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ABSTRACT: Dietary tannins can affect rumen microbiota and enteric fermentation to mitigate methane emissions, although such
effects have not yet been fully elucidated. We tested two subunits of hydrolyzable tannins named gallic acid (GA) and ellagic acid
(EA), alone (75 mg/g DM each) or combined (150 mg/g DM in total), using the Rusitec system. EA and EA+GA treatments
decreased methane production, volatile fatty acids, nutrient degradation, relative abundance of Butyrivibrio fibrisolvens, Fibrobacter
succinogenes, Ruminococcus flavefaciens but increased Selenomonas ruminantium. EA and EA+GA increased urolithins A and B. Also,
EA and EA+GA reduced bacterial richness, with limited effects on archaeal richness. For bacteria, Megasphaera elsdenii was more
abundant after EA and EA+GA, while Methanomethylophilaceae dominated archaea in all treatments. EA was more effective than
GA in altering rumen microbiota and fermentation but GA did not reduce VFA and nutrient degradation. Thus, dietary
supplementation of EA-plant extracts for ruminants may be considered to mitigate enteric methane, although a suitable dosage must
be ensured to minimize the negative effects on fermentation.
KEYWORDS: tannins, ruminants, Rusitec, urolithins, microbiota

■ INTRODUCTION
Ruminants convert low-quality plant fibers into energy and
proteins through the enteric fermentation processes exerted by
the rumen microbiota. Enteric fermentation leads to the
production of volatile fatty acids (VFA), the major source of
energy for ruminants, but it also causes the emission of gases
such as methane (CH4), carbon dioxide (CO2), and hydrogen
(H2).

1,2 Over the past 40 years, atmospheric concentration of
the greenhouse gases (GHG) CH4 and CO2 has increased by
18% and 23% respectively,3 with similar contributions from
natural and anthropogenic sources.4 The CH4 has a shorter
atmospheric lifespan5 and a higher global warming potential
than CO2 because of its higher radiative forcing.6 Livestock-
related CH4 emissions have grown 4-fold over the past 130
years, currently accounting for a third of global anthropogenic
CH4 emissions.7 Enteric fermentation from ruminants is the
main source of livestock-related CH4 emission, responsible for
approximately 90% of livestock-related CH4 emissions. The
remaining 10% comes from feed production and manure
emissions.8 Livestock has a primary role in CH4 emissions,
thus strategies to reduce CH4 emission are needed for a more
sustainable livestock production. Since CH4 is a physiological
product of rumen methanogenic archaea, the mitigating
strategies should target CH4 production without impairing
energy production and animal well-being.9 In this regard, a
promising strategy is the use of tannins as dietary supplements
for ruminants.10

Tannins are secondary plant metabolites able to bind feed
proteins,11 subtracting them from the microbial degradation

occurring in rumen. Tannins are known to affect CH4
production through direct targeting of methanogenic pathways
of archaea or indirect affecting feed fermentation by other
rumen microorganisms, such as bacteria and protozoa whose
H2 production is essential for methanogenesis.11 If properly
balanced, tannins can positively affect rumen fermentation by
reducing CH4 emissions and ammonia (NH3) formation while
avoiding detrimental effects on the fermentation activity of
rumen microbiota.12 Tannins are classified as condensed
tannins (CTs) and hydrolyzable tannins (HTs). Both classes
are able to reduce in vitro CH4 production through different
mechanisms based on their molecular weights, because CTs
have a higher molecular weight and ability to bind macro-
molecules than HTs.13 CTs are able to reduce CH4 by
decreasing fiber fermentation in rumen, whereas HTs are less
able to bind macromolecules but can reach CH4 reduction by
more easily targeting the action of archaea methanogens, even
though HTs are more degradable in rumen.10,14 Tannin-
containing plant extracts were applied in vitro to observe the
effect on rumen fermentation.15,16 Costa et al.17 observed that
CTs from mimosa exerted a stronger reducing effect than HTs
from chestnut on VFA and a selected set of rumen bacteria.
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However, the mode of action of individual tannin subunits
alone or combined on rumen fermentation has not been fully
elucidated.
To address this, we applied Rusitec, a well-established,

continuous, and standardized in vitro system to simulate rumen
fermentation for several days (e.g., 10 days) while maintaining
fermentation parameters over time,18 thus allowing for a better
characterization of the persistence and consistence of the
effects investigated.19 When coupled with high-throughput
sequencing, Rusitec provides detailed insights about the
alteration of the rumen microbial communities following
different treatments. Examples of tested treatments are the use
of a pathogenic C. perfringens strain,20 choline,21 and a blend of
essential oils and tannin-rich plant extracts.22 In addition,
rumen microorganisms can degrade HTs and produce
secondary tannin metabolites like urolithins, which result
from the metabolism of ellagitannins, of which ellagic acid
(EA) is a subunit. Urolithins are considered the executors of
the action usually ascribed to ellagitannins in rumen, but there
is still no clear evidence.23−25

In a previous study, we tested the effect of EA and gallic acid
(GA) on rumen fermentation using the Hohenheim Gas
Test.26 EA and GA are classified as phenolic acids and are the
subunits of the more complex HTs.25 The treatments with EA
alone (75 mg/g DM) or in combination with GA (both at 75
mg/g DM) reduced CH4 production per unit of dietary DM,
digestible OM (dOM), CO2, and VFA, as well as NH3
formation, more than GA alone. However, EA also lowered
nutrient degradation in rumen. The aim of this study was to
investigate the effect of EA and GA using a 10-day Rusitec
system by focusing on the: (i) influence of tannins on rumen
total gas production, CH4, NH3, VFA, and nutrient
degradation, (ii) kinetics of urolithin A (UroA) and urolithin
B (UroB) production, (iii) changes in the community
structures of rumen bacteria and archaea, and (iv) correlation
between gas production and relative abundance of selected
groups of rumen microorganisms.

■ MATERIALS AND METHODS
Experimental Design, Reagents, and Incubated

Materials. The Rusitec system (for a detailed description,
see ref 27) was used to incubate three treatments and one
control in three consecutive experimental runs. Each run lasted
for 10 days, with days 1 to 5 allowing the system to reach a
steady-state condition, and days 6−10 sampling and data
collection. A basal diet of ryegrass hay and barley concentrate
(10 g dry matter (DM), 7.5:2.5 ratio) was added to each
fermenter every day. The ryegrass hay was ground to pass
through a 5 mm sieve, whereas the barley concentrate was
ground to a particle size of 1 mm using a centrifugal mill
(Model ZM 200, Retsch GmbH, Hann, Germany). The
nutrient composition of the basal diet was (g/kg DM) 964
organic matter (OM), 36 ash, 109 crude protein (CP), 376
crude fiber (CF), 751 neutral detergent fiber (NDF), 417 acid
detergent fiber (ADF), 13.9 acid detergent lignin (ADL) and
19 ether extracts (EE). Fiber fractions are expressed excluding
residual ashes. The basal diet was used as the control substrate
(CTR). For the treatments, CTR was supplemented with GA
and EA, alone or in combination (EA+GA). GA and EA were
purchased from Sigma-Aldrich (St. Louis, MO, US). The
purity level was ≥98.5% for GA and ≥95% for EA. The four
treatments were: (i) basal diet alone (CTR), (ii) EA-
supplemented CTR (EA, 75 mg/g DM), (iii) GA-supple-

mented CTR (GA, 75 mg/g DM), and (iv) EA and GA-
supplemented CTR (EA+GA, both at 75 mg/g DM for a total
of 150 mg/g DM). Those dosages were chosen based on their
ability to elicit significant microbial and metabolic responses in
an in vitro setting, as already observed in a previous, short-term
study.26 In addition to the four treatment groups (CTR, EA,
GA and EA+GA), we categorized the treatments into EA+
(containing ellagic acid) and EA- (lacking ellagic acid) based
on observations showing that GA had a low impact on
fermentation traits. This distinction allowed for further
investigation into the specific effects of EA on microbial
community structures and gas emissions. These groupings
were applied to all subsequent analyses of microbial and
fermentation outcomes.
Rumen Fluid Collection. Donor animals were kept

according to the Swiss guidelines for animal welfare, and the
rumen fluid collection procedure was approved by the
Cantonal Veterinary Office of Zurich (approval number
ZH113/18). Three runs were performed. Rumen fluid was
collected before the morning feeding from one animal per run,
for a total of three rumen cannulated lactating Original Brown
Swiss cows. Donor cows were fed 17.8 kg DM/day of a total
mixed ration (TMR) composed of (% DM) grass silage (48%),
maize silage (20%), sugar beet pulp (17%), hay (8%),
concentrate (8%), and mineral supplement (0.2%). The pH
of the fresh rumen fluids ranged between 5.9 and 6.7.
Preheated glass bottles with water at 39 °C were used to keep
the rumen fluid warm during transport. The inoculation took
place within 2 h after rumen fluid collection. The rumen fluid
was then filtered through four layers of medicinal gauze (pore
size 1 mm) before being transferred into the fermenters.
Operation of the Rusitec. The Rusitec consisted of eight

1-L fermenters. At the beginning of each run, the fermenters
were filled with 800 mL of strained rumen fluid and 100 mL of
artificial saliva composed of 9.80 g/L NaHCO3, 4.67 g/L
Na2HPO4 × 2H2O, 0.47 g/L NaCl, 0.57 g/L KCl, 0.05 G/L
CaCl2 × 2H2O, and 0.13 g/L MgCl2 × 2H2O. The
components of artificial saliva were dissolved in distilled
water. The fermenters were located in a heated water bath
maintained at 39.5 °C. The incubation fluid was slowly moved
up and down by an electric motor (six times per minute). The
diet (CTR, GA, EA, or EA+GA) was added daily in nylon bags
(70 × 140 mm, pore size 100 μm) to each fermenter. Each of
the four treatments was allocated in duplicate to the eight
fermenters in a completely randomized design. On day 1, two
bags were incubated in each fermenter, one containing the
respective experimental diet and one containing about 40 g of
fresh matter of solid rumen content. On day 2, each fermenter
was opened, and the bag with fresh matter was removed,
squeezed, and washed in artificial saliva. The liquid fractions of
the washings were returned to each fermenter, and the
removed bag was then replaced with a new bag containing the
experimental diet, for a total of two bags per fermenter. Each
feed bag was incubated for 48 h and then substituted with a
new one containing the same diet. Incubation of the substrate
with GA and EA started on day 1 and lasted until day 10. Each
fermenter was flushed with N2 gas for 3 min to maintain
anaerobic conditions after the daily substitution of the feed
bags. The flow of artificial saliva to the fermenters was
continuous at about 400 mL per day, resulting in a dilution
rate of the incubation fluid of about 40% per day. The overflow
incubation fluid was collected in glass flasks and immediately
frozen at −20 °C to stop fermentation. The volume of
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overflow from each fermenter was recorded to allow for
adjusting the flow rate of artificial saliva in the fermenters in
real time.
Sample Collection and Laboratory Analyses. Feed

samples were lyophilized (Delta 1-24 LSC, Christ, Osterode,
Germany) and ground (Brabender mill, Brabender, Duisburg,
Germany). DM and ash contents were measured gravimetri-
cally by oven drying (prepASH 229, Precisa, Dietikon,
Switzerland) for 3 h at 105 °C and subsequently incinerating
at 550 °C for 4 h. The difference between DM and ash was
defined as OM. The contents of the NDF and ADF (NDF:
method ISO 16472:2006; ADF: ISO 13906:2008) were
determined using Fibertherm (Gerhardt, Königswinter,
Germany). The total N content of the feed samples was
determined using the Kjeldahl method (AOAC International,
1995; method 988.05). To calculate the CP content, the N
content was multiplied by 6.25. Ether extract content was
analyzed by extraction following hydrolysis (ISO 6492:1999).
Every day, 3 h before replacing the feed bags, 10 mL of

incubation fluid was collected directly from each fermenter.
These samples were analyzed for pH, redox potential, and NH3
using a potentiometer (pH: model 913, Metrohm; redox:
model 632, Metrohm; NH3: model 713, Metrohm, Herisau,
Switzerland) equipped with the respective electrode. For VFA
analysis, additional samples of 4 mL were collected and mixed
with H2SO4 50% (m/v) to stop fermentation. These samples
were immediately frozen at −20 °C until HPLC determination,
as described by Manoni et al.26 Furthermore, the samples were
used for microbial counting under a microscope. Before
counting, the samples were mixed with Hayem solution at
1:0.1 and 1:100 for protozoa and bacteria, respectively.
Protozoa were counted using a Neubauer hemocytometer
(0.1 mm depth, Blau-Brand, Wertheim, Germany), whereas
bacteria using a Bürker hemocytometer (0.02 mm depth, Blau-
Brand, Wertheim, Germany). On days 2, 6, and 10, two
additional samples of 10 mL were collected from each
fermenter and stored at −80 °C. One sample was used for
DNA extraction, PCR, and high-throughput sequencing. The
other sample was used to measure UroA and UroB, two
secondary metabolites of ellagitannins produced by microbial
fermentation.25 The sampling days were chosen to obtain a
picture of the variation occurring in the microbial community
and the related level of urolithins in the initial (day 2), middle
(day 6), and final stage (day 10) of incubation.
Fermentation gas was collected in gas-tight aluminum bags

(TECOBAG 8 L, PETP/AL/PE: 12/12/75 quality; Tesseraux
Container GmbH, Bürstadt, Germany). Gas production was
analyzed every day by collecting the gas samples from the bags
and injecting them into a gas chromatograph (GC-TCD 6890
N, Agilent Technologies, Wilmington, NC, US), as described
by Manoni et al.26 The total amount of gas produced was
quantified using the water displacement technique.27 The
amount of nitrogen gas injected was subtracted from the
measured gas amount in the aluminum bag to obtain total gas
production. The feed bags removed every 48 h from the
fermenters were washed with cold water and without detergent
in a domestic washing machine, squeezed, and stored at −20
°C. The feed bags were lyophilized for 48 h, allowed to air-dry
for 24 h, and weighed. Later, the feed residues contained in the
bags from day 6 to day 10 were mixed, ground to pass a 0.5
mm sieve, and analyzed for their analytical contents, as
previously described for the feed samples. The analytical
composition was then used to determine the degradation of

the feed components, calculated as the amount of material that
disappeared from the feed bag after 48 h of incubation. The
apparent degradation was expressed in percentage as the ratio
of g degraded/g incubated feed.
Measurement of Urolithin A and Urolithin B. Sample

Extraction. All chemicals, reagents, as well as UroA and UroB
standards, were of analytical grade purchased from Merck
(Darmstadt, Germany). The samples were extracted according
to the protocol of Garcia-Villalba et al.28 Briefly, an aliquot of 2
mL of incubation fluid was mixed with 5 mL of ethyl acetate
acidified with 1.5% formic acid. The mixture was vortexed for 2
min and centrifuged at 2500 g for 10 min. The organic phase
was separated and evaporated by a vacuum rotary evaporator
(Heidolph, Schwabach, Germany) at 35 °C. The dry sample
was then redissolved in 200 μL of 0.1% formic acid in water:
methanol (90:10) and 5 μL of 100 μg mL−1 of internal
standard (6,7-dihydroxycoumarin) was added. The extract was
then diluted 100 times before injection into the UPLC-HRMS
system.
UPLC-HRMS Analysis. The analysis was carried out by a

UPLC-HRMS system made by a Vanquish device (Thermo
Fisher Scientific, Waltham, MA, US) coupled to a Thermo
Orbitrap Exploris 120 (Thermo Fisher Scientific, Waltham,
MA, US) equipped with a heated electrospray ionization
(HESI) source. A Raptor ARC-18 5 μm, 150 × 2.1 mm
column (Restek, Bellefonte, PA, US) was used for the
chromatographic separation. Mobile phases A (0.1% aqueous
formic acid) and B (MeOH) were mixed during the gradient,
which started with 5% B kept for 1 min, increasing to 95% in 7
min and remaining until the 11th min. After 0.5 min, the initial
conditions were reestablished until the 15th min. The flow was
set at 0.3 mL min−1. Regarding the detector, the capillary and
vaporizer temperatures were set at 330 and 280 °C,
respectively, the sheath and auxiliary gas at 35 and 15 arbitrary
units (AU), and the electrospray voltage at 3.50 kV in negative
mode. Full-scan (FS) acquisition was combined with the
parallel reaction monitoring (PRM) mode for the confirmatory
response based on an inclusion list. The FS worked with a
resolution of 60,000 fwhm, a scan range of 150−400 m/z, a
standard automatic gain control (AGC), an RF lens of 70%,
and an automatic maximum injection time. The PRM
acquisition operated at 15,000 fwhm, with a standard AGC
target, an automatic maximum injection time and scan range
mode, and an isolation window of 1 m/z. Fragmentation of the
precursors was optimized with a two-step normalized collision
energy (40 and 60 eV). The precursor of UroA was the ion at
227.0350 m/z, and that of UroB was at 211.0401 m/z; their
main fragments were at 159.0449 and 167.0501 m/z,
respectively. The software used was XcaliburTM 4.5 (Thermo
Fisher Scientific, Waltham, MA, US). The limit of
quantification was 5 ng mL−1.
Quantitative PCR. Seven selected microbial groups and

species representing the major rumen bacteria involved in the
fermentation of dietary polysaccharides and the major
methanogenic archaea were explored using quantitative PCR
(qPCR).29,30 The DNA was extracted using a QIAMP Fast
DNA Stool Mini Kit (Qiagen, Hombrechtikon, Switzerland),
following the method reported in Böttger et al.31 Briefly, 2 mL
of incubation fluid samples were centrifuged at 6500 RCF for
30 min at 4 °C to collect and resuspend the pellet using the
Inhibitex buffer. This solution was heated at 90 °C for 5 min.
After vortexing and centrifuging at 16,000 RCF for 1 min, the
concentration of the DNA extracts was measured with a
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Qubit4 fluorometer (Thermo Fisher Scientific, Waltham, MA,
US), and the quality of the DNA extracts was measured with a
QSep100 device (Bioptic, New Taipei City, Taiwan). The
DNA extracts were diluted to a final concentration of 4 ng/μL
and then real-time qPCR was performed as reported in detail
by Manoni et al.26 The relative abundance was measured in
relation to the abundance of the total bacterial 16S rDNA,
used as the reference sample, and measured by amplification
with the 16v3 primers, as previously described.32,33

High-Throughput Sequencing. DNA extracts of fresh
rumen fluids, as well as of samples from days 2, 6, and 10,
were used for the assessment of bacterial and archaeal
communities using high-throughput sequencing. Variable
regions 3 and 4 of the rRNA gene sequence were amplified
using primers 341F (5′-CCTAYGGGDBGCWSCAG-3′) and
806R (5′-GGACTACNVGGGTHTCTAAT-3′)34 for bacteria,
and Arch349F (5′- GYGCASCAGKCGMGAAW-3′) and
SSU666ArR (5′-HGCYTTCGCCACHGGTRG-3′)35 for
archaea at a concentration of 1 μM in PCR reactions of 25
μL. TruSeq adapter sequences were appended to the primers
to allow for subsequent sequencing library construction. Three
PCR reactions, each with 12 ng of DNA, were performed for
all samples and the two markers. PCR consisted of an initial
denaturation step at 95 °C for 2 min, followed by cycles of
denaturation at 94 °C for 40 s, annealing of bacteria or archaea
PCR primer pairs at 56 or 66 °C for 40 s, and an elongation
step at 72 °C for 1 min. A final elongation step was performed
at 72 °C for 10 min. Amplifications were achieved with 25
cycles for the bacterial markers and 40 cycles for the archaeal
markers. The triplicate PCR products were pooled prior to

sequencing. Library preparation and NextSeq Illumina
sequencing were performed at the Functional Genomics
Centre of the University of Zurich. Raw amplicon sequences
were quality filtered and grouped into amplicon sequence
variants (ASVs) using a pipeline largely based on vsearch,36

which included several filtering steps, such as primer pruning,
removal of sequences with a maximum expected error greater
than 1, chimera removal, and target verification using Metaxa
version 2.2.3.37 For the taxonomic assignment, ASVs were
compared to release 214 of the genome taxonomy database
(GTDB)38 using an Ribosomal Database Project (RDP)
classifier implemented in mothur version 1.47.0.39 Sequences
that did not represent targets, that is, nonbacterial or
nonarchaeal sequences, including chloroplast or mitochondrial
sequences identified using the SILVA database version 138 as a
reference, were removed prior to further analyses.
Statistical Analysis. The significances of treatments, time

(day) and their interaction were analyzed by repeated
measures ANOVA using linear mixed-effects regression models
(Lmer) implemented in Rstudio (version 4.0.5). All models
contained the treatment and the day as fixed effects, while the
run and fermenters were considered random effects. Because
only one value per fermenter is obtained for nutrient
degradation data, only the treatment was considered as a
fixed effect for the statistics of such data. For pairwise
comparisons, a modified Tukey test for multiple comparisons
of means, the Sidak function, was performed. Statistical means
and standard error of the means (SEM) were calculated with
the lsmeans function from the package emmeans. The residuals
of the Lmer models were checked for normality and

Table 1. Rumen Fermentation Parameters Following Tannin Treatmentab

Parameters CTR GA EA EA+GA SEM p-value

pH 6.95ab 6.92a 7.05c 7.01bc 0.02 <0.001
NH3 (mmol/L) 6.1a 4.8b 3.2c 2.6d 0.3 <0.001
Gas measurements
Total gas (ml/day) 3369 3469 3150 3301 140 0.11
CH4 (ml/day) 121.6a 106.4a 65.7b 48.9b 6.1 <0.001
CH4/VFA (mL/g) 2115a 1664b 1402b 890c 125 <0.001
CH4/OM (mL/g) 12.6a 10.3b 6.3c 4.4c 0.6 <0.001
CO2 (ml/day) 915a 979a 721b 784b 49 <0.05
CH4/CO2 0.13a 0.11b 0.09c 0.06d 0.003 <0.001
H2 (ml/day) 4.2 4.8 5.5 5.1 0.7 0.48
VFA
Total VFA (mol/g) 78.4a 83.0a 58.2b 65.7b 3.83 <0.001
VFA profile
Acetic acid (%) 49.1a 52.9a 42.8b 48.2a 1.29 <0.001
Propionic acid (%) 21.2a 18.3b 18.9b 15.0c 0.36 <0.001
Isobutyric acid (%) 0.8a 0.7b 0.6c 0.5d 0.04 <0.001
Butyric acid (%) 19.0b 19.5b 24.8a 26.6a 0.91 0.02
Isovaleric acid (%) 2.7a 2.6a 1.0b 0.8c 0.25 <0.001
Valeric acid (%) 7.3bc 5.9c 11.9a 9.0b 0.51 <0.001
Nutrient degradation
Dry matter (%) 74.4a 73.8a 66.3b 66.4b 1.20 <0.001
Organic matter (% of DM supply) 73.0a 70.3a 61.7b 59.1b 1.39 <0.001
Crude fiber (% of DM supply) 43.4a 37.7a 19.0b 27.7b 1.91 <0.001
Neutral detergent fiber (% of DM supply) 51.5a 45.2a 29.3b 27.4b 2.22 <0.001
Acid detergent fiber (% of DM supply) 45.4a 39.8a 22.0b 20.9b 2.19 <0.001
Crude protein (% of DM supply) 88.5a 86.4ab 82.1bc 78.7c 1.37 <0.001

aValues are averages of the whole sampling period (days 6−10). bAbbreviations: CTR: control; EA: ellagic acid; GA: gallic acid; SEM: standard
error of the means. Means with different superscripts within a row are significantly different (p < 0.05). a,b,cLeast square means with different
superscripts differ (p < 0.05).
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homoscedasticity. If those conditions were not respected, the
independent value was transformed or analyzed with the
nparLD package.40 The main packages used were lme4 (V.
1.1−27.1),41 lsmeans (V. 2.30−0),42 multcomp (V. 1.4−18),43

and nparLD (V. 4.2.2).40 Unconstrained ordination using
nonmetric multidimensional scaling (NMDS) implemented in
the function metaMDS of the R package vegan version 2.6.444

was used to visualize the community structures of bacteria and
archaea. Differences among community compositions were
assessed by PERMANOVA with a repeated measures design
using PRIMER7.45 Relative abundances of ASVs, species, and
genera (i.e., sum of ASVs assigned to the same species or
genus) were correlated to gas measurements, as well as to
qPCR quantifications using Pearson correlation and Benjami-
ni-Hochberg p-value adjustments.

■ RESULTS
Fermentation Parameters. The mean pH value during

the 5 days of measurement ranged between 6.92 and 7.05, with
significantly higher values (p < 0.001) obtained with the
treatment with EA. NH3 formation was significantly reduced in
all treatments, mainly by EA and EA+GA (−46% and −56%,
respectively, p < 0.001) and to a lesser extent by GA (−19%, p
< 0.001) compared to CTR. Total gas production was not
significantly altered by any treatment (p > 0.05), but the
interaction of factors treatment and time was significant (p <
0.01). The composition of the gas produced was affected by
the treatment. Indeed, the average daily CH4 production was
significantly reduced by EA (−46%, p < 0.001) and EA+GA
(−60%, p < 0.001) compared to CTR, whereas GA had no
effect (p > 0.05). The average daily CO2 production followed
the same trend of CH4, but the reduction rate of CH4 was
higher than that of CO2, as shown by the CH4/CO2 ratio (p <
0.001). Moreover, the average daily H2 production was not
significantly altered by the treatments (p > 0.05) (Table 1).

Compared to CTR and GA, the EA and EA+GA treatments
significantly (p < 0.001) reduced total VFA production. The
average reductions in VFA production were 26% (EA) and
16% (EA+GA) relative to CTR. The reduced total VFA was
also associated with an altered VFA profile. Acetic acid was
significantly lowered only by EA (−13%, p < 0.001), propionic
acid was significantly decreased by all treatments (p < 0.001),
and most VFA by EA+GA (−29%), whereas butyric acid was
significantly increased by both EA and EA+GA (p < 0.05, +
30% and +40%, respectively) (Table 1).
The altered gas and VFA production were also related to an

altered rate of nutrient degradation, because EA and EA+GA
treatments affected feed fermentation by significantly reducing
the degradation of nutrients (p < 0.001). Considering the
composition of the feed substrate, the fiber degradation is of
notable interest because EA and EA+GA reduced the
degradation of CF (−56% and −36%, respectively), NDF
(−43% and −47%, respectively), and ADF (−52% and −54%,
respectively) more than the other feed components measured.
Instead, no significant change was caused by the addition of
GA (Table 1).
Parameters that revealed variable treatment effects over time

(i.e., significant interaction effect of treatment and time)
included total gas, CH4/VFA, CH4/CO2 and NH3 (Figure
1A−D). For total gas (Figure 1A), the EA treatment at day 9
had lower (p < 0.05) values compared to CTR and GA at day
7, GA and EA+GA at day 9. An evident interaction of
treatment and time factors was found for all other parameters
and especially for NH3 production, for which it is possible to
observe a decreasing production over time in EA and EA+GA
groups (Figure 1D). Specifically, in comparison to the control,
the treatments EA and EA+GA resulted in an increasing and
significant (p < 0.05) reduction of NH3 from day 6 to day 10
(Figure 1D).

Figure 1. Kinetics of total gas production (A), CH4/VFA (B), CH4/CO2 (C), and NH3 (D) during the sampling period (days 6−10). The daily
addition of GA and EA lasted from day 1 to day 10. Abbreviations: T = treatment; D = day. Error bars represent the standard error.
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Urolithins. UroA and UroB levels in rumen fluid were
significantly modulated by the EA and EA+GA treatments (p <
0.001), whereas GA did not exert any modulating effect in any
case (p > 0.05). Specifically, EA and EA+GA significantly
increased UroA compared to CTR at day 6 (both p < 0.001 vs
CTR) and day 10 (both p < 0.001 vs CTR, Figure 2A). For
UroB, the only significant difference was observed at day 10,
when EA and EA+GA significantly increased UroB (p < 0.05
and p < 0.01, respectively) compared to CTR and GA (Figure
2B).
Protozoan and Bacterial Counts. The number of

protozoa was significantly decreased by EA and EA+GA (p <
0.001), whereas it did not differ between GA and CTR (p >
0.05) (Figure 3A). The difference in protozoa counts increased
over time among the treatments with and without EA (p <
0.05). From day 8 onward, the number of protozoa following
EA and EA+GA treatments was significantly lower than the
number of protozoa following CTR and GA (p < 0.001).
Conversely, the number of bacteria was lowest in CTR, and
remained stable over days 6−10 (p > 0.05) (Figure 3B). In
particular, GA (p < 0.001) and EA (p < 0.05) significantly
increased bacterial counts in comparison to CTR, whereas EA
+GA only showed an increasing tendency over CTR (p =
0.053). Further, the number of bacteria was higher in GA
treatments as compared to EA (p < 0.05) and EA+GA (p <
0.01).
Bacterial and Archaeal Quantification Through Real-

Time qPCR. The EA and GA treatments differently modulated
the abundance of a panel of five bacterial species, one bacterial

group (Prevotella) involved in rumen fermentation, and one
archaeal genus (Methanobrevibacter). Both EA and EA+GA
decreased the relative abundance of Butyrivibrio fibrisolvens (p
< 0.001), Fibrobacter succinogenes (p < 0.001), and
Ruminococcus flavefaciens (p < 0.001) compared to CTR,
considering the same time points (day 6 and day 10), with the
only exception of Ruminococcus flavefaciens at day 6 for EA, EA
+GA, and CTR (p > 0.05). The abundance of Selenomonas
ruminantium was significantly increased only by EA+GA (p <
0.001) at day 6 and day 10 compared to CTR. For archaeal
Methanobrevibacter, a significant difference was observed at day
6, when EA significantly increased levels of Methanobrevibacter
(p < 0.01) compared to CTR and GA (Table 2).
Bacterial and Archaeal Community Analyses Based

on Metabarcoding. A total of 17,836 bacterial and 274
archaeal ASVs were detected. A classification to species level
was possible for 6584 bacterial ASVs (669 species, 1−321
ASVs per species) and 110 archaeal ASVs (18 species, 1−32
ASVs per species). The other ASVs could only be classified to
a higher taxonomic level. Bacterial ASV richness, evenness, and
diversity significantly decreased over time in all treatments (p <
0.001), but a stronger decrease was observed following EA and
EA+GA as compared to CTR and GA (p < 0.001, Figures 4A
and S1). Archaeal ASV richness was significantly decreased by
EA and EA+GA from day 2 to day 10 (p < 0.001), and at day
10 EA and EA+GA were significantly lower than the CTR and
GA (p < 0.01, Figure 4B). However, the decrease in ASV
richness from day 2 to 10 following all treatments was larger
for bacteria (−60% on average) as compared to archaea

Figure 2. Level of UroA (A) and UroB (B) in the incubation fluid at days 2 (d2), 6 (d6), and 10 (d10) of in vitro fermentation. The daily addition
of GA and EA lasted from day 1 to day 10. Abbreviations: CTR = control; GA = gallic acid; EA = ellagic acid; T = treatment; D = day. Error bars
represent the standard error.

Figure 3. Number of protozoa (A) and bacteria (B) during the sampling period (days 6−10). The daily addition of GA and EA lasted from day 1
to day 10. Abbreviations: CTR = control; GA = gallic acid; EA = ellagic acid; T = treatment; D = day. Error bars represent the standard error.
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(−15% on average). In contrast to bacteria, archaeal ASV
evenness and diversity were not significantly affected by
treatments and time (p > 0.05, Figure S1).
Bacterial and archaeal community compositions differed

significantly among the three experimental runs (Figure 4C,D),
revealing differences among the communities established in the
Rusitec system, possibly due to the initially sampled rumen
fluids from the donor animals. On average, 46% of bacterial
and 75% of archaeal ASVs were shared among samples from
different rumen fluids. Despite some differences in rumen
fluids, EA and EA+GA caused a consistent community shift
along the same ordination axis (NMDS1, Figure 4C). A similar
effect of EA addition was also detected on archaeal
communities that shifted along the first ordination axis (Figure
4D). Overall, treatment, time, and run had a significant effect
on bacterial and archaeal communities (PERMANOVA, p <
0.05).
To better understand the community shifts related to the

addition of EA, we compared EA and EA+GA (EA+) to CTR
and GA (EA-) treatments in greater detail. The number of
shared bacterial ASVs among EA+ and EA- decreased from
96.3% by day 2 to 53.4% by day 10 (Figure 5B), whereas a
smaller decrease from 98.0% to 90.8% was found for archaea
(Figure 5D). In parallel with the decrease in shared bacterial
ASVs among EA+ and EA-, we observed an increase in
bacterial ASVs that were detected in EA- only, from 1.7% by
day 2 to 12.4% by day 6 and 37.9% by day 10 (Figure 5B).
This suggests that many of the observed bacterial species were
sensitive to EA. However, EA application also led to an
increased relative abundance of some bacterial ASVs, which
was strongest for ASVs classified into the Megasphaeraceae
family. Other minor alterations in the bacterial communities
were the decrease in the candidate genus UBA932 (family
Bacteroidaceae) and the increase in the family Lachnosphir-
aceae in EA+ (Figure 5E). The taxonomic composition of
archaeal communities was characterized by a decrease in the
most abundant candidate genus UBA71 (family Methanome-
thylophilaceae) in all treatments over time, as well as by an
increase in the candidate genus JAKSHX01 (also family
Methanomethylophilaceae) in EA- treatments. The candidate
genus JAKSHX01 was negatively affected by the EA+
treatments, disappearing by day 10. By contrast, the archaeal
genera Methanomethylophilus and Methanosphaera showed
increased abundance following EA+ treatments. Furthermore,
Methanobrevibacter became much more abundant in EA+ by
day 10 (23.0%) compared to days 2 (1.0%) and 6 (1.2%)
(Figure 5F).
Comparison of qPCR and High-Throughput Sequenc-

ing. With the exception of B. fibrisolvens, all taxa quantified by
qPCR were represented by multiple ASVs obtained by high-
throughput sequencing. The number of ASVs within a taxon
targeted by qPCR ranged from 2 ASVs (Ruminococcus albus) to
1362 ASVs (Prevotella). Correlations of qPCR values with
summed relative abundances obtained by high-throughput
sequencing varied widely, ranging from −0.33 to 0.98.
Insignificant, negative, or weak correlations below 0.6 were
obtained for Butyrivibrio fibrisolvens (r = −0.33, p = 0.004),
Selenomonas ruminantium (r = 0.17, p = 0.146), and
Methanobrevibacter (r = 0.55, p < 0.0001). Strong correlations
were obtained for Ruminococcus flavefaciens (r = 0.73, p <
0.0001), Prevotella (r = 0.80, p < 0.0001), Fibrobacter
succinogenes (r = 0.93, p < 0.0001), and Ruminococcus albus
(r = 0.98, p < 0.0001).T
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Correlations of Bacterial and Archaeal ASVs and
Species to CH4 Production. To identify potential links
between microbial communities and CH4 production,
correlation analyses of the relative abundances of bacterial
and archaeal ASVs and CH4 emissions on day 10 were
performed. Among the 13,421 detected bacterial ASVs and 262
detected archaeal ASVs on day 10, 35 bacterial and 8 archaeal
ASVs were positively correlated to CH4 emissions on day 10,
while 3 bacterial and no archaeal ASVs were negatively
correlated to CH4 emissions on day 10 (P. adjusted <0.05, |r| >
0.7). The three bacterial ASVs that were strongly and
negatively correlated to CH4 emissions were two ASVs
classified into the genus Megasphaera (both r = −0.73, p <
0.0001), of which one could be classified as the species M.
elsdenii, and one ASV classified into the family Lachnospiraceae
without genus or species assignment (r = −0.71, p < 0.0001).
Relative abundances summed at the species level also showed
M. elsdenii with the strongest negative correlation with CH4
emissions (r = −0.78, p < 0.0001, Figure 6A). M. elsdenii was
the dominant bacterial species in both EA- and EA+, but its
relative abundance at day 10 was 19.3%, much higher in EA+
than in EA- (4.6%). The strongest positive correlations of
bacterial and archaeal species with CH4 emissions on day 10
were detected for GTDB candidate species JAEEUO01
sp016286935 of the bacterial family Anaerovoracaceae (r =

0.90, p < 0.0001, Figure 6B) and GTDB candidate species
JAKSHX01 sp024399155 of the archaeal family Methanome-
thylophilaceae (r = 0.86, p < 0.0001, Figure 6C).

■ DISCUSSION
The Rusitec system allowed us to study the activity of two
individual HT subunits, alone and in combination, in rumen
and over 10 days of continuous and standardized fermentation.
The current outcomes were similar to what observed after a
24-h Hohenheim gas test trial.26 However, the coupling of
Rusitec with high-throughput sequencing of two marker genes
enabled us to observe the kinetics of the fermentation
parameters of interest and of associated alterations in bacterial
and archaeal community compositions over 10 days. We
acknowledge that the dosages of EA and GA used in this study
were higher than what would typically be applied in in vivo
scenarios. However, our primary objective was to investigate
and elucidate how HT affect gas emissions and the rumen
microbiota under controlled in vitro conditions.
The daily production of CH4 and CO2 per ml of total gas

was significantly reduced by EA and EA+GA but not by GA
alone. However, total gas and daily H2 production per ml of
total gas were not significantly altered by the treatments (Table
1). Our findings on GA used at 75 mg/g DM are consistent
with those of Wei et al.46 who used GA up to 20 mg/g DM in a

Figure 4. Bacterial ASV richness (A), archaeal ASV richness (B) on day 2 (d2), day 6 (d6), and day 10 (d10) of Rusitec and community
compositions of bacteria (C) and archaea (D). Baseline parameters of the “Rumen fluid” samples from the three runs are reported on day 0 (d0) in
Figure 4A and 4B. In Figure 4C and 4D, the lines connect the means of two samples from the same experimental run. Community compositions are
visualized by nonmetric multidimensional scaling (NMDS) based on Jaccard similarities. Gray polygons regroup samples from the same
experimental run. Small black dots linked to the means by thin lines indicate the measured samples. ASV richness and Jaccard similarities are the
means of 1,000 iterative subsamples of raw communities to the lowest read number of a sample. Abbreviations: CTR = control, EA = ellagic acid,
GA = gallic acid. Error bars represent the standard error.
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Rusitec fermentation model and observed no variation in total
gas, daily CH4, and H2 production. The effect of tannins on
CH4 emission, in particular EA, could be a consequence of
direct alterations of the archaeal methanogen community or of
changes in communities of other microorganisms that affect
the CH4 production, for instance, by reducing substrates

needed for methanogenesis. Here, a treatment effect was more
evident on bacterial diversity than on archaeal diversity and
community compositions. Based on qPCR, a reduction in the
relative abundances of B. fibrisolvens, F. succinogenes, and R.
flavefaciens was observed following EA addition. These
organisms produce H2 during feed fermentation, and H2 and

Figure 5. Differences in microbial community compositions of treatments with EA (EA+) or without (EA-). Bacterial (A, B) and archaeal (C, D)
ASVs detected only in samples with EA (light blue/red), detected in samples with and without EA (blue/red), and detected only in samples
without EA (dark blue/red). The lower panels show the relative abundances of the ten most abundant bacterial families (E) and archaeal genera
(F). Mean relative abundances of samples with (EA+) or without (EA-) EA are shown per day (2, 6, and 10). Less abundant families and genera
are summed in the category “others” (white). Letters in parentheses indicate the level of taxonomic classification, that is, genus (g), family (f), or
order (o).

Figure 6. Correlations of relative abundances of species to CH4 emissions at day 10. Bacterial species with the strongest negative (A) and positive
(B) correlations and archaeal species with the strongest positive (C) correlations are shown. Colors indicate treatments, that is, control (CTR),
gallic acid (GA), ellagic acid (EA), and their combination (EA+GA). Larger points indicate averages of two replicates indicated as smaller
connected points.
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CO2 are the building blocks used by hydrogenotrophic
methanogens to produce CH4.

47 In parallel, EA addition
increased the relative abundance of S. ruminantium, a nitrate-
reducing bacterial species able to grow on tannic acid or
CTs,48 and compete with methanogens because nitrate is
considered an alternative H2 sink,49 although a correlation
between tannins and nitrate levels was not determined in this
study. Furthermore, Prevotella is known to be one of the most
dominant genera in rumen microbiomes,50 and its abundance
was reported to be inversely correlated with CH4 emissions.51

However, in our experiment, we observed a strong reduction of
Prevotella relative abundances from days 2 to 10 (see Table 2),
while smaller differences were found among treatments. In
Manoni et al.26 an increased relative abundance of Prevotella
was reported following EA treatment at 150 mg/g, while EA
and GA treatments at 75 mg/g did not result in a significant
increase of Prevotella abundances. In another in vivo trial, a
reduced abundance of Prevotella (−5.4%) was reported in
Holstein cows fed a mixture of quebracho and chestnut
tannins,52 thus indicating that the influence of tannins on
Prevotella may depend on the specific tannin molecules. The
reduction of Prevotella abundance across both control and
treatment groups in our study may indicate that the unique
conditions of the Rusitec system contributed to this effect,
independent by the tannin exposure. Further studies are
needed to clarify how the in vitro conditions of the Rusitec
system affect the Prevotella population compared to in vivo
conditions.
Furthermore, high-throughput sequencing showed that EA

and EA+GA increased the relative abundances of the bacterial
families Lachnospiraceae and Megasphaeraceae, both neg-
atively correlated with CH4 production. Lachnospiraceae is
positively correlated with butyrate production,53 as consis-
tently observed following EA and EA+GA treatments.
Regarding other VFA, EA decreased both acetate and
propionate, whereas EA+GA only reduced propionate. Acetate
and butyrate are associated with H2 production, while
propionate is associated with H2 consumption.54,55 The
alteration of the rumen microbial community may have
influenced the VFA profile and in turn H2 production. Given
the low effects of GA, the four treatment groups were further
categorized into EA+ (containing EA) and EA- (lacking EA).
Such categorization allowed us to further differentiate the
effects of EA on fermentation and microbial community
structures. The bacterial family Megasphaeraceae, particularly
sequences associated with the species M. elsdenii, were strongly
increased by EA+ treatments at day 10 (compared to EA-
treatments) and showed the highest negative correlation with
CH4 production. M. elsdenii is a lactate-consuming species that
has already been correlated with lower rumen CH4
production.21,56,57 The action of M. elsdenii on CH4 mitigation
can be likely explained by the conversion of lactate to
propionate, which works as an alternative H2 sink that
subtracts H2 from CH4 production.

58 In this study, propionate
was not increased by the treatments. However, in long-term
fermentation simulation techniques, such as Rusitec,M. elsdenii
reportedly utilizes H2 to convert lactate to pyruvate instead of
propionate by an NAD-independent lactate dehydrogenase
enzyme.21,59,60 Therefore, the observed CH4 reduction could
be ascribed to a redirection of H2 to an alternative H2 sink that
is not propionate but pyruvate.
Archaeal communities were less affected by the addition of

GA and EA, in agreement with previous findings reporting that

rumen archaea are less prone to compositional variations than
bacteria across ruminant species.50 The archaeal community
was dominated by the Methanomethylophilaceae family
following all treatments. Methanomethylophilaceae are meth-
ylotrophic archaea and part of methanogens commonly found
in the rumen.29,50 Methylotrophic methanogens produce CH4
using H2 to reduce methylated compounds, such as
methanol.21,29 The candidate genus JAKSHX01 of Methano-
methylophilaceae had the strongest positive correlation with
CH4 production and was reduced by EA+ treatments. EA+
treatments also increased the hydrogenotrophic archaeal
genera Methanosphaera and Methanobrevibacter, although EA
+ treatments were effective in reducing CH4. Another study
evaluating the effect of various sources of HT and CT plant
extracts on the modulation of rumen microbiota showed that
Methanobrevibacter was not reduced by any tannin source or
supplementation dose,61 suggesting that only the metabolic
activity but not the abundance of Methanobrevibacter was
affected by the EA+ treatments. In any case, the cause−effect
relationship between reduced ruminal CH4 emission and
relative abundances of methanogens remains to be demon-
strated, because CH4 emissions can be reduced even without
reducing the abundance of methanogens.62 Another factor to
be considered is the low versus high CH4-yield emission
phenotype of the animals, given by the microbial composition
and the number of methanogenesis-related gene transcripts.63

The EA+ treatments reduced protozoa, known to indirectly
support CH4 emissions through H2 production.10 Protozoa
depletion has been linearly correlated with reduced protein
degradation and NH3 formation.64−66 Tannins can interfere
with protein degradation and NH3 formation, as tannins bind
proteins to form macromolecular complexes that reduce
protein availability for microbial degradation in the rumen.
This complex formation protects proteins from microbial
degradation in the rumen resulting in increased protein
amounts reaching the host abomasum and the small intestine,
where they are absorbed. As a consequence, urinary nitrogen
excretion and N2O emissions are decreased.10,67 The
progressive decreasing trend in NH3 formation observed
from day 6 to day 10 led us to hypothesize that the effects
of EA on the rumen microbiota became more pronounced on
day 10 than on day 6, possibly disadvantaging protozoa and
protein-degrading bacteria despite the daily addition of fresh
feed material. Although reduced protein degradation can
increase intestinal absorption of proteins, CP degradation still
remains a concern regarding tannin effects in rumen in the in
vivo condition. Along with CP, OM and NDF degradation
were reduced as well by EA+ treatments. Other explanations
for the reduced nutrient degradation are the lower bacterial
richness, which may be related to a reduced diversity of
bacterial enzymes for nutrient degradation, and the reduced
relative abundance of bacteria able to ferment fibers and
cellulose at the rumen level, such as B. fibrisolvens, F.
succinogenes, and R. flavefaciens. Finally, the amount of substrate
per unit of fermentation medium volume, which is smaller than
the in vivo condition, could have affected the results.68 The use
of tannins and the lower degradation of nutrients is similar to
other studies on other sources of tannin compounds such as
chestnut extract,69 fibrous feed sources such as brachiaria, beet,
and apple pomace,70 feed concentrates such as barley and
soybean meal,71 choline,21 and a blend of essential oils and
plant tannin extracts.22
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As reported above, urolithins are secondary metabolites
produced by the bacterial degradation of ellagitannins.26,72 The
conversion of Iso-UroA to UroB seems to be favored as
compared to the conversion of UroA to UroB,23,24 although
this latter metabolic pathway has also been suggested.25,73

Unfortunately, in our study we did not quantify the Iso-UroA
and this aspect cannot be clarified. However, for the first time,
we characterized UroA and UroB in rumen fluid in a Rusitec
system, revealing increased UroA concentrations as early as
day 6. We speculate that specific tannin-degrading bacteria,
active during the experimental period of 10 days, may have
produced UroA that was further converted to UroB. However,
due to the current lack of studies focusing on urolithin
concentrations in rumen fluids and Rusitec systems, further
research is needed to unravel the metabolism of tannin-
degrading and urolithin-producing bacteria.
Overall, EA and EA+GA showed a stronger impact

compared to GA alone, suggesting that EA is the primary
contributor to the observed effects, with no additive effect from
the combination of EA and GA. EA addition altered the
bacterial diversity and decreased the archaeal diversity and
community compositions, consequently driving the related
outcomes of rumen fermentation, such as CH4, VFA, NH3, and
nutrient degradation. GA addition resulted in fewer
detrimental effects on VFA production and nutrient degrada-
tion than EA. UroA and UroB were quantified for the first time
in rumen fluid following Rusitec, although the complete
metabolic pathway has not yet been fully clarified. The sum of
increased abundance of M. elsdenii, decreased abundance of
Methanomethylophilaceae, protozoa depletion, and lower
bacterial richness over time may explain the observed CH4
decrease and the related effects following EA and EA+GA
treatments. To conclude, EA-containing plant extracts could be
applied as effective dietary supplements for reducing enteric
methane production, even though some negative effects on
rumen fermentation were observed, and more information is
needed before a potential in vivo application.
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qPCR quantitative polymerase chain reaction
Rusitec rumen simulation technique
VFA volatile fatty acids
SEM standard error of the means
TMR total mixed ration
UPLC-HRMS ultraperformance liquid chromatography−

high-resolution mass spectrometry
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UroA urolithin A
UroB urolithin B
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