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Abstract: Entrapped air in porous media can significantly affect water flow but simulations of air
entrapment are still challenging. We developed a pore-network model using quasi-static algorithms
to simulate air entrapment during spontaneous wetting and subsequent drainage processes. The
model, implemented in OpenPNM, was tailored to replicate an experiment conducted on a medium-
sized unconsolidated sand sample. We started building the model with three types of relatively
small networks formed by 54,000 pore bodies which we used to calibrate basic network topological
parameters by fitting the model to the water retention curve and the saturated hydraulic conductivity
of the sand sample. Using these parameters, along with X-ray image data (µCT), a larger network
formed by over 250,000 pore bodies was introduced in the form of stacked sub-networks where
topological parameters were scaled along the z-axis. We investigated the impact of two different
contact angles on air entrapment. For a contact angle of 0, the model showed good agreement with
the experimental data, accurately predicting the amount of entrapped air and the saturated hydraulic
conductivity. On the contrary, for a contact angle of π/4, the model provided reasonable accuracy
for saturated hydraulic conductivity but overestimated the amount of entrapped air. Overall, this
approach demonstrated that a reasonable match between simulated and experimental data can be
achieved with minimal computational costs.

Keywords: capillary trapping; residual saturation; entrapped air; pore-network model; spontaneous imbibition;
satiated hydraulic conductivity

1. Introduction

It has been experimentally demonstrated that entrapped air in a non-wetting phase
strongly affects water flow through porous media [1,2]. In particular, the presence of
entrapped air in preferential flow pathways of soil can create obstructions that significantly
reduce the overall flow of water [3–5].

Recent advances in imaging techniques, such as X-ray microtomography, have pro-
vided deeper insights into the morphology of residual non-wetting phases [6]. For instance,
Scanziani et al. [7] utilized this technique to visualize the dynamics of gas trapping in CO2
storage scenarios, emphasizing the role of the pore structure in influencing the trapping
efficiency. Wang et al. [8] demonstrated that both water-wet and CO2-wet conditions
enhance the trapping of CO2 compared to weakly water-wet or neutral conditions.

Continuum models mainly implement entrapment and fate of air using the two-phase
(or multiphase) flow approach [9,10]. It has frequently been assumed that the residual air
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content is constant, but this assumption is often not valid [11,12]. Alternatively, pore-scale
models take the three-dimensional geometry of the pore network into account. Various
pore-scale modeling approaches have been used in the past, such as the volume-of-fluid
method [13,14], the lattice Boltzmann method [13,15], and pore-network modeling [16,17].
The volume-of-fluid and lattice Boltzmann methods are computationally demanding, and
they have typically been used to describe only small domains of the order of several pore
bodies in each direction [18].

Pore network models (PNMs) have been shown to successfully and efficiently predict
numerous aspects of multiphase flow and transport processes in porous media [19–23].
Algorithms used in PNMs are often based on percolation theory [22,23], which simulate
processes based on physical forces [24–27] that require little computational power and
time [21,28,29]. A thorough overview of PNMs has been given in seminal works by Blunt
et al. [19] and Sahimi [30].

The geometry and topology of the pore network are key parameters of PNMs [31].
The topology of the network determines the location of pore bodies and their connection
through pore throats. Early studies used pore throats and pore bodies with circular cross
sections [32,33]. Such approaches are being increasingly replaced by pore throats and pore
bodies with angular cross sections (triangle, square, hyperbolic polygons, etc.), which allow
simulations of corner flow [34]. The geometry and topology of the pore network can be
constructed as random computer-generated structures [35–37] or can be derived directly
from highly resolved image data of porous media [38,39]. The pores network generated
based on high resolution 3D images, mostly obtained by X-ray imaging on synchrotrons
provide the most realistic description [40–42], albeit only for sample volumes ranging
from several cubic millimeters [41] to several cubic centimeters [43]. The small size of the
domain is a disadvantage when investigating the hydraulic properties of complex porous
media such as soils, which often require larger sample sizes to meet the prerequisites of a
representative elementary volume.

The purpose of this study was to develop and parameterize a pore network model
using the OpenPNM platform [44] to simulate air entrapment and water flow through
coarse sand during repeated wetting and drainage cycles. Specifically, we sought to
determine if a pore network constructed on (i) the water retention curve and (ii) the
saturated hydraulic conductivity of the porous material, as well as (iii) the average diameter
of entrapped air bubbles with depth obtained from X-ray image data could provide a
representation of the experimental data on wetting and draining.

2. Materials and Methods
2.1. Model Background
2.1.1. Network Generation

The model presented is based on the OpenPNM framework [44]. This open-source
package has previously been used to characterize diffusivity in the thin, porous layer [45]
or to solve multiphase transport through the fuel cell [46,47].

The generated networks comprised interconnected pore bodies and pore throats, both
a square cross-section. The network topology is defined by the coordinates of the pore
bodies and a list of pairs of pore bodies connected by the corresponding pore throats. One
of the parameters that describe the network is the coordination number z (-). The value
z indicates the average number of pore throats connected to a single pore body. Another
parameter, the aspect ratio, indicates the ratio between the pore body and the radius of the
pore throat.

2.1.2. Physics Considered in the Simulation Model

We simulated both the drainage and wetting of water in the sand sample as a flow of
an invading fluid phase towards a defending phase that is initially present in the network.
This process is described by invasion percolation and simulated by considering two key
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parameters: the entry pressure and the conductivity of the individual network elements,
namely the pore bodies and throats.

The entry pressure of the element corresponds to the capillary pressure (difference
between the non-wetting and wetting phase pressures) at which the invading phase begins
to enter the element filled by the defending phase. During drainage, when the capillary
pressure drops, it eventually falls below the entry pressure of the element, then the element
is filled by the non-wetting (invading) phase by a piston-like displacement. During the
imbibition process, the capillary pressure increases, which leads to the filling of the element
with the wetting phase when the entry pressure of the element is exceeded.

Our simulation model was based on a simplified representation of the porous medium
using percolation theory. We assumed that only pore throats were relevant for the drainage
process. The simplification is applicable because the entry pressure of the pore throat is
generally lower than the entry pressure of the pore body because the size of the throat
is smaller than the size of the pore body. Therefore, when a pore throat is drained, it
means that the adjacent pore body also drains. However, capillary pressure increases
during imbibition. In this way, elements with a smaller radius and lower entry pressure are
saturated preferably, from which it follows that the pore bodies are more important for the
imbibition process.

The entry pressure of a pore throat with a regular polygon cross section is described
by Equation (1) [48]:

Pe,t =
σ

rt

{
cos θ +

√
tan αc

2
(sin 2θ + π − 2(αc + θ))

}
(1)

where rt (m) is the inscribed radius of the pore throat, θ (rad) is the contact angle, and αc
(rad) is the half-angle of the corners (π/4 for square).

For the imbibition algorithm, the entry pressure of the pore body, Pe,p (Pa), depends
on the geometrical characteristics which determine the radius of curvature of the interface
Rn (m):

Pe,p =
2σ

Rn
(2)

where σ (N·m−1) is the interfacial tension. The radius of curvature was determined
following [49], based on the calculation of the entry pressure for a spherical pore body. The
relationship is identical for a cubic pore body since the interface geometry remains the same
(see Figure 1a). The pore bodies filled with the non-wetting phase with a maximum angular
pitch of their axes (αp in Figure 1a) were used to calculate Rn. If there was more than one
combination of throats with the same maximum angular pitch, then the combination with
larger throats was used. The radius of curvature of the interface (Rn) for throats with equal
radii was determined by Equation (3):

aR2
n + bRn + c = 0 (3)

where:

a =

(
cosβS +

sinβS
tan α

2

)2
− 1b = −2

(
cosβS +

sinβS
tan α

2

)(
rt

sin α
2
+ Rpcos

γ

2

)
c =

(
rt

sin α
2
+ Rpcos

γ

2

)2
+
(

Rpsin
γ

2

)2
(4)

where Rp (m) is pore body radius, γ (rad) is selected as αp as discussed in [49], and
βS = π/2 − θ − αp (rad). When the pore throats were of different radii, the equivalent pore
radius was determined according to [49] using the smaller of the two pore throat radii,
and the value of angular space remained αp. The entry pressure was then determined by
Equations (2)–(4) with the equivalent parameters.
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Figure 1. Diagram of the geometry used in the PNM. (a) A pore body with two identical pore throats
with angular pitch αp and interface radius Rn [49] Cubic and spherical pore body geometries are
shown. (b) A cross-section of the square pore throat with the radius of the inscribed circle rt and with
the water film with the radius of curvature rnw in the corners.

In addition, the capillary pressure within the pore network changes hydrostatically
with elevation in the gravitational field. Hydrostatic pressure was accounted for by chang-
ing the entry pressure according to height.

Pe_ f in,el = Pe,el − ρwgzel (5)

where Pe_fin,el (Pa) is the final entry pressure of element el, ρw (kg·m−3) is the density of the
water, and zel (m) is the height of the center of the element el from the bottom of the pores
network.

Furthermore, the capillary pressure applied during drainage, P∗
c (Pa), is suitable for

calculating the radius of curvature of the water film in the corners of the pore throats and
bodies (Figure 1b):

rnw =
σ

P∗
c

(6)

The area of water in the cross-section, Aw (m2), is determined by

Aw = Ncr2
nw

[
cos θ

sin αc
cos (αc + θ)− π

2
+ αc + θ

]
(7)

where Nc (-) is the number of corners, and the air volume in the whole element, Vg (m3), is:

Vg = Ve − Vw = Ve −
Aw

Ae
Ve (8)

where Ae (m2) is the area of the cross-section of the element, Ve (m3) is the volume of the
element, and Vw (m3) is the volume of the water film. For the water film to form in the
corners, the condition of θ <π/2 − αc must be met.

We assumed the Poiseuille law in each pore throat to calculate its hydraulic conductiv-
ity [50]. The flow rate of the wetting phase from the pore body i to an adjacent pore body j,
qij (m3·s−1), was determined as follows:

qij = gij∆Pij (9)

where ∆Pij (Pa) is the difference between the pressure of the wetting phase in the pore
bodies i and j, and gij (m3·Pa−1·s−1) is the throat hydraulic conductivity of the pore throat
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that connects i and j. The conductivity of the throat for single-phase flow, when the throat
was filled by the wetting phase, was:

gw,1−p
ij =

πr4
e f f

8µwl
(10)

where reff (m) is the hydraulic radius, µw (Pa·s) is the dynamic viscosity of the wetting phase,
l (m) is the length of the throat, and the superscript w, 1 − p indicates the single-phase
water flow. The hydraulic radius was determined following Bryant and Blunt [51]:

re f f =

√
At/π + rt

2
(11)

where rt (m) is the inscribed radius of the pore throat, and At is the area of the cross-section
of the pore throat. The wetting phase conductivity of an unsaturated pore throat (water
flow in corner water films) is given by [52]:

gw,2−p
ij =

Awr2
nw

βµwl
(12)

where the superscript w, 2 − p indicates two-phase water flow, and the resistance factor β
(-) was determined by Equation (13) according [53]:

β =
12 sin2 αc(1 − B)2(ψ3 + f Bψ2)

2

(1 − sin αc)
2B2(ψ1 − Bψ2)

2 (13)

where its coefficients are

ψ1 = cos2 (αc + θ) + cos (αc + θ)sin (αc + θ)tan αc, ψ2 = 1 − θ
π
2 −αc

ψ2 = 1 − θ
π
2 −αc

, ψ
3
= cos(αc+θ)

cos αc

B =
(

π
2 − αc

)
tan αc

(14)

here the f = 0.
Appendix A describes both existing and new algorithms used in pore network modeling.

2.2. Experiments Carried Out on Sand Columns

We conducted two different experiments on columns packed with the same coarse
sand. The first was the measurement of the primary drainage branch of the water retention
curve on the sand column performed using the sandbox apparatus [54].

The second experiment [55] consisted of a series of drainage–imbibition cycles to
study the relationship between the entrapped volumetric air content and the saturated and
satiated hydraulic conductivity (Figure 2a).

The material used in this study was coarse sand (ST 03/08, Sklopisek Strelec, Czech
Republic). Particle sizes ranged from 0.1 to 1.0 mm. The value of the uniformity coefficient
(D60/D10,) was 2.2 and the effective particle size (D10) was 0.29 mm. The particle density
was 2.62 g·cm3. The dry bulk density of the sample was calculated from the mass and
volume of the dry sand sample (1.67 g·cm3). Sample porosity was determined from particle
density and the dry bulk density (0.354 cm3·cm−3).

The water retention curve was used to fit the van Genuchten model [56], where we
found the parameters α = 0.048, n = 3.976, m = 0.749.

The second experiment started with a sand sample that had been fully saturated in a
vacuum chamber. The value of ωr was assumed to be equal to 0 due to full saturation. The
saturated hydraulic conductivity (Ks) was determined by repeating the fall-head method.
(Figure 2b) with manual additions of 40 cm3 dose of water each time the water level
dropped to the pin. The constant water level was kept around the sample by continuously
removing excess water using a pump. The measurement was repeated ten times.
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Figure 2. Description of the second experiment. (a) Cycle of the second experiment. The infiltration
experiment served to obtain hydraulic conductivities (KS, K(ω)). Then, the pressure head for the
drainage was set at a new value between 4 and 50 hPa of suction pressure. After the drainage process,
the value of ωinit was determined as the initial volumetric air content before the entrapment of air
took place during imbibition. The spontaneous imbibition was carried out from the bottom of the
sample and then the amount of entrapped air, ωr, was determined. (b) Experimental setup. The
vessel is represented by an orange color, and the container with the sample is shown in green. A pin
(red) was placed on top of the sand column (yellow) that served as a marker enabling it to maintain a
constant ponding depth at the start of the saturated hydraulic conductivity measurement.

The mass of fully saturated sand was recorded and was later used as a reference for
gravimetric measurements of the entrapped air content.

The drainage and spontaneous imbibition cycles were performed (Figure 2a). Drainage
was carried out on a sand table with the given pressure head. The value of ωinit was
obtained gravimetrically, by weighing the container with the sand column after drainage.
Imbibition after each drainage step was performed by flooding the sample upwards through
the bottom. By filling the outer container to the standard level, it was possible for each
step to determine the mass of water replaced by the trapped air relative to the initial
fully saturated state and to calculate ωr. The satiated hydraulic conductivity (hydraulic
conductivity at the actual residual gas saturation) K(ω) was measured after each imbibition
using the same falling head method as used for the measurements of Ks. A total of ten
drainage and imbibition cycles were completed. Furthermore, three-dimensional X-ray
µCT images of the sample in the drained and flooded (saturated or satiated) states were
recorded for two additional cycles. The experiments were detailed in [55].

2.3. Description of Numerical Simulations

Two contact angle values were considered for the simulations. The first contact angle
θ = π/4 represents weakly wet conditions. This value was selected to represent a realistic
value for the coarse sand. It is still small enough to prevent snap-off effects. Snap-off cannot
occur for θ = π/4, due to the condition of θ <π/2 − αc required for the creation of water
film, because the water will not adhere in the corners [52]. The second value of θ was
chosen to be 0, which well represents the state of very wet sand. Both θ-values were used
for generating networks and simulations.

2.3.1. Small Networks Generation

A uniform network of 30 × 30 × 60 pore bodies was generated which has been shown
to be a sufficient size for this purpose [31]. Because hydraulic characteristics mainly depend
on the topology of the pore network and size distribution of the pore network elements,
three different approaches for pore network generation were used.

The first network type was a cubic network with a connectivity equal to 6 and a spacing
of 180 µm, with the truncated Weibull distribution of pore body radii:

Rp = (Rmax − Rmin)
(
−σln

(
x
(

1 − e−
1
σ

)
+ e−

1
σ

)) 1
δ
+ Rmin (15)
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where x (-) was a random number between 0 and 1. Parameters of this network were the
minimal radius, Rmin (m), the maximal radius, Rmax (m), and the parameters σ (-) and δ (-).

The second network was a cubic network constructed with a connectivity equal to
26 and a spacing of 180 µm. The connectivity was then randomly reduced for the entire
network to an integer value of the coordination number z between 4 and 8. Again, the
Weibull distribution of the pore body radii was used (15). The parameters of this network
type were Rmin, Rmax, σ, δ and z.

The third network type had a random spatial distribution of the pore body centers;
the number of pores bodies was Np (). The throats that connected the pore bodies were
generated by the OpenPNM Gabriel algorithm. The maximum radius of the pore bodies
was determined. Then the radius of each pore body was determined from the maximum
radius by multiplying by the coefficient ε (-), which was constant for the entire network.
The value of ε varied from {0.5, 0.7, 0.9}. The parameters of the network were ε and Np.

The radius of the throat was determined from the radii of the pore bodies adjacent to
the addressed throat (Rp1 and Rp2) as

rt = Cmin
(

Rp1, Rp2
)

(16)

where the value of constriction factor C (-) was randomly selected from {0.80, 0.85, 0.90}.

2.3.2. Simulations in Small Networks

The drainage algorithm was used to simulate the sand retention curve to match it
with the measured retention curve. The results of these backward simulations were two
networks (parameters), one for the θ = 0 and the other for the θ = π/4. Hundreds of network
realizations were generated for each network type and each contact angle.

The pressure head boundary was established at the bottom of the network, while air
entered from the top. Saturated hydraulic conductivity was determined for each network
(Ks,s). Six measured points of the retention curve (suction pressure at: 15, 25, 30, 35, 40, and
50 hPa) were used for the comparison of the measured and simulated curves. The objective
function for parameter optimization φ (-) was:

φ =
6

∑
i=1

(VWCs(hi)− VWCm(hi))
2 + 2(ps − pm)

2 + 2(Ks,s − Ks,m)
2 (17)

where VWCs (-) and VWCm (-) are simulated and measured volumetric water content,
respectively, each corresponding to specific pressure head hi. Parameters ps (-) and pm
(-) are porosities, obtained from the simulation and from the measurement. The Ks,s
and Ks,m are the (fully) saturated hydraulic conductivities, obtained from simulation and
measurement.

The above-described network parameterization steps were carried out for two contact
angles on all three considered network types. First, we parameterized three small network
models using a contact angle θ = 0. Subsequently, we repeated the parameterization for
a contact angle of θ = π/4, yielding another set of three small network models. After
obtaining the network parameters, the retention curve based on the parameterized pore
network models was calculated for the range of 5 to 50 hPa in small pressure head steps
(≈2 hPa). A total of 20 unique network replicates were generated using the best-fitting
parameters for each contact angle for the cubic regular approach. The retention curve was
simulated for each network.

Furthermore, the relationships between the residual gas saturation of the sample, Sg,r
(-), and initial gas saturation, Sg,init (-), were calculated and plotted for 5 unique networks
with best-fitting parameter replicates. The values of Sg,r resp. Sg,init were obtained from
the values of ωr resp. ωinit by dividing porosity. The suction pressure values were {25, 28,
30, 32, 35, 40, 45, 50} hPa for networks generated for θ = 0 and {20, 21, 22, 25, 26, 27, 28,
30, 35, 40, 50} hPa for the networks generated for θ = π/4. First, a drainage simulation
was performed with the lower pressure head boundary condition set at the bottom of the
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network and the air inlet located at the top of the network. The value of ωinit (and the
derived value of Sg,init) was a result of this step. Subsequently, the imbibition algorithm
with inflow from the bottom of the network was used. Then the trapping algorithm was
used to obtain the value of ωr (and the derived value of Sg,r). This was repeated for all
pressure head values.

2.3.3. Large Network Generation

The generation of the network was aided by additional information provided by µCT
of the sample. The µCT images showed that large globular air-filled pores were formed in
the upper part of the sample during drainage–imbibition cycling probably by air bubbles,
while the lower part remained mostly unaffected by bubble formation. Thus, the network
parameters in the bottom most part (sub-network 1) were kept the same as in simulation in
a small network (Section 2.3.2), while the pore network parameters were modified in the
rest of the network. The resulting large pore network consisted of nine sub-networks, small
pore networks stacked on top of each other, where pore-network elements size increased
with increasing elevation (Figure 3a). These sub-networks represented sub-volumes of the
sub-volumes of the µCT image of the sample. The size of the largest bubbles, and thus
also the largest pore bodies, was determined from the µCT images for each sub-volume.
This information was also used to build the pore network. An example of a cross section
with region of interest in the upper half of the sand sample (height is from 25 to 50 mm) is
shown in Figure 3a.
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Figure 3. Description of the procedure in which the maximal µCT determined air-filled pore radius
was obtained from µCT images. (a) Example of µCT vertical cross section. Air-filled pores are
presented in black color. The region of interest used for the calculation of the largest bubble-formed
pore is the upper half of the sample (the green region). The sub-volumes numbered from 1 to 9 are
sub-networks represented in the model by different parameters of the pore network. (b) Histogram
of the µCT determined air-filled radii formed by air bubbles obtained for the upper half of the sand
sample. The radius was determined from the volume of µCT determined air-filled pores with the
assumption of its spherical shape.

The network parameters Rmin, Rmax and spacing were kept constant within each in-
dividual sub-network but increased linearly with increasing distance of the sub-network
above the base of the large network, in the same fashion as in the acquired sub-volumes of
µCT images. The ratio between these parameters remained constant. The parameters σ and
δ were kept constant throughout the pore network. Sub-networks 2–5 were more densely
spaced to achieve a smoother transition between sub-network 1 and sub-network 6.

The histogram of µCT determined air-filled pores radii in the upper half of the sample
is shown in Figure 3b. Air-filled pores radii were determined from the segmented µCT im-
age as pore volumes with the assumption of the spherical shape of the pores. The maximal
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pore body radius was specified as 600 µm with the assumption that 1% represented outliers
(Figure 3b). The radius of the pore throat (radius of the inscribed circle) was determined.

Rt = C∗min
(

Rp1, Rp2
)

(18)

where the constriction factor of the large network C* (-) was kept constant and Rp1, Rp2
were the radii of the pore bodies adjacent to the addressed pore throat.

2.3.4. Simulations in a Large Network

The simulation of the experiment involved two steps. The first step was the drainage
simulation, performed on an initially fully saturated sample using a drainage algorithm
with a boundary condition of −30 hPa pressure at the bottom.

The second step involved simulation of the imbibition using an algorithm with the
input at the bottom. The order in which the pores were filled obtained from the imbibition
algorithm was used as input for the entrapment algorithm, which eventually provided
the set of pores occupied with trapped air. The air leak outlet was positioned at the top of
the network and residual gas saturation was determined. Finally, the last algorithm was
utilized to determine the satisfied hydraulic conductivity.

The result of the simulation was a histogram of the sizes of the air groups trapped.
In addition, the frequency of the clusters that correspond to the ganglia was determined.
Whether the given cluster represented a ganglion was decided using a topological parame-
ter, the Euler number, which was calculated using the equation described by [31].

Figure 4 shows the schema of simulation processes for both small and large networks.
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Figure 4. Schema of simulation processes, in the upper part, the simulations are described in a small
network, and in the lower part the simulations are described in a large network.

3. Results and Discussion
3.1. Generated Networks

The comparison of the results obtained using different networks for the numerical
experiment in small networks is shown in Figure 5. The saturated hydraulic conductivity,
porosity, and objective function were obtained for each of the networks. Each point in
Figure 5 corresponds to the results obtained from one network. The points in Figure 5c,f
form three separate groups that reflect the value of ε, shown in Figure 5c. Additionally,
smaller subgroups, which correspond to different values of C, are visible in each group.
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Figure 5. Comparison of the results simulated for three pore network configurations. The columns
(a,d), (b,a), (c,f) correspond to the three network generation approaches and the rows (a–c), (d–f),
correspond to the two values of the contact angle. The magenta cross symbol shows the Ks values
determined in laboratory experiment. The color of the other points represents the value of the
objective function φ. The plots with the results of Gabriel’s approach exhibited a higher range of
KS values.

The regular cubic and Gabriel method-generated networks led to simulated hydraulic
conductivities similar to the measured one. However, the use of a regular cubic approach
led to the lowest value of the objective function. In the case of contact angle 0 the network
generation parameters that led to the best fit of the pore network model to the measured
retention curve and Ks were Rmin = 6.4 µm, Rmax = 86.6 µm, σ = 1.3931, and δ = 1.0308
which leads to simulated porosity 0.321 and Ks = 0.045 cm·s−1. In the case of the contact
angle π/4 the optimal parameters were Rmin = 14.6 µm, Rmax = 86.1 µm, σ = 1.0071, and
δ = 1.0073 leading to simulated porosity 0.353 and Ks = 0.058 cm·s−1. The optimized value
of parameter C was 0.9 in both cases.

Network parameter sets were further used for generating sub-network 1 for the large
pore network for the forward simulation. The values of the network parameters are listed
in Table 1. The value of C* equal to 0.93 (Equation (18)) led to porosities of the whole
sample equal to 0.35 for θ = π/4 and 0.32 for θ = 0. The pore network for this numerical
experiment was constructed from 253,146 pore bodies and 744,360 pore throats.
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Table 1. Parameters of 9 sub-networks of connected cubic networks. Sub-network 1 is the bottom
layer and sub-network 9 is the top layer of the large network. The remaining parameters were
C* = 0.93, σ = 1.3931, and δ = 1.0308 for θ = 0, and C* = 0.93, σ = 1.0071, and δ = 1.0073 for θ = π/4.

Sub-Network Rmin Rmax Spacing Height Width

θ = 0 π/4 0 π/4 0/π/4 0/π/4 0/π/4

(µm) (µm) (µm) (pores) (pores)

Simulation in a small network

- 6.4 14.6 86.6 86.1 180 60 30

Simulation in a large network

1 6.4 14.6 86.6 86.1 180 75 50
2 6.8 15.4 91.4 90.9 190 4 47
3 7.1 16.2 96.3 95.7 200 4 45
4 7.5 17.0 101.1 100.5 210 4 42
5 7.8 17.8 105.8 105.2 220 4 40
6 11.4 26.0 154.0 153.1 320 25 28
7 14.9 34.1 202.1 200.9 420 19 21
8 18.5 42.2 250.1 248.7 520 15 17
9 22.0 50.3 298.3 296.6 620 15 14

Figure 6 shows examples of networks generated for backward and forward simula-
tions with parameters used for numerical simulations. The small network, with sizes
5.4 × 5.4 × 10.8 mm3, contains 54,000 pores bodies and the large network, with sizes
9 × 9 × 50 mm3, contains over 250,000 pores.
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Figure 6. Examples of the network used in the case with networks generated for θ = π/4. Only pore
bodies are shown. (a) The small network with 54,000 pore bodies was used for backward simulation.
(b) The large network with 253,146 pore bodies was utilized for forward simulation.

3.2. Results of the Simulation in a Small Network

A comparison of the simulated and measured retention curves is shown in Figure 7. A
better agreement was obtained for θ = π/4 with porosity close to the measured value.
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Figure 7. Comparison of the measured retention curve with the set of simulated retention curves.
The simulated volumetric water contents were averaged for the corresponding pressure head values.
The lines show the average of all 20 values, and the shaded area shows the standard deviation.

Furthermore, the relationships between the residual gas saturation of the satiated
sample, Sg,r (-), and the initial gas saturation, Sg,init (-), are shown in Figure 8a. The
maximum of Sg,r was equal to 0.45 for θ = 0 and 0.52 for θ = π/4. The dotted lines show the
fit of the quadratic model by [57]. There is an approximately linear growth of Sg,r(Sg,init)
for lower values of initial gas saturation to the value over 0.5. Furthermore, the growth
rate of the amount of entrapped air decreases significantly as the initial gas saturation
increases. The general shape of the relationship is in good agreement with the findings of
Pentland [58] and Kazemi [59]. Figure 8b shows the difference between the air distributions
in the networks created for both contact angles for pressure head equal to 30 hPa.
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Figure 8. Comparison of the results for the backward simulation in a small network obtained using
different networks generated for given contact angle θ. (a) Relationship Sg,r(Sg,init); Sg,init is obtained
from the drainage simulation, Sg,r corresponds to the amount of air trapped. The results of five
generated networks for each contact angle are shown. (b) Distribution of air in the sample. The
solid line corresponds to the state after drainage with a pressure head of 30 hPa and the dotted line
corresponds to the distribution of trapped air. In this case, a network was used.
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3.3. Results of the Forward Simulation in a Large Network

The results are summarized in Table 2, where SD indicates the standard deviation.
The mean and SD in rows were calculated from five different networks. The mean value
of the volumetric air content ω within the entire sample determined by the simulation
with the network generated for the contact angle π/4 is 0.34 after drainage and 0.18 after
spontaneous imbibition. The mean value of ω in the case with a network generated for
the contact angle 0 is 0.24 after drainage and 0.14 after spontaneous imbibition. The
ω determined gravimetrically was 0.244 after drainage and 0.040 after the infiltration
experiment. A linear approximation was used instead of a specific measurement. A linear
approximation with the equation Sg,r = 0.36·Sg,init can be used as it was determined in [55].
Then, the residual saturation, Sg,r, the estimate would be 0.23, which corresponds to the
value of ωr equal to 0.083. This way, we can say that the values of ω in the case with the
network generated for θ = 0 are relatively accurate.

Table 2. Summarized results for simulations in a large network. The results were obtained from five
networks for each contact angle. SD indicates the standard deviation. The mean and SD values were
calculated from these networks.

θ
K(ωg,r) ωg,init ωg,r AR SD(AR)

cm·s−1 cm3·cm−3 cm3·cm−3 - -

0
mean 0.035 0.24 0.12 1.88 1.59

SD 1.5 × 10−4 1.0 × 10−3 1.5 × 10−3 2.9 × 10−3 6.0 × 10−3

π/4
mean 0.035 0.34 0.18 1.55 0.82

SD 3.8 × 10−4 1.1 × 10−3 1.3 × 10−3 7.3 × 10−4 1.1 × 10−3

The air distribution in the sample, represented as volumetric air content (ω), is shown
in Figure 9. Figure 9a presents the simulation results, while Figure 9b shows the adjusted
results where, to account for small pores missed by µCT, gas-filled pores and throats
smaller than 170 µm were excluded. This air content was used to compare with µCT
results. Figure 9a indicates a relatively uniform air distribution across the height, unlike
µCT images, where higher ωr values appear in the upper half. This difference is due to
larger, easily detectable air bubbles in the upper part, while smaller bubbles in the lower
part were not well captured by µCT. The pore network model, however, reflects the total
air content.

The effect that can influence the value of ωr is the mobility of entrapped air bubbles
that was not considered in the model. It is reasonable to assume that the ganglia could
be mobile and capable of escaping the network even after capture. Figure 10 shows the
distribution of the air clusters by size; approximately 50% of the number of individual
air clusters are single-pore bubbles. However, the total volume of single-pore bubbles
represents only approximately one hundredth of the sample volume.

The overestimated simulated value of ωr cannot be attributed to the neglected snap-off
mechanism because the use of the mechanism generally leads to higher ωr values [17] and
the snap-off mechanism is suppressed due to the low aspect ratio value [60], where the
aspect ratio means the relationship between the pore body radius and pore throat radius.
The average aspect ratio for the network generated for θ = π/4 is 1.55 with a standard
deviation 0.82 and for the network generated for θ = 0 the average aspect ratio is 1.88 with
a standard deviation of 1.59.

Our simulation results align well with the microtomography experimental work on
sandstone published by Herring et al. [61], who also observed an increase in residual
non-wetting phase content with rising contact angles (from strongly water-wet to weakly
water-wet conditions). The increase in residual non-wetting phase is attributed to the
dominance of capillary over viscous and gravitational forces within the contact angle range
of 0 to π/4. This dominance shapes the drainage patterns, resulting in a higher content
of non-wetting fluid as compared to the initial condition. During imbibition, a significant
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amount of this non-wetting fluid becomes entrapped due to capillary forces acting on the
non-uniform wetting front.
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has an x-axis with linear scale.

The value of Ks was obtained from the simulation in a small network where Ks = 0.058 cm·s−1

for the network generated for θ = π/4 and Ks = 0.045 cm·s−1 for the network generated
for θ = 0. The low Ks value in the latter case is probably related to a lower porosity.
The satiated hydraulic conductivity for a pressure head of 30 hPa was determined from
simulation in a large network. The value is 0.035 cm·s−1 for the network generated for
θ = π/4 and 0.035 cm·s−1 for the network generated for θ = 0. The measured value of
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Ks was equal to 0.060 cm·s−1. In our previous study [56], we experimentally determined
K(ωmax) = 0.034 cm·s−1 at a maximum obtained value of ω equal to 0.11. It can be seen in
Figure 11 that the hydraulic conductivity for network generated for θ = 0 was close to the
measured value. However, saturated hydraulic conductivity was underestimated in the
case when the θ = 0 which is a consequence of lower porosity (see Figure 7).
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4. Conclusions

The simple pore-network model based on the OpenPNM platform was presented
to simulate physical experiments with air trapping conducted on a sand sample. In the
first numerical experiment, with a small uniform network, the network parameters were
optimized to fit the measured retention curve and saturated hydraulic conductivity. The
regular cubic network led to the best agreement with the measurement.

In the second case, the infiltration experiment performed on the sand column that was
drained and subsequently filled with water from the bottom was simulated in a large non-
uniform network composed of nine sub-networks. This simulation was performed without
any further parameter optimization other than considering the pore network element size
variability obtained from µCT images.

The model overestimated the amount of entrapped air for network generated for the
contact angle π/4. The saturated hydraulic conductivity was determined with reason-
able accuracy.

The case of network generated for contact angle of 0 provided relatively good agree-
ment between the model and the measured content of air within the sample, but the
saturated hydraulic conductivity was underestimated, which is probably a consequence of
the presence of smaller pores and overall lower porosity obtained for this contact angle
than the measured porosity. However, the satiated hydraulic conductivity reached a value
similar to the measured value.

Limitations of this study are the assumptions of absence of entrapped gas buoyancy
and snap-off mechanism. However, the latter only becomes relevant for simulations with
larger contact angles than the ones considered here. Our study has demonstrated that fast
quasi-static algorithms and a network that was generated using independently measured
hydraulic properties together with additional information from µCT successfully capture
trends of air entrapment during imbibition of sand in relation to the initial air saturation.
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Appendix A Algorithms

Appendix A.1 Algorithm of Drainage

Drainage was modeled using the Invasion Percolation algorithm built into the OpenPNM
platform. The result is then the list of the IDs of all the air-filled elements (pores and throats)
for a given pressure head (ps_air and ts_air arrays). The IDs of the remaining pore bodies
were stored in the ps_initial array, which represents pores filled with water in the initial
state of the imbibition. The fraction of air in the pore bodies was determined as follows:

ω =
Vg

V
=

(
∑

iϵps_air
Vp,i + ∑

jϵts_air
Vt,j

)
/V

where ω (m3·m−3) is volumetric air content, Vg (m3) is a volume of air present within the
sample, V (m3) is a volume of the whole sample, Vp,i (m3) is a volume of air in the pore
body i, and Vt,j (m3) is a volume of air in the pore throat j. Volumes were determined by
Equation (8). The ps_initial array was employed as an input in the algorithm of imbibition.
Calculation of an imbibition algorithm in a large pore network took 1 to 2 min using
desktop PC equipped with Intel i7 processor.

Appendix A.1.1 Algorithm of Imbibition

The difference between imbibition and drainage algorithms is that the entry pressure
for the pore bodies is dependent on the occupancy of the surrounding throats. This
affects the resulting geometry of the phase interface. As a result, the pore entry pressure
may change at each step of the filling process. The IDs of pores bodies adjacent to the
filled pore bodies were stored in the pores_neighbor array. In each step of the imbibition
process, the pore body with maximum entry pressure from the pores_neighbor array was
selected to be filled. The sequence number Ns was assigned to this pore, and Ns was
increased by one. After this step, the pores adjacent to the newly filled pore were added
to the pores_neighbor array. In these newly added pores, the entry pressure was updated
according to the changing geometry of the air–water interface. The new entry pressure was
determined by Equation (2).

Because of nonzero initial volumetric water content, some of the pore bodies were
water-filled already at the beginning of the imbibition process (i.e., its ID was included in
ps_initial). If the initially water-filled pore body appeared in the pores_neighbor array, then
its filling (in the algorithm) has begun. The adjacent pores, which are also in the ps_initial
array, were filled primarily regardless of the entry pressure.

The result of the imbibition algorithm is a pore-filling sequence, which then represents
the input for the algorithm of entrapment.

Calculation of drainage algorithm in a large pore network took 10 to 15 h using desktop
PC equipped with Intel i7 processor.
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Appendix A.1.2 Algorithm of Entrapment

The algorithm used to calculate capillary air entrapment [23] was based on a similar
one implemented in OpenPNM. We modified it to model the invading wetting phase. The
input for the algorithm was the pore filling sequence and the array of initially water-filled
ps_initial.

We used the bypass entrapment mechanism to delineate air entrapment by identifying
air-filled pores that become surrounded by water-filled pores before they fill themselves [61].
In the process, clusters of pores with trapped air were formed during the imbibition
simulation. Each cluster of trapped air is labeled from number 1 onwards. The cluster of
air-filled pore bodies connected to the outlet was labeled 0. This cluster corresponds to
pores that are in the end filled with water. At the beginning of the algorithm, all pores were
labeled −1 to help identify pores that have not been processed by the algorithm.

The algorithm used the reverse sequence of the water pore filling, obtained from the
imbibition algorithm. Generally, groups of connected pores filled with the defending phase
(air) were created, and each group was labeled with a label number. Three situations could
have occurred in each step when one goes backward in time [55]: (i) The number of clusters
with defending phase stays the same—the cluster (with label 0 or greater) can grow, (ii)
new cluster of size equal to one is created and assigned a new cluster label number, which
is incremented by one, (iii) multiple clusters merge into one cluster with a single label
number that is equal to the maximum of the label numbers of the merged clusters.

Only clusters of the defending phase that do not join the cluster connected to the outlet
can grow and merge. Cluster growth stops when a neighboring pore connected to cluster 0
is reached. The pores of this cluster are imported into the ps_entrapped array. After the
algorithm is completed for the entire network, the pores from ps_initial are removed from
the ps_entrapped array, which now has its final form. It is assumed that only the pore
throats between two pore bodies with trapped air can remain air filled at the end of the
imbibition simulation. In this way, the ts_entrapped array is constructed. The amount of
entrapped (residual) air, ωr, was determined by the equation:

ωr =
Vg,entrapped

V
=

(
∑

iϵps_entrapped
Vp,i + ∑

jϵts_entrapped
Vt,j

)
/V

The algorithm result was a list of pores that contain trapped air and the value of
ωr. Calculation of entrapment algorithm in a large pore network took up to 1 min using
desktop PC equipped with Intel i7 processor.

Appendix A.1.3 Algorithm Determining the Flow

The satiated hydraulic conductivity was determined from the flow rate at a known
hydraulic gradient. The boundary conditions were defined as constant pressure on the top
and bottom boundaries and no flow over the other boundaries. The flowrate qij between
pores is determined by Equation (9). The necessary phase pressures were determined by
applying a volume conservation equation at each pore body:

∑
j

qij = 0

where the sum was performed on all adjacent pore bodies of pore body i. The pressure
field was determined by solving the system of Np equations, where Np is the number of
pore bodies in the whole network. The Stokes Flow algorithm from OpenPNM was used to
calculate the flow. The hydraulic conductivity was then determined by Darcy’s law:

K =
Q
A

L
∆H
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where Q (m3·s−1) is the flow rate across the top and bottom boundaries, A (m2) is the cross-
sectional area, L (m) the length of the sample, and H (m) is the hydraulic head difference.
In the case of the presence of entrapped air in the pore medium, the result corresponded to
a satiated hydraulic conductivity, K(ω) (m·s−1) with volumetric entrapped air content ω.
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