data of the ‘‘MM Trigger’’ method after spatial correction in SpATS. The treatments had very little effect on
CT values, and the values of all three treatments were summarized in the same box plot. Therefore, each box plot is based on 9 data points.
3.1.3. Covariates related to trigger timing and viewing geometry
The ‘‘Base’’ model (design factors only) and the ‘‘Base + Full Spatial’’

model failed to fit in the mixed model stage for 12 out of 39 flights
and 9 out of 39 flights, respectively. Just by including trigger timing
in mixed models, models converged for all flights. When comparing
BICs of models, the ‘‘Base’’ model (design factors only) always showed
a higher BIC and therefore higher lack of fit than more complex models
that include covariates (Fig. 5). Increasing complexity of the spatial
model in the ‘‘Base + Full Spatial’’ model did not improve the models
while adding trigger timing significantly improved the performance in
all cases. The inclusion of ‘‘Sun-Direction-Trend’’ improved most mod-
els significantly. ‘‘Row-Direction-Trend’’ slightly improved the models
while considering the position of the plot on the sensor plane (i.e. image
coordinates of the plot center, denoted ‘‘Sensor-Plane-Trend’’) did not
lead to any improvement.

3.1.4. Example of thermal drift
A strong drift of TIR measurements along trigger timing, i.e. a strong

temporal trend was observed for all measurements. Patterns were simi-
lar for all flights (e.g. Fig. 6). Analyzing the estimated temperature drift
with time (𝑓spl(𝑗) in Eq. (5)) with the ‘‘MM Trigger’’ mixed model in
relation to relative movements along the main flight direction (Fig. 6)
revealed a strong link between main direction of flight and direction
of TIR drift. A change of temporal trend coincided very often with
a change of motion direction. Temperature frequently changed more
than 10 °C within one flight line. The direction of this relation was not
persistent and the temporal trend sometimes increased or decreased for
the same direction of motion within a flight campaign or even within
a single flight.
731 
3.1.5. Consistency of plot-wise CT estimates and genotype CT ranking
As a metric of consistency, correlations of plot-wise values �̂�𝑝_𝑺𝒑𝑨𝑻𝑺

between flights within years were calculated, as well as the sd of
genotype rankings within campaigns.

Plot-wise CT estimation with the best performing yet most complex
mixed model ‘‘MM Trigger + RowDir + SunDir + Sensor’’ was applied
to all plots within the field with subsequent spatial correction in
SpATS. The correlations between �̂�𝑝_𝑺𝒑𝑨𝑻𝑺

of different flights ranged
from moderate to very strong, with generally stronger correlations for
flights that were taken within a shorter period (closer to the diagonal
of the correlation table) and weaker for flights that were taken at times
further apart. These patterns were consistent over both years (Figs. 7
& A8).

Mean plot-wise correlations of CT measurements over all dates
were calculated for different CT pre-processing and post-processing
methods (similar to Fig. 7) and correlations aggregated in box plots
for comparison (Fig. 8(a)). As flights were conducted in a specific phe-
nological window (onset of heading — early senescence), correlations
were strong not just within campaigns but also between campaigns.
Consequently, all correlations of one season were summarized in the
same box plot. Correlations were weakest for the orthomosaic method.
Mean correlations of the orthomosaics method were 0.62 and 0.78
in 2021 and 2022, respectively. Correlations were stronger for the
median multi-view aggregation method (0.63/0.81 for 2021/2022, re-
spectively), the ‘‘LM’’ (0.68/0.80) and the mean multi-view aggregation
(0.71/0.85). Correlations were strongest for the one-stage SpATS model
(0.76/0.86), the mixed models ‘‘MM Trigger’’ (0.76/0.87) and ‘‘MM
Trigger + RowDir + SunDir + Sensor’’ (0.76/0.88) . Correlations of
plot-wise CT measurements were similarly strong for both years within
campaigns (Figs. 7, A8). Vignetting correction almost did not change
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Fig. 5. The Bayesian information criterion (BIC) for all flights. With BIC, the quality of the model fit was compared. Lower BIC values indicate preferable models. Green lines
separate different measurement days, orange lines different flight campaigns within the same day. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Fig. 6. Estimated thermal drift of TIR measurements throughout the duration of flights for the three flights of the 13.45 campaign on 2021-07-01 on EuVar21. Rows 1 to 3
represent the three different flights of the same campaign. Flight plan and sensor orientation were identical for the three flights which were all conducted within 30min. The
colors indicate the motion in direction of the main flight path. Red indicates flights in one direction and green in the opposite direction of the flight path grid. For gray points,
temporal drift was modeled but there was no corresponding measurement of motion along the main flight path. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
the values, and the values mentioned are those without vignetting
correction.

The sd of genotype ranking within campaigns 𝜎𝑔𝑒𝑛_𝑟 (Eq. (9)) was
calculated for all processing methods (Fig. 8(b)). The values of the
method ‘‘SpATS (one-stage)’’ before spatial correction correspond to un-
adjusted mean values as for the method ‘‘Agg. - Mean’’. 𝜎𝑔𝑒𝑛_𝑟 was low-
est after mixed model pre-processing and spatial correction in SpATS in
both years but was similarly low for the ‘‘SpATS (one-stage)’’ approach.
Spatial correction had a large effect for models without mixed model
pre-processing. 𝜎𝑔𝑒𝑛_𝑟 was very similar for the ‘‘Ortho’’ and ‘‘Agg.-
Mean’’ method before and after SpATS in both years. The genotype
ranking within campaigns was therefore most consistent for the ap-
proaches with mixed model pre-processing, but similarly consistent for
732 
the ‘‘SpATS (one-stage)’’ approach. Mean and median values of 𝜎𝑔𝑒𝑛_𝑟
for all methods are shown in Table A4.

3.1.6. Genotypic specificity of apparent CT
Heritabilities were generally high to very high (Fig. 9). The aggre-

gation methods ‘‘Mean’’ and ‘‘Median’’ provided the lowest heritability
estimates with the highest variability between flights of the same cam-
paign, followed by the ‘‘Ortho’’ method. The CT estimation methods
‘‘LM’’ and ‘‘SpATS (one-stage)’’ mostly showed slightly higher and less
variable heritabilities than the ‘‘Ortho’’ method. Plot-wise CT estima-
tion with the ‘‘MM Trigger’’ method and ‘‘MM Trigger + RowDir +
SunDir + Sensor’’ consistently showed the highest and least variable
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Fig. 7. Pearson’s correlations of EuVar22 plot values �̂�𝑝_𝑺𝒑𝑨𝑻𝑺
after correction for spatial and temporal covariates (‘‘MM Trigger + RowDir + SunDir + Sensor’’ and subsequent

itting with SpATS) and removing dominant treatment effects. Green lines separate different measurement days, orange lines different flight campaigns within the same day. All
orrelations are significant at 𝑃 < 0.001. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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eritabilities. Often the ‘‘Trigger’’ model showed slightly higher her-
tabilities than the more complex method. The difference between
eritabilities of data without and with vignetting correction was mini-
al with the average absolute difference between the two being 0.005

ver all methods tested. No clear trend could be observed for the
equence of the individual flights within a campaign.

.2. Analysis on quantity and quality of observations included in multi-view
odels

.2.1. Selection of non-nadir measurements
Excluding measurements that were closest to the line in nadir direc-

ion below the drone and parallel to row direction increased heritability
onsistently for both years (Fig. 10(a)). The correlation between the
lights within one swath width of nadir-view exclusion got weaker in
eneral with increasing swath width (Fig. 10(b)).
 o
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.2.2. Number of observations included in models
Heritabilities were calculated for 1 to 9 randomly chosen obser-

ations for each plot. The procedure was repeated five times for
ach flight and values were fitted with the SpATS one-stage approach
Eq. (11)). When comparing the resulting correlations and heritabilities
n box plots, they consistently increased with increased number of
bservations for both years (Fig. 11(a)) but seem to asymptotically ap-
roach a maximum. Also the correlation between the flights increased
ith the number of observations, indicating that measurements became
ore consistent (Fig. 11(b)).

.3. Weather conditions during flights

Flights were conducted in conditions suitable for flying (low wind,
ry canopy, no rain). Within these conditions, no obvious dependence
f heritability on environmental parameters such as temperature, solar
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Fig. 8. Consistency of plot-wise CT estimates and genotype CT ranking. (a) Pearson’s correlations of plot-wise CT measurements �̂�𝑝_𝑺𝒑𝑨𝑻𝑺
within EuVar. Correlations were calculated

for each flight within both years, but not across years. CT was estimated with the orthomosaic method, two different aggregation methods (‘‘Agg.-Median’’ & ‘‘Agg.-Mean’’), the
‘‘LM’’, one-stage SpATS and two mixed model methods (‘‘MM Trigger’’, ‘‘MM Trigger + RowDir + SunDir + Sensor’’). Correlations were calculated for data with and without
vignetting correction after spatial correction in SpATS. (b) The sd of genotype ranking 𝜎𝑔𝑒𝑛_𝑟 (Eq. (9)) within campaigns was arranged for four different processing methods and
two years before and after spatial correction in SpATS. Each box plot is based on 90 𝜎𝑔𝑒𝑛_𝑟 values from the 30 genotypes sown within three treatments each year for all campaigns
within one year (7 campaigns in 2021 and 6 campaigns in 2022). Red marks indicate the significance of the differences between the groups based on a pairwise t-test. Significance
levels: NS: p > 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 9. Heritability for all flights on EuVar grouped by date and time. The shapes indicate the different methods and models used in plot-wise CT estimation. Each group of two to
four flights within the different time slots represents a campaign. Note that the scale of heritability is varying between the plots to allow to represent very different value ranges
between different dates.
v
t

radiation, wind speed, wind direction, relative humidity or VPD could
be found (Fig. A9 and A10).

4. Discussion

4.1. The performance of multi-view methods

The results demonstrated the large influence of temporal, spatial,
and geometrical trends on CT measurements (e.g., Fig. 4), and how
 a
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different methods lead to different CT estimates. After a final spatial
correction with SpATS, strong trends had largely disappeared for all
three methods, but within-genotype variance still differed significantly
between the three methods. ‘‘Ortho’’ processing showed the largest
within-genotype variance. A larger variance within genotypes reduced
the heritability, as it decreased the ratio of genotypic variance, i.e. the
ariance caused by different genotypes, divided by the sum of geno-
ypic and unexplained error variance (Eq. (10)). From the CT values
rranged by genotypes, it therefore became evident that heritability
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Fig. 10. Heritabilities (a) and the correlations (b) for all flights, for which data was excluded in nadir oriented swaths of different widths.
Fig. 11. Heritabilities (a) and the correlations (b) for all flights and specific numbers of observations per flight.
ncreased for ‘‘Agg.-Median’’ method and was highest for ‘‘MM Trig-
er’’. The latter contained just a very low within-genotype variance
fter a final spatial correction. A decreased within-genotype variance
lso allows for a more consistent genotype ranking.

The multi-view method improved the genotype ranking consistency
f CT within campaigns, and highly genotype specific CT measurements
ould be derived in the very contrasting conditions of the wet and cool
ear 2021 and the hot and dry year 2022. Using simple aggregation
unctions such as the mean and median to aggregate multiple values
er plot showed generally lower heritabilities than using orthomosaics.
he results indicate that a weighted spatial aggregation as done in the

rthomosaic generation is superior to simple aggregation methods, but
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inferior to multi-view methods including mixed models or the ‘‘SpATS
(one-stage)’’ method.

Both the orthomosaic method and mean and median aggregation
do not compensate for temporal effects. Consequently, the subsequent
processing of plot values (e.g., in SpATS) is assumed to correct for
both spatial and temporal trends simultaneously in such situations.
Usually, drones fly perpendicularly or parallel to row directions in
experiments. While the sequence of images is lost when aggregating
using the mean or median, nadir oriented parts of images are getting
the highest weight in the orthomosaic blending mode ‘‘Mosaic’’, which
will partly preserve the triggering sequence. Consequently, a spatial

correction of plot values can correct partially for spatial and temporal
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trends for blended orthomosaics, but not for aggregated values when
using the mean or median.

Working with multi-view data allows to reduce temporal trends in
plot-wise CT estimation. Including trigger timing in CT estimation was
improving model fits and correlations the most but the fits could not
be improved by a more complex spatial model. This shows that models
are correcting for temporal effects and not for spatial effects that are
mixed up with temporal effects. The separation of spatial and temporal
trends is possible because even with a flight path that is parallel to row
or column direction, each plot is recorded at multiple drone passes with
opposing flight directions. The conditions on the sensor are not always
the same when flying over the same plot. This becomes evident when
examining the temporal pattern of the thermal drift e.g. in Fig. 6. At
about 135 s after flight start, temperature is estimated to be at a local
maximum for the flights 1 and 3 and a local minimum for flight 2, but
all three flights were conducted within 30min. Such large differences
can be explained by thermal drift (e.g. Kelly et al., 2019) but not
with large CT changes in the field under relatively stable conditions.
This separation of trends might be the main reason why all methods
that included temporal trends showed strong correlations between plot-
wise CT estimates. While the most complex plot-wise CT estimation
with mixed models led to the highest correlations, the relatively simple
CT estimation with the one-stage SpATS model led to good results as
well while being far less complicated and computationally intensive
than the mixed models computed with ASReml-R. The simple model,
considering trigger timing and including a simple spatial model, might
be sufficient for many cases.

Nevertheless, high heritabilities and correlations were achieved
with all methods and even with the orthomosaic method, the estimated
heritabilities were often higher than what was reported in comparable
experiments (e.g. Deery et al., 2016; Perich et al., 2020). The very
high heritabilities in this study might in part be due to the properties
of the experiments such as the chosen genotypes which originated
from all over Europe. This led to a diverse set of genotypes which
showed a more heterogeneous behavior than variety trials with geno-
types adapted to conditions in Switzerland. In addition, the treatments
had relatively little effect on the performance of the varieties which
increased the number of effective replicates to nine and in turn led to
a more robust estimation of genotypic variances.

4.2. Continuous thermal drift and influence of wind

Our data suggest that thermal drift is continuing throughout the
flights, regardless of the previous stabilization regimen. This indicates
that a thermal equilibrium in the sensor is not reached during the
flights (e.g. Yuan and Hua, 2022).

In accordance with Kelly et al. (2019), we assume changing wind
conditions on the sensor to be the main source of temperature drift.
While flights were conducted in conditions with relatively low wind
speeds, the wind conditions on the sensor kept changing constantly
throughout the flights, in particular at the turning points of the flight
path. Kelly et al. (2019) had shown that a wind speed difference of as
low as 2m s−1 is sufficient to trigger large thermal drift. A change in
flight direction came with a change of wind direction and speed the
sensor was exposed to and changes in thermal drift often coincided
with changes of main flight direction. Although this is in line with
the findings of previous studies (Kelly et al., 2019; Malbéteau et al.,
2021; Yuan and Hua, 2022), we demonstrated the relation between
flight path-related changes of wind conditions on the sensor and CT
readings in-flight and continuously for the first time to the best of our
knowledge.

Kelly et al. (2019) and Yuan and Hua (2022) reported the sensor
to need several minutes to reach an equilibrium after changing wind
conditions. This is much longer than the interval between changes
in wind conditions caused by changes in the flight path, which is

typically below 1min, and the sensor does not have the time to reach an
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equilibrium during a flight. It has been suggested to mount shields to
protect the sensor from exposure to wind (e.g. Kelly et al., 2019). Yet,
this would also increase payload and reduce the agility of the gimbal. In
addition, the potential of such a shielding to reduce sensor drift might
be limited, as wind is only one of several potential drivers of sensor
temperature.

Drift is most pronounced after turning on the TIR sensors and there-
fore, stabilization procedures are suggested in literature. In this work,
temperature stabilization period was 15min in 2021 and was increased
to 30min in 2022. This was longer than the 10min recommended for
handheld thermometers in Pask et al. (2012) and in the range of the
30min recommended in Berni et al. (2009). Kelly et al. (2019) and Yuan
and Hua (2022) showed that under laboratory conditions, the largest
drifts of TIR cameras often occur during the first 30min. In 2022, heri-
tabilities were generally lower than in 2021, when stabilization period
was shorter. We therefore conclude that other parameters are more
relevant for the quality of drone-based TIR imaging than increasing the
temperature stabilization period on the ground beyond 15min.

Within campaigns, there was no clear trend that first flights showed
a lower heritability than later flights of the same campaign. The sug-
gestion of Kelly et al. (2019) to hover the drone for 15min prior to
measurements to stabilize it with in-flight conditions did not prove to
be helpful for the multi-view approach in our study. Continuous ther-
mal drift throughout the flight cannot be considered in any pre-flight
stabilization procedure alone. Also, in-flight stabilization procedures,
where the drone is hovered over the field prior to measurements, just
help to mitigate effects from rather constant propeller slipstream but
not from changing direction of flight and wind.

4.3. Analysis on quality and quantity of observations included in multi-view
models

Multi-view allows to select data according to viewing geometry.
When measuring CT of wheat crops with a handheld sensor, it is
recommended to measure at an oblique angle to reduce the influ-
ence of the soil (Pask et al., 2012). By excluding most nadir-oriented
measurements in aerial thermography, the average fraction of plant
pixels per measurement can be increased. Measurement values are
therefore more related to actual CT and less to canopy cover and soil
temperature. This is most likely also leading to more accurate (though
not necessarily higher) correlations between flights, as different traits
such as stomatal conductance and canopy cover are unmixed to a
certain degree. Heritability and correlation between flights within the
same year also depend on the number of observations included.

The results showed that more observations per plot make the mea-
surements more genotype specific and consistent. This effect is not
unique to multi-view imaging: also in orthomosaic blending, informa-
tion of multiple images is aggregated into one orthomosaic. Unlike
with orthomosaics, with multi-view, we can determine the influence
of the number of observations by excluding random observations.
Consequently, the added value of repeated measurements per plot
could be estimated, which would allow to estimate the minimum
number of measurements to be included and to plan flights accordingly
(flight height and overlap). A trade-off between maximizing number of
observations and optimizing quality by data selection must be found
for individual CT measurement campaigns. When nadir-oriented mea-
surements are excluded, the number of measurements per plot might
become so low that it deteriorates the CT estimates, which was demon-
strated with weakening correlations when swath width of nadir-view
exclusion was increased.

4.4. Sensitivity of the approach

The estimated plot-wise CT estimates within single flights span over
a range of 2.96 °C on average over all flights. Within this range, the
measurements were shown to be highly consistent within the same
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campaign over the 270 plots of EuVar by means of correlation and
within-campaign genotype ranking consistency. In addition, signifi-
cant differences could be found between the 30 genotypes. The high
genotype specificity of the CT values was confirmed by the high heri-
tabilities. This indicates a high sensitivity of our approach for relative
CT differences. This sensitivity is clearly below a relative sensitivity of
1 °C which is stated in Mesas-Carrascosa et al. (2018) to be required for

IR measurements in agriculture. However, the sensitivity is restricted
o relative differences in CT. For absolute values, as required in many
pplications for crop physiology, additional in-field calibration would
e needed.

Kelly et al. (2019) showed that also uncooled and uncalibrated TIR
ameras show a relatively constant relation (i.e. slope) between DNs
the original raw values of the thermal camera) and temperature of
eference objects. The authors found that mainly the offset is chang-
ng between flights. This supports our findings that the multi-view
pproach allows to represent relative temperature differences well, but
he estimation of absolute values is prone to large errors. The narrow
anges of genotypic differences found indicate that the accuracy of
ncooled yet calibrated TIR cameras of ±5 °C (Kelly et al., 2019; Perich
t al., 2020) is not sufficient without a post-processing correction step.

.5. Correlation and within-campaign genotype ranking consistency as mea-
ure of the methods consistency

In this work, correlations between CT of different flights and within-
ampaign genotype ranking were considered as indicators of consis-
ency of the different approaches. Another option would be to correlate
light data with ground measurements. Nevertheless, ground reference
easurements are subject to drift as well, and consequently should be

aken in the same period as the TIR measurements. Ground reference
easurement should also have the same response time and response
attern to changing environmental conditions as CT (Jones et al.,
009).

While measuring variability of CT e.g. between treatments and
enotypes just once is a bad indicator of systematic and consistent
T differences (Jones et al., 2009), very strong and significant (𝑃 <

0.001) correlations between repeated measurements of apparent CT in
independently processed flights were reached in this work. Together
with the within-campaign genotype ranking, this demonstrates a high
consistency and high reliability of the multi-view method.

4.6. Covariates in mixed models

The covariates included in the mixed models were chosen to repre-
sent the main trends assumed to be influencing the apparent tempera-
ture. Trigger timing was included to correct for trends related to sensor
drift (Kelly et al., 2019). Lateral and longitudinal distance of the plot
from the drone in sowing row direction were assumed to be related
to changing apparent canopy cover (Aasen and Bolten, 2018; Pask
et al., 2012; Perich et al., 2020). Anisotropy of wheat canopies, i.e. the
directional dependence of the reflectance of TIR radiation on the crop
surface, was assumed to be correlated with the lateral and longitudinal
distance of the plot from the drone in sun direction (Jones et al., 2009;
Nicodemus, 1977; Perich et al., 2020). The 𝑥 and 𝑦 image coordinates
of the ‘‘Sensor-Plane-Trend’’ were intended to describe sensor related
trends such as vignetting.

4.7. Including all plots to avoid border effects

Temporal drift was estimated based on all plot-wise measurements
available, i.e. also border plots and plots of other experiments were
included. When a drone is flying over an experiment in swaths, at the
beginning and at the end of the swath, the temporal density of data
points may decrease. For these regions, the estimation of the temporal
drift is unbalanced and can take on extreme values (see extremely
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warm/cold gray points in Fig. 6). When including all plots in the plot-
wise CT estimation models, the estimates of apparent CT within the
experiment of interest are less impaired by the effect of reduced density,
as the plots at the beginning and end of swaths are border plots or
belong to other experiments that are not in the focus of the study. In
addition, the inclusion of other experiments and border plots increases
the data available for more robust estimation of trends. Rodríguez-
Álvarez et al. (2018) for example included 31 trials on one field for
estimation of spatial trends before analyzing experiments separately.

4.8. Image pre-processing and TIR data extraction

Vignetting correction affected neither the correlations between mea-
surements nor the heritabilities of the single flights significantly. Nev-
ertheless, it was important to include it in the analysis as its spatial
patterns potentially might mix up with the covariates related to viewing
geometry. Decreasing the variance that might stem from vignetting
previous to modeling decreased the risk of overestimation of geome-
try related effects in mixed models which might be concurrent with
vignetting.

The choice of the 50th percentile for plot-wise data aggregation
allowed for highly consistent and heritable CT measurements. Together
with nadir-view exclusion, a smart selection of a fitting percentile
contributes to mitigating a bias by the background in mixed pixels.
More reasoning on vignetting and zonal data aggregation by specific
percentiles is provided in sections A17 and A18, respectively.

4.9. Benefits of additional data available in multi-view

For existing approaches of drone-based CT measurement, analysis
is usually conducted on orthomosaics (e.g. Francesconi et al., 2021;
Malbéteau et al., 2021; Perich et al., 2020). The presented image-
wise multi-view approach allows for more detailed information on
temporal trends, measurement geometries and uncertainty estimates.
Such information is lost to a large extent when conducting analysis on
orthomosaics. Mesas-Carrascosa et al. (2018) and Wang et al. (2023)
also used information of multiple images for an estimate of temporal
drift. Mesas-Carrascosa et al. (2018) retrieved features from overlap-
ping parts of images from multiple drone passes of the same flight
while Wang et al. (2023) just used features from consecutive images.
They both used the differences between the features that appear on
multiple images to correct the orthomosaic for temporal drift. In con-
trast, we extracted CT of the specific plots on single images directly.
This automatic process enables an efficient information retrieval di-
rectly from overlapping images, which in turn increases the efficiency
of trend estimation. In addition, multiple covariates can be calculated
for each measurement, increasing the available information for a subse-
quent analysis. Aasen and Bolten (2018) estimated the position of pixels
relative to the sun on single images by using a fixed orientation of the
camera during the flight for hyperspectral information. The multi-view
approach allows to calculate such geometric relations independently
of the orientation of the camera. The interplay of wind conditions
and flight direction on CT estimates was examined in Malbéteau et al.
(2021). By visualizing temperature drift in relation to flight direction
with a high temporal resolution, their findings could be complemented
with continuous in-flight drift dynamic estimates. Deery et al. (2016,
2019) and Perich et al. (2020) used correlations between measure-
ments at different times and heritabilities as quality criteria of the
experiment, Jones et al. (2009) used consistency of genotype ranking,
while Malbéteau et al. (2021) used pixel-based standard deviation
of the input-data to check quality. Based on previous studies, here
correlations, genotype rankings, and heritabilities were also used as
quality criteria, but the inverted standard error of the measurements
per plot was included for weighting in heritability calculations as
an uncertainty estimate. While the swath based approach of Mal-
béteau et al. (2021) corrects the input-data before analysis, with the
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Fig. 12. Cheat sheet, giving an overview on most relevant considerations when measuring CT with a drone based multi-view approach.
multi-view approach, the different trends and effects are estimated in
a statistical model. Estimated trends and standard errors are available
for an in-depth analysis together with multiple covariates, but the
input-data remains unchanged, providing a comprehensive and detailed
overview on the quality of the data. While such comparisons over dif-
ferent experiments have to be done with due caution, correlations and
738 
heritabilities in this study were as high or higher than what was reached
in Deery et al. (2019) and Perich et al. (2020) with calibrated TIR cam-
eras. With an uncooled and uncalibrated TIR camera, correlations and
heritabilities higher than 0.95 were reached by exploiting covariates
available through the multi-view approach which allowed to correct
for thermal drift and viewing geometry related effects. Multi-view as a
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lean phenotyping approach has therefore the potential to significantly
improve CT measurements in the context of variety evaluation without
the need for more expensive equipment or elaborate in-field reference
procedures.

4.10. Cheat sheet for drone based multi-view thermography

Finally, based on the findings of this study and complemented
from literature (Kelly et al., 2019; Yuan and Hua, 2022), the most
important findings on an optimal procedure to measure CT in a multi-
view approach are summarized in Fig. 12. The cheat sheet follows
the logic of the work flow and is divided into the stages before the
flight, flight, data extraction and analysis. If these recommendations are
followed, the most important findings of this study can be incorporated
into drone-based CT measurements.

4.11. Outlook

Further research might include streamlining the processing for sim-
ple implementation and using the method in combination with a sta-
tionary local sensor with a high absolute measurement accuracy for
in-field normalization to derive accurate absolute CT values on the
whole fields. Temporal drift information might be included in an or-
thomosaic blending procedure where each image gets an offset estimate
by multi-view, allowing for more accurate and consistent orthomosaics.
Alternatively, several geometric covariates could be calculated and
their contribution to total variance examined in a multi-view approach.
If information on wind direction and speed on the field are available
at a high temporal and spatial resolution, CT and thermal drift could
be related to the influence of changing wind conditions and gusts.
Finally, while the method was developed for wheat phenotyping in
variety testing experiments, it might be suitable for other field crops
and even for observations beyond agriculture. Once the thermal images
are aligned and georeferenced, the method is semiautomatic. As simple
requirement, georeferenced polygons of the targeted ROIs must be
available, and those ROIs must be small enough to appear entirely
in multiple images of a flight. The back-projection of ROIs to images
does not need any manual intervention, wherefore the whole process
could be automatized. With the data retrieved, mixed models and
linear models could be fitted for non-designed experiments (e.g., land
surface monitoring) as well as designed experiments (e.g., breeding
experiments) alike. Larger areas could be covered by flying at higher
altitudes. Those adaptations would pave the way to apply the presented
method not just for breeding and variety testing, but also, e.g., to detect
stressed patches in fields to improve irrigation efficiency, or variable-
rate fertilization applications in precision agriculture (Romano et al.,
2011; Messina and Modica, 2020; Chandel et al., 2022).

5. Conclusion

In this study, a multi-view approach for consistently measuring
relative CT of wheat with a drone-based uncooled and uncalibrated TIR
camera without any in-situ field references was presented. The quality
of the measurements was assessed by means of correlations between
measurements taken at different times, genotype ranking consistency
between flights and heritability. Contrary to standard orthomosaic ap-
proaches, multi-view allows to calculate and include several covariates
in the analysis which improved the CT estimates in terms of correlation,
ranking consistency and heritability. The trigger timing, describing
thermal drift during a flight, was by far the most beneficial covariate to
be included. Integrating other covariates related to viewing geometry
with respect to position of the plot and the sun relative to the drone
showed additional potential to improve CT estimates. The proposed
approach enables the disentanglement of spatial drift from temporal

drift.

739 
The ability for detrending CT data, together with the option to
select measurements according to viewing geometry paves the way for
using drone-based thermography with relatively simple equipment as a
lean phenotyping method without complex calibration procedures. Yet,
the method is limited to relative temperature differences and does not
correct for errors in absolute CT values.

To facilitate the implementation of multi-view thermography, a
computationally inexpensive and easy to apply model is provided based
on the R-package SpATS. A cheat sheet outlines the complete procedure
to facilitate its implementation.

In future research, the method might be used in combination with
a ground-based sensor with a high absolute measurement accuracy
for in-field normalization to derive accurate absolute CT values. In
addition, in situations where an orthomosaic is required, temporal
drift information might be used as image-specific offset information in
orthomosaic processing to create more consistent orthomosaics.
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