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ABSTRACT
Multispectral imaging satellites such as Sentinel- 2 are considered a possible tool to assist in the mapping of soil organic carbon 
(SOC) using images of bare soil. However, the reported results are variable. The measured reflectance of the soil surface is not 
only related to SOC but also to several other environmental and edaphic factors. Soil texture is one such factor that strongly 
affects soil reflectance. Depending on the spatial correlation with SOC, the influence of soil texture may improve or hinder the 
estimation of SOC from spectral data. This study aimed to investigate these influences using local models at 34 sites in different 
pedo- climatic zones across 10 European countries. The study sites were individual agricultural fields or a few fields in close prox-
imity. For each site, local models to predict SOC and the clay particle size fraction were developed using the Sentinel- 2 temporal 
mosaics of bare soil images. Overall, predicting SOC and clay was difficult, and prediction performances with a ratio of perfor-
mance to deviation (RPD) > 1.5 were observed at 8 and 12 of the 34 sites for SOC and clay, respectively. A general relationship 
between SOC prediction performance and the correlation of SOC and clay in soil was evident but explained only a small part of 
the large variability we observed in SOC prediction performance across the sites. Adding information on soil texture as addi-
tional predictors improved SOC prediction on average, but the additional benefit varied strongly between the sites. The average 
relative importance of the different Sentinel- 2 bands in the SOC and clay models indicated that spectral information in the red 
and far- red regions of the visible spectrum was more important for SOC prediction than for clay prediction. The opposite was true 
for the region around 2200 nm, which was more important in the clay models.
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1   |   Introduction

Soil organic carbon (SOC) affects soil spectra in the visible region 
(Vis, 350–750 nm) by absorption of energy through excitation 
of electrons, and in the near infrared (NIR, 750–1100 nm) and 
short wave infrared (SWIR, 1100–2500 nm) through overtones 
and combinations of fundamental vibrations in the mid- infrared 
region (Stenberg et al. 2010). This has been successfully used for 
predicting SOC content under laboratory conditions with high 
spectral resolution instruments (e.g., Viscarra Rossel et al. 2006; 
Nocita et  al.  2013; Barthès and Chotte  2021). Encouraging 
performances have also been obtained using field hyperspec-
tral measurements (Gras et  al.  2014; Wetterlind et  al.  2015; 
Piccini et al. 2024), airborne and satellite hyperspectral images 
(Angelopoulou et al. 2019; Mzid et al. 2022), and multispectral 
satellite data on a local scale (e.g., Gholizadeh et  al.  2018) or 
on a regional scale (Vaudour et al. 2019; Dvorakova et al. 2020; 
Urbina- Salazar et al. 2021).

Satellite remote sensing is frequently suggested as a possible tool 
for estimating and monitoring soil properties and soil health in-
dicators on a large scale (Smith et al. 2020; Soubry et al. 2021; 
Pandey and Pandey 2023; Wang et al. 2023). The launch of the 
Sentinel- 2 multispectral imaging satellites Sentinel- 2A and 
Sentinel- 2B in 2015 and 2017, respectively, brought an increased 
interest in using Earth observations to retrieve soil informa-
tion, especially on SOC (Castaldi  2021; Vaudour et  al.  2022; 
Yuzugullu et  al.  2024). The spatial resolution of 10–20 m (10 
of the 13 bands) makes the Sentinel- 2 satellites relevant for ap-
plications guiding soil and crop management at the field and 
farm scale, and the short revisiting time of 5 days, or even less 
in areas with overlapping orbits further away from the Equator, 
increases the availability of images with bare soil conditions for 
gathering soil information.

However, the results of SOC prediction from satellite data are 
variable (Vaudour et  al.  2022). Soil property mapping from 
satellite images is based on the interaction between sunlight 
and soil surfaces as detected by satellite- borne sensors. Many 
factors affect the reflectance received by the satellite sensors, 
including soil surface conditions (e.g., surface roughness, crop 
residues, and emerging plants), soil moisture, soil type, and 
soil texture. In this regard, satellite imagery with a short revisit 
time offers the possibility of collecting many bare soil images 
within a given time period. However, for satellite imagery with 
medium (10–30 m) or coarser spatial resolution, pure bare soil 
pixels are difficult to obtain. Therefore, over the last few years, 
some studies have focused on the influence of vegetation, either 

green (Bartholomeus et al. 2011; Ouerghemmi et al. 2016) or 
dry (Castaldi et al. 2019), to describe the decrease in perfor-
mance due to vegetation coverage and provide spectral index 
thresholds for removing these effects. In addition to the vege-
tation index Normalised Difference Vegetation Index (NDVI), 
which is used to discard green vegetated pixels (e.g., Demattê 
et  al.  2018; Loiseau et  al.  2019), a now commonly used ap-
proach for removing the effect of dry vegetation consists of 
thresholding with the Normalised Burn Ratio 2 (NBR2) spec-
tral index (Castaldi et  al.  2019; Dvorakova et  al.  2020). The 
effect of soil moisture on SOC prediction performance has 
mainly been studied using laboratory spectroscopy (Minasny 
et  al.  2011; Nocita et  al.  2013; Knadel et  al.  2022; Metzger 
et al. 2024) or synthetic satellite spectra simulated from labora-
tory spectroradiometric measurements (Castaldi et al. 2015). 
More recently, radar- derived soil moisture information has 
also been considered (Urbina- Salazar et al. 2021, 2023; Zayani 
et al. 2023). Another approach reduces the varying effects of 
soil surface and retrieves a representative value of soil surface 
condition by considering a pixelwise median reflectance value 
over several years, instead of single- date information. This 
temporal mosaicking also allows the extension of the mappa-
ble bare soil area (Castaldi 2021; Heiden et al. 2022; Urbina- 
Salazar et al. 2023; Žížala et al. 2022).

Although soil texture is sometimes mentioned as a possible rea-
son for deviations in SOC prediction results by Vis–NIR- SWIR 
spectroscopy (Stenberg 2010; Wight, Ashworth, and Allen 2016; 
Ogen et al. 2018), only a few studies have focused on disentan-
gling the influence of soil texture on SOC prediction perfor-
mance using satellite data (Khosravi et al. 2024). Therefore, the 
overall aim of this study was to better understand the spectral 
information used for modelling SOC from satellite data, fo-
cusing on the influence of soil texture. The study analyses the 
specific influence of texture on satellite- based SOC prediction 
instead of targeting the overall improvement of SOC prediction 
from texture, as achieved by Khosravi et al. (2024), with texture- 
based stratification of SOC models.

Particle size distribution, especially the clay fraction, strongly 
affects soil reflectance through clay minerals and the iron 
(hydr)oxide minerals contained in the clay fraction. Clay 
minerals absorb light at specific wavelengths, but the wave-
length regions that hold information on clay minerals and or-
ganic molecules are located close together in the spectra and 
sometimes overlap (Stenberg et  al.  2010; Wight, Ashworth, 
and Allen  2016; Ogen et  al.  2018), with the risk of masking 
important information. This could be especially problematic 
when using low spectral resolution multispectral data, such as 
from the Sentinel mission. Soil texture also affects the visibil-
ity of SOC, with lower visibility of SOC in clayey soils, where 
SOC can be hidden in soil aggregates (Balesdent, Chenu, and 
Balabane 2000). Accordingly, Stenberg et al. (2010) found SOC 
overpredicted for sandy soils in a Swedish dataset. This was 
interpreted as an effect of the smaller specific surface area in 
sandy soil and, therefore, a higher concentration of organic 
matter on the exposed mineral particle surfaces. However, 
one of the strongest influences of soil texture related to reflec-
tance in satellite data is probably its influence on soil moisture 
(Bousbih et al. 2019). Both organic matter and clay content in-
crease soil water- holding capacity and soil moisture (Manns, 

Summary

• Study of how soil texture influences the performance 
of SOC prediction models using Sentinel- 2 data.

• Local models were developed at 34 European sites 
with a large range of pedo- climatic conditions.

• There were large differences in prediction perfor-
mance between sites for both SOC and clay content.

• Soil texture showed significant but weak and variable 
influence on SOC prediction performance.
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Parkin, and Martin 2016; Soltani et al. 2019). Water largely in-
fluences soil reflectance through strong absorbance at specific 
wavelengths (Bablet et al. 2018; Soltani et al. 2019). However, 
these regions are not included in the multispectral bands reg-
istered by the satellites due to interference with water in the 
atmosphere, so the main effect is in the darkening of the soil 
with increased soil moisture.

The influence of soil texture on the possibility of predicting SOC 
using multispectral satellite data could be expected to be both 
favourable and unfavourable, depending on the nature of the 
relationship between SOC and soil texture. If both soil proper-
ties follow the same (or the opposite) spatial pattern, the com-
bined effect on soil reflectance might help in modelling SOC. 
However, models relying on a relationship between SOC and 
soil texture might not generalise well over larger areas, as the 
SOC- to- soil texture relationship might change, and it will be 
difficult to detect changes in SOC content over time that are not 
correlated to soil texture. If, on the other hand, the variation in 
SOC does not follow the variability in soil texture, variability 
related to soil texture might hide a more subtle variation in SOC, 
causing difficulties in predicting SOC.

The goal of this study was to investigate the influence of soil tex-
ture on SOC predictions using Sentinel- 2 temporal mosaics. The 
study therefore analysed how local within- site variability and 
correlations in SOC and soil texture influence the possibility of 
predicting SOC from satellite data using local models at sites in 
different pedo- climatic zones across Europe. Analyses of 34 in-
dividual sites in 10 European countries were carried out within 
the framework of the STEROPES project of the European Joint 
H2020 Programme, EJP SOIL. The study focused on the field and 
farm scale, developing site- specific models to further understand 
the basis for SOC models using satellite data and the role of soil 
texture in explaining variations in SOC modelling results. The 
field or farm scale has the advantage of reducing differences in 
management within the study sites, which might otherwise in-
terfere with the interpretations. Whereas most previous studies 
aimed at predicting SOC typically considered a more reduced set 
of agropedological contexts and, most of the time, one study area 
within one country, this study relied on an unprecedented set of 
local- scale study areas from across Europe.

The study aimed to answer four specific questions related to the 
influence of soil texture on the estimation of soil organic carbon 
using Sentinel- 2 temporal mosaics: (1) Does a stronger correla-
tion between SOC and soil texture favour better SOC prediction 
performance? (2) Does the variation and overall amount of clay 
content affect SOC prediction performance? (3) Does adding in-
formation on soil texture as additional predictors to the models 
improve SOC predictions? and (4) Are different spectral bands 
important for predicting SOC compared with predicting clay?

2   |   Materials and Methods

2.1   |   Study Sites and Soil Datasets

To investigate the influence of soil texture on SOC models 
using satellite data, soil samples and satellite data were col-
lected from 34 agricultural sites in 10 European countries 

covering different pedoclimatic conditions and cropping sys-
tems (Figure 1, Table S1) by decreasing latitude from Sweden, 
Denmark, Lithuania, Poland, Czech Republic, France, 
Switzerland, Italy, Turkey, and Spain. The study sites were 
not selected to represent specific conditions but rather to serve 
as a variable sample of possible conditions to increase the ex-
ternal validity of the findings. The sites covered a range of 
soil types according to the FAO classification (IUSS Working 
Group WRB 2015), from Cambisols and Luvisols of the temper-
ate Atlantic central and continental regions and Chernozems, 
Phaeozems, Histosols, Gleysols, and Arenosols in the Atlantic 
north and Nemoral regions to Vertisols, Fluvisols, Calcisols, and 
Gypsisols in the Anatolian and Mediterranean regions.

The sites were individual or neighbouring fields ranging from 
a few hectares to more than 450 ha at two sites, with a me-
dian size of 17 ha (Table S2). Soil samples were taken from 0 to 
20 cm soil depths at all sites, except for the Italian sites, which 
were sampled at 0–30 cm, and the French and Spanish sites, 
which were sampled at 0–10 cm. The sampled area at each 
sampling point varied from 0.25 to 80 m2. About half of the 
sites used a target sampling design based on soil maps and/or 
satellite data, and the other half used a regular grid. The sam-
pling design and methodology were usually the same for sites 
within the same country. The number of samples and sample 
density, however, also varied between individual sites from 
the same country, ranging from 16 to 280 samples per site and 
0.2 to 60 samples ha−1. The median number of samples per site 
was 54, and the median sample density was 3 samples ha−1. 
The soil sampling dates also varied between the sites. Nine 
sites from Sweden and Denmark were sampled before 2015, 
with the oldest sampling from 1992 at one of the Danish sites. 
Most of the sites were sampled between 2018 and 2022. SOC 
contents and soil texture (clay, silt, and sand particle size frac-
tions) of the soil samples were determined using the methods 
listed in Table S3. The silt- sand particle size limit was 50 μm 
in all countries, except Sweden, Lithuania, and Spain, where 
the limit was 63 μm. For these countries, soil texture data were 
therefore converted to values that corresponded to a silt- sand 
limit of 50 μm using a log- linear interpolation (see, e.g., Nemes 
et al. 1999).

2.2   |   Satellite Data

A pixelwise temporal mosaicking approach was applied to se-
lect bare soil images using Sentinel- 2 image collections and 
to obtain composite bare soil layers for each region of inter-
est (Castaldi et al. 2023) from the time series 2019–2022. The 
mosaicking approach was implemented by using the rgee R 
package (Aybar et al. 2020) to wrap the Earth Engine Python 
API for working in the Google Earth Engine environment 
(Gorelick et  al.  2017) from within R (R Core Team  2024). 
Google Earth Engine is a cloud- based platform that was used 
here to gain access to Copernicus Sentinel- 2 Multispectral 
Instrument (MSI) level 2A dataset provided by the European 
Space Agency (ESA).

The approach consisted of two steps (Figure 2). In the first step, 
three filters were applied for each pixel and acquisition date to 
identify and select bare soil pixels.
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 I. Atmospheric filter. This includes a cloud filter to remove 
dates affected by clouds and cloud shadows. The cs qual-
ity band from the combination of Cloud Score + and the 
S2_HARMONIZED dataset was used with a cs thresh-
old of 0.7 to remove thin clouds, haze, and cirrus shad-
ows. The cs value is the similarity between the observed 
pixel and the theoretical clear reference pixel based on 
their spectral distance. A snow mask was also applied 
using the MSK_SNWPRB quality band provided by 

ESA, removing records with > 10% probability of snow 
on the ground.

 II. Green vegetation filter. The NDVI was calculated from 
bands 4 and 8 as follows: (B8 − B4)/(B8 + B4) was com-
puted and pixels with NDVI > 0.35 were filtered out be-
cause they were likely affected by green vegetation.

 III. Dry vegetation + soil moisture filter. The NBR2 index was 
calculated from bands 11 and 12 as (B11 − B12)/(B11 + B12) 

FIGURE 2    |    General flowchart of the two temporal mosaicking approaches (adapted from Castaldi et al. 2023). SM indicates soil moisture.

FIGURE 1    |    Map showing the location of the 34 sites included in the study and the environmental stratification of Europe (Metzger et al. 2005).
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and pixels having NBR2 > 0.125 (Castaldi et al. 2019) were 
filtered out because they were likely affected by dry vege-
tation and/or by high soil moisture content.

In the second step, if at least three bare soil dates were left after 
applying the filters for each pixel, the available data were com-
bined using two mosaicking approaches to return bare soil com-
posite images (temporal mosaics):

A. The first approach involves selecting the median (50th per-
centile) reflectance values for each band and pixel of the 
time series, with the aim of obtaining spectral data repre-
sentative of the average bare soil conditions not affected by 
extreme reflectance values.

B. The second approach, called R90, involves selecting the 
90th percentile of reflectance values of the time series for 
each band and pixel, with the aim of selecting dry con-
ditions, assuming that higher reflectance corresponds to 
lower soil moisture content. Using the 90th percentile in-
stead of the highest reflectance aims at excluding anoma-
lously high reflectance values that could arise, for example, 
when cloud masking fails (Castaldi et al. 2023).

The outcome of these two mosaicking approaches was two 
composite bare soil layers of 10 m resolution for each study 
site. The layers include reflectance information of the fol-
lowing bands of the MSI instrument (central wavelength): B2 
(492 nm), B3 (559 nm), B4 (664 nm), B5 (704 nm), B6 (740 nm), 
B7 (782 nm), B8 (842 nm), B8A (865 nm), B11 (1613 nm), and 
B12 (2202 nm; Sentinel- 2 User Handbook  2015). Bands with 
a 20- m resolution (B5, B6, B7, B8A, B11, and B12) were resa-
mpled to 10 m. These layers were used to extract spectral data 
from soil sampling locations and then to develop soil property 
prediction models.

2.3   |   Model Development and Validation

Local models for predicting SOC or clay content were devel-
oped for each site using partial least squares regression (PLSR) 
and random forest algorithms, as implemented in the Python 
machine learning framework scikit- learn v. 1.3.0 (Pedregosa 
et al. 2011). Predictors included the Sentinel- 2 bare soil spectral 
information processed as described in the previous section (10 
bands; median or R90) and/or, to predict SOC, information on 
the measured soil texture. Soil texture information from the soil 
samples was included either as the clay fraction or as information 
on all three particle size fractions (clay, silt, and sand). In the lat-
ter case, the three fractions were subjected to additive log ratio 
transformation to the two log ratios log(clay/sand) and log(silt/
sand). This transformation accounts for the compositional na-
ture of the data (e.g., Filzmoser, Hron, and Templ 2018). Soil tex-
ture information was added as a predictor in the SOC prediction 
models to study the influence of soil texture on SOC prediction 
performance.

The optimal number of components to keep in the PLSR mod-
els was tuned based on the minimum root mean squared 
error (RMSE) in leave- one- out cross- validation (LOO- CV). 
Random forest models were fitted with default values for all 

hyperparameters apart from the number of trees, which was set 
to 200 (no hyperparameter tuning was applied). Model perfor-
mance was evaluated in LOO- CV using the RMSE, the ratio of 
performance to deviation (RPD = SD/RMSE), the ratio of per-
formance to interquartile distance (RPIQ = IQR/RMSE), and 
Lin's concordance correlation coefficient (ccc). See Appendix 3 
of Piikki et al.  (2021) for the definition and interpretation of 
these metrics. As a simple baseline, we fitted ‘dummy mod-
els’ that always predict the mean of the target variable in the 
training data, that is, the mean of the actual measured SOC or 
clay content in the training data. These baseline models thus 
predict a constant value (calculated during model fitting) and 
use no predictors. The performance of these dummy models 
was evaluated using the same LOO- CV procedure and metrics 
as for the real models. To investigate the importance of the 
predictors, we calculated SHAP (SHapley Additive exPlana-
tions) values using the Python package SHAP (Lundberg and 
Lee 2017). The importance of each predictor was calculated as 
the mean absolute SHAP value. Across predictors, these were 
normalised to sum to 100% to provide a measure of relative 
importance.

3   |   Results

3.1   |   SOC and Texture Data

Across all sites, SOC content ranged from 0.2% to 12%. The 
highest SOC levels (above 7.5%) and the largest range (> 6%) 
were recorded at two Danish sites (DNK 2 and 3) and one 
Swedish site (SWE 1; Figure 3A). Apart from these sites, large 
ranges in SOC content (> 2%) were also found at four of the 
other Swedish sites, and at one Czech (CZE 1), one Lithuanian 
(LTU 3), and one Swiss (CHE 4) site. The lowest average SOC 
contents were found in Spain, at a site in Italy (ITA 4), at a 
Turkish site (TUR 2), and at the Polish site (POL 1), all not 
exceeding 1%, which has been established as a critical level 
below which serious decline in soil quality might occur (de-
sertification; Loveland and Webb 2003). Most other sites had 
average SOC content between 1% and 2%. Mainly, except for 
two Swiss sites (CHE 3 and 4), average SOC content tended 
to be lower in the southern countries. An opposite tendency 
was observed in clay content, except for the Swedish sites 
(Figure 3B).

Across all sites, clay content ranged from 0.1% to 67%. In general, 
the Swedish and Turkish sites had the largest values and the 
largest ranges of clay content. The average clay content ranged 
from 2% (Polish site, POL 1) to 40% (one of the Italian sites, ITA 
5). Average contents > 30% were found in some Italian, Spanish, 
Turkish, and Swiss sites. The range in clay content tended to 
asymptotically increase with the area of the sites (log- linear 
Pearson, r = 0.72, p < 0.001), while there was no statistical sup-
port for a similar relationship for the range in SOC (r = 0.05, 
p = 0.78). Texture classes across the 34 sites were quite varied 
and covered the entire texture triangle (Figure 3C), from coarse 
(such as the Danish sites) to fine (some Italian, Turkish, and 
Swedish sites). Silt contents across all sites ranged from 3% to 
76%. The highest average contents (62% and 64%) were found 
at a Czech (CZE 2) and a French site (FRA 1). Across all sites, 
sand content ranged from 4% to 94%. The highest average sand 
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contents, at above 70%, were found for Danish and Polish sites. 
SOC content showed positive correlations with clay content 
at 16 of the 34 sites, and negative correlations at 5 of 34 sites 
(Figure  3D). Interestingly, all sites with negative correlations 
were from the northernmost countries of Lithuania and Sweden.

3.2   |   Satellite Data

The average number of bare soil images available per soil sam-
pling point at the individual sites varied from 4 to 74 (Figure 4A). 
Two Italian sites stood out, with on average more than 70 bare 

FIGURE 3    |    SOC and texture analyses. (A) Boxplots showing SOC content in the soil samples at each site. (B) Boxplots showing clay content in 
the soil samples at each site. Boxplots with lower and upper hinges representing 25th and 75th percentiles, line in between representing median, and 
whiskers extending to 1.5 × IQR from both hinges. Jittered points represent individual sampling points. For SWE 1, DNK 2, and DNK 3, a few points 
fall outside the range shown for SOC and are not visible. (C) Texture triangle showing individual sampling points coloured according to country. 
Texture classification is as used in the database of Hydraulic Properties of European Soils (HYPRES, Wösten et al. 1999). (D) Correlation between 
SOC and clay content per site. White text indicates a significant correlation (Pearson) at the 0.05 level.
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soil images per point, and three Swedish, the Spanish, and one 
Turkish site had more than 30 images on average per point. 
However, the average number of bare soil images per point was 
below 20 for most of the sites. The minimum number of bare soil 
images for a sampling point of three images was observed for 
22 points, mainly in Turkey, Denmark, Lithuania, and Poland. 
The similar clustering in the texture triangle in Figure 3C as in 
the PCA score plots of the satellite data in Figure 4B,C indicates 
an influence of soil texture on the satellite data. However, sites 
close in geography also tended to be close in the PCA score plot, 
suggesting influences of factors acting on a larger scale related 
to more general differences between the sites.

The PCA score plots in Figure 4B,C for median and R90 satel-
lite data show very similar patterns (median and R90 temporal 
mosaics from three sites as an example are shown in Figure S1). 
However, at sites in two countries, Sweden and, to a lesser ex-
tent, Lithuania, using R90 resulted in several anomalously 
high reflectance values (resulting in the outliers in the inset 
in Figure 4C). Further inspection of the spectral data at these 
sampling points suggested that satellite images were affected by 
thin clouds that were not detected by the cloud mask. We thus 
excluded four sites (SWE 3, 4, and 5, and LTU 3) from further 
analyses using the R90 method.

3.3   |   SOC and Clay Predictions Using Satellite Data

The performance of prediction models for both SOC and clay con-
tent varied largely between the sites and was poor in many cases 
(Table 1 and Figure 5 for PLSR, Table S4 and Figure S2 for ran-
dom forest). Overall, PLSR models performed comparably with 
random forest models. As comparing the algorithms is not the 
aim of this study, we henceforth focus on the results of the PLSR 
models.

For each site and target variable (SOC or clay), we selected ei-
ther the median or R90 satellite data as predictors, depending 
on which resulted in a model with a smaller RMSE. On aver-
age, across the 34 sites, there was no statistical support for a 
difference in prediction performance (RPD) for predicting SOC 
using satellite data compared to predicting clay using satellite 
data (Wilcoxon, p = 0.39; paired Wilcoxon, p = 0.56). The differ-
ences between the clay and SOC prediction performances var-
ied greatly between the sites, with clay easier to predict at some 
sites and SOC on others. SOC content could be predicted with 
an RPD > 1.5 at 8 sites, and with an RPD > 2.0 at 2 sites. For 
SOC predictions, 8 sites (24%) had RPD values of < 1.1, which 
was only slightly better than the RPD of close to, or just below 
1.0 of the dummy models, which are simple baseline models 

FIGURE 4    |    Satellite data. (A) Boxplot showing the number of available bare soil images per soil sampling point after applying the cloud and 
vegetation filters in the time series from 2019 to 2022. Boxplots with lower and upper hinges representing 25th and 75th percentiles, line in between 
representing median, and whiskers extending to 1.5 × IQR from both hinges. Jittered points represent individual sampling points. (B) Principal 
component analysis (PCA) of the median satellite data. (C) PCA of the R90 satellite data with (small inset) and without sites SWE 3, SWE 4, SWE 
5, and LTU 3 (for these sites, the cloud filtering failed). Score plots representing the information in the first two principal components (PCs). The 
percentage of total variance in the data (10 satellite bands) explained by the PCs is given in parentheses. Each point in the score plot represents a 
sampling point.
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that always predict the mean of the measured value in the train-
ing data (see methods). Clay content could be predicted with 
RPD values > 1.5 at 12 of the 34 sites, and at 5 of those sites, the 
RPD was > 2.0. At 10 sites (29%), the models had RPD values 
< 1.1. At 10 sites, the models had RPIQ values > 1.7 for both SOC 
and clay.

3.4   |   Influence of Soil Texture

There was a significant positive correlation (Pearson r = 0.42, 
p < 0.05) between the performance (RPD) of the models pre-
dicting SOC using satellite data and the absolute value of the 
Pearson correlation coefficient |r| between SOC and clay in the 
soil. However, the correlation was weak, and for sites with a 
strong correlation between SOC and clay in soil, both good and 
poor SOC models were found (Figure 6). Examples of locations 
where the correlation between SOC and clay content seemed to 
be important were the two Turkish sites. Both sites had large 
variations in clay content and fairly good prediction models 
for clay. The variation in SOC was similar at the two sites, 
but only one of the sites (TUR 2) had significant and strong 
correlations between SOC and clay content (TUR 1 r = 0.00, 
p = 0.96; TUR 2 r = 0.82, p < 0.001), and it was at that site that 
SOC could be predicted considerably better (TUR 1 RPD 1.05; 
TUR 2 RPD 1.46).

There was no statistical support for an overall correlation be-
tween SOC prediction performance (RPD) from satellite data 
and the average amount (Pearson, p = 0.51 and 0.17) or range 
(p = 0.55 and 0.36) of clay or SOC content, respectively. Similarly, 
there was no statistical support for an overall correlation between 
the clay prediction performance (RPD) from satellite data and the 

average (Pearson, p = 0.46) and range (p = 0.69) of SOC. Neither 
did the clay prediction performance correlate with the average 
amount of clay content (Pearson, p = 0.10). However, there was 
a significant, but weak, correlation between the clay prediction 
performance and the range in clay content (Pearson r = 0.48, 
p < 0.01).

Soil texture information was added as a predictor in the SOC 
prediction models to study the influence of soil texture on SOC 
prediction performance. It was added as either clay or as infor-
mation on all three particle size fractions, depending on which 
combination of predictors resulted in the lowest RMSE. On av-
erage, combining satellite data and soil texture data resulted 
in SOC prediction models with slightly, but statistically signif-
icant, higher RPD (mean difference of 0.16; paired Wilcoxon, 
p < 0.001), RPIQ (mean difference of 0.18; p < 0.001), and ccc 
(mean difference of 0.1; p < 0.001) values compared to using 
satellite data only (Table 1). There was a weak but statistically 
significant positive relationship between the change in RPD 
when adding soil texture to the SOC prediction models and the 
absolute value of the Pearson correlation coefficient |r| between 
SOC and clay in soil (Pearson r = 0.45, p < 0.01). However, the 
variability between the sites was large, and at several sites with 
a high correlation between SOC and clay in soil, the SOC predic-
tion performance did not improve when soil texture was added 
as additional predictor.

3.5   |   Relative Importance of Satellite Bands

The relative importance of the satellite bands in the PLSR mod-
els for predicting SOC and clay content is presented in Figure 7 
(and more detailed in Figure S3). The relative importance of the 

FIGURE 5    |    (A) Performance of site- specific PLSR models for predicting SOC using satellite data. (B) Performance of site- specific PLSR models 
for predicting clay using satellite data. RPD and ccc were determined in leave- one- out cross- validation. The results are shown for the best models 
(smallest RMSE) using either the median or R90 satellite data (corresponding to Table 1). The dotted lines indicate the performance of the dummy 
models, which are simple baseline models, always predicting the mean of the measured SOC or clay content in the training data (ignoring the satellite 
information). The solid lines are only eye guides. The order of sites (x- axis) corresponds to Figures 3A,B and 4A.
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different bands varied largely between the models and sites. On 
average, across all sites, the visible range (especially the red to 
far- red wavelength range, B4 and B6) was more important in the 
SOC models compared with the clay models (paired Wilcoxon, 
p < 0.05), whereas the wavelength range around 2200 nm (B12) 
was more important in the clay models (paired Wilcoxon, 
p < 0.05).

4   |   Discussion

4.1   |   Availability and Quality of Satellite Data

Differences between satellite images from different dates can 
be considerable and influence model performances, both for 
SOC (Vaudour et  al.  2019; Urbina- Salazar et  al.  2021) and 

FIGURE 6    |    RPD values of SOC prediction PLSR models using satellite data (median or R90, whichever gave the smaller RMSE for each site; cor-
responding to Table 1). The sites are sorted according to the RPD values and coloured according to the correlation between SOC and clay content at 
the sites (significant correlations at the 0.05 level are indicated with an asterisk (*)).

FIGURE 7    |    Relative importance of predictors in PLSR models for predicting SOC and clay using satellite data (median or R90, whichever resulted 
in the smallest RMSE for each site, corresponding to Table 1). Box plots with lower and upper hinges representing 25th and 75th percentiles, line in 
between representing median, and whiskers extending to 1.5 × IQR from both hinges. Jittered points represent individual sites. Shaded areas indicate 
the bands with importance that are significantly different in SOC models compared to clay models (paired Wilcoxon, 0.05 level). The dendrogram 
shows the redundancy structure of the set of predictors. It is based on a (complete- linkage) hierarchical clustering of the median satellite dataset, with 
the distance between the bands defined as 1 − |r| (Pearson).
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for clay (Gomez et al. 2022). Using time series for individual 
fields to find the best possible or representative conditions can 
therefore be advantageous. In the present study, using satel-
lite data from 4 years (2019 to 2022), however, resulted in less 
than on average 10 images per sampling point at 13 of the 34 
sites, with 22 soil sampling points having as few as 3 images 
(Figure  4A). A low number of satellite images can result in 
less stable median and R90 data and thus less robust models 
when using these temporal mosaicking approaches. However, 
there was no statistical support for a correlation between the 
performance of the SOC and clay models and the number 
of available bare soil satellite images (Pearson p = 0.68 and 
p = 0.72 for SOC and clay, respectively).

A possible drawback of the mosaic is that it might disrupt oth-
erwise continuous patterns within the fields, as possibly ob-
served from a single- date shot, such as short time variations in 
soil moisture patterns. In general, the temporal mosaics using 
both median and R90 showed continuous and very similar spa-
tial patterns (Figure S1 shows fields FRA 1, POL 1, and ESP 1). 
However, the R90 mosaic at the Polish site, POL 1, had a small 
area showing inconsistencies in the general pattern and sharper 
differences between satellite information from different dates. 
Although the small area in the Polish field did not include any 
of the sampling points and therefore did not affect the models, 
similar artefacts on other sites might be part of the explanation 
for the varying results when using temporal mosaics. At the 
French site, FRA 1, R90 enhanced the contrast between soils 
with different soil conditions compared with the median mo-
saic, highlighting the differences between the parts of the field 
with Calcaric Cambisols and the Luvisols, and a recently moved 
field boundary.

The selected method for collecting satellite data aimed to find 
the best possible bare soil conditions while using an automated 
procedure. The automated procedure made it easy to apply the 
same methods and criteria to multiple sites, which is important 
for use on a larger scale or by non- experts. However, the evident 
outliers at some of the sites using the R90 method despite the 
applied filters (inset in Figure 4C) highlight the difficulties with 
addressing all disturbing factors and the importance of validat-
ing the quality of the collected data.

4.2   |   Between- Site Differences in Prediction 
Performance for SOC and Clay Content Using 
Satellite Data

The performance for predicting SOC from satellite data at 
the 34 sites included in the study varied largely, ranging from 
an RPD > 1.5 for 8 sites to as low as < 1.1 for another 8 sites 
(Table 1 and Figure 5). Similar variations in SOC prediction 
performance are also presented in a recent review when con-
sidering SOC prediction models from satellite data without 
additional auxiliary variables (Vaudour et  al.  2022). A rela-
tionship between soil texture and the satellite data was evi-
dent when comparing the PCA score plot of the satellite data 
in Figure 4 with the texture triangle in Figure 3. However, it 
was obvious that it did not explain all the variations in the sat-
ellite data. Only at 10 sites the models for predicting clay from 
satellite data had an RPD above 1.5 (Table  1 and Figure  5). 

The variable results in the present study correspond fairly well 
with previously published results on clay predictions and tex-
ture classification that also include both poor and good predic-
tion models (e.g., Nanni and Demattê 2006; Gomez et al. 2018, 
2019; Loiseau et al. 2019).

Clay content is a mineral particle size fraction, whereas its spec-
trally active components are related to clay and iron (hydr)oxide 
minerals, with different absorption patterns by different min-
erals (Hunt and Salisbury 1970). However, the narrow absorp-
tion features of different clay minerals cannot be detected with 
a multispectral sensor. Potentially detectable differences in the 
absorption spectra of the clay fraction could be related to dif-
ferences in the proportions of clay minerals to iron (hydr)ox-
ides, which absorb in different parts of the spectra (Stenberg 
et al. 2010). The models presented in this study were developed 
for field and farm scale, where variation in mineralogy could 
be expected to be small. However, different mineralogy between 
the fields might still be part of the explanation for the varying 
results between sites.

Several soil spectroscopy studies have shown the benefit of geo-
graphically small- scale calibration models due to the larger simi-
larities in soil type and mineralogy (e.g., Kuang and Mouazen 2011; 
Araújo et al. 2014). In the present study with field scale models 
(the largest site being 1100 ha and the median size 17 ha) there 
was no statistical support for the prediction performance of SOC 
or clay models being related to the size of the sites. Rather than 
the geographic size per se, it is the variation in the modelled soil 
property which often explains large parts of the differences seen 
in model performance (Stenberg et al. 2010). A larger variation in 
the soil properties to be predicted is often desirable when develop-
ing prediction models (Ramirez- Lopez et al. 2014). In this study, 
there was a positive correlation between clay prediction perfor-
mance and the range in clay content, but no statistical support for 
a correlation between range of SOC prediction performance and 
the range in SOC content. However, the three sites with the largest 
ranges in SOC content, SWE 1, DNK 2, and DNK 3, all had SOC 
models with RPD > 1.5 (Figures 3A and 5 and Table 1).

4.3   |   Influence of Soil Texture on SOC Predictions

A relationship of soil texture with the SOC predictions from 
satellite data was evident in the weak, but statistically signif-
icant, trend of increased SOC prediction performance with 
higher SOC to clay correlation in the soils of the 34 sites. 
However, it was obvious that this positive relationship could 
explain only a small part of the large variation in SOC predic-
tion performance across the sites. The Danish sites DNK 1–3, 
for example, had comparably good SOC predictions but no 
significant correlation between SOC and clay content in soil 
(Figures 3D and 6). This might partly be explained by the high 
content and large variation in SOC, combined with among the 
lowest content and variation in clay. This makes variation in 
SOC the dominant soil property affecting water- holding ca-
pacity, and the main varying soil property affecting the soil 
spectra at those sites. In cases where variation in SOC is more 
pronounced than variation in texture, a strong correlation be-
tween SOC and clay content might instead help in clay predic-
tions. It might be difficult to identify whether one or the other 
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of the two soil properties is dominant, but the correlation be-
tween SOC and clay content might likely support models for 
both soil properties, as may be the case at, for example, the 
Swiss sites CHE 2, 4, and 5 (Figures 3D and 6).

The influence of soil texture on the SOC predictions was also 
evident by the average improvement in the model performance 
when adding information on soil texture as predictors to the 
models, in addition to the satellite data. However, adding in-
formation on soil texture to prediction models for SOC is not 
practical, as soil texture analyses are both time consuming and 
expensive. Adding information on soil texture through avail-
able soil texture maps or other sensor measurements, such as 
gamma ray measurements using proximal or remote sensing, 
could be an alternative. In particular, 232Thorium concentra-
tion has been shown to be highly correlated with clay content 
(Piikki and Söderström 2019) and adding airborne gamma ray 
measurements to a regional satellite- based model in central 
France improved SOC predictions (Urbina- Salazar et al. 2023).

Over all sites, the satellite bands in the red to far- red region of 
the visible spectrum (particularly B4, B6) were more important 
for SOC than for clay prediction, while the opposite was the case 
for the B12 band at around 2200 nm (Figure 7). This is consistent 
with what has been reported as important spectral regions for 
SOC and clay predictions. Absorbance in the spectral region cov-
ered by Sentinel- 2 B12, around 2200 nm, is a dominant feature of 
several common clay minerals (including Gibbsite, Illite, Smectite, 
and Kaolinite; Stenberg et al. 2010). Although organic matter also 
absorbs light in this region, its absorbance is often reported to be 
weak. Evidence of the influence of organic matter in the visible re-
gion is well established, and soil colour has been used to estimate 
SOC in a number of situations (e.g., Gholizadeh et al. 2020).

4.4   |   Large and Variable Set of Study Sites

The large number of study sites with diverse pedo- climatic con-
ditions from across Europe captured in this study made it possi-
ble to assess general patterns in performance of local (field-  and 
farm- scale) models related to variations in SOC and soil texture. 
However, this diversity could also present challenges, as a wide 
range of conditions may have masked correlations between 
model performance and the SOC and soil texture relationship. 
The differences in SOC and clay content discussed earlier in this 
paper indicate differences in soil type. However, available data 
on dominant soil types (Table  S1), diagnostic horizons of top-
soils, and other related soil properties did not allow for a more 
thorough investigation.

In this study, there was no evidence of especially poor results at 
sites with a long time between soil sampling and the collection 
of satellite data. There was also no statistical support for a rela-
tionship between model performance and the number of sam-
ples (Pearson p = 0.42 and p = 0.97 for SOC and clay) and no or 
weak statistical support for a relationship between model perfor-
mance and the sample density (p = 0.37 and p = 0.06, r = −0.33, 
for SOC and clay). Another difference between the sites in rela-
tion to the soil sampling was the differences in the areas that the 
individual soil samples represented. At several of the sites, the 
sampling was not designed for satellite modelling applications, 

with sampling points unadjusted to the satellite pixels in terms 
of location inside the pixel or in terms of the size of the area 
sampled for each point. Sampling points from a very small area 
might, for example, lead to low representability of the 100 or 
400 m2 satellite pixels. However, some of the best models were 
developed at sites where the individual soil sampling point rep-
resented only 0.25 m2 (CHE 2, 4, and 5), and no general patterns 
in model performance could be observed related to the area rep-
resented by a soil sample.

In soil remote sensing, it is generally assumed that soil property 
variations within the topsoil are minimised by repeated tillage 
operations. However, mixing depth and the degree of vertical 
homogenisation depend on the tillage system (Priori et al. 2024). 
In this study, 0–20 cm sampling depth was by far the most com-
mon (27 of the 43 sites), with only two sites with samples from 
0 to 10 cm (French and Spanish fields) and the 5 Italian fields 
with 0–30 cm soil sampling (Table  S2). The very unbalanced 
dataset and a lack of information on tillage practice do not allow 
a meaningful discussion of possible effects of sampling depth on 
model performance.

5   |   Conclusion

This study investigated the influence of soil texture on SOC 
predictions from Sentinel- 2 data with an unprecedented set of 
34 local- scale study areas across 10 European countries. The 
prediction performance for both SOC and clay content varied 
largely between the sites when only satellite data was used as 
predictors, with RPD values ranging from around 1 to 3.2 and 
RPD values > 1.5 observed at 8 and 12 of the 34 sites for SOC and 
clay, respectively.

In response to the research questions, we draw the following 
conclusions:

• There was statistical support for better SOC prediction per-
formance at sites with a stronger correlation between SOC 
and clay content in the soil. However, these relationships 
could explain only a small part of the overall variation in 
SOC model performances across the sites.

• Differences in the range and overall amount of clay content 
in soil could not explain the variation in SOC prediction 
performance between the sites.

• Adding information on soil texture as additional predictors 
to the models improved the SOC prediction on average, 
but, as with the modelling results, the improvement varied 
largely between the sites.

• The relative importance of the different spectral bands in 
the SOC and clay models indicated that the models for the 
two soil properties used different information in the satel-
lite data to some degree, with the red and far- red regions 
of the visible spectrum more important for SOC prediction 
and the region around 2200 nm more important for clay 
prediction.

The influence of soil texture on SOC prediction performance, 
although weak and variable across the studied sites, emphasises 
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the need for caution when interpreting SOC predictions from 
models relying only on satellite data and might explain some of 
the difficulties in expanding models to cover larger areas.
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