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Abstract: Accurate assessment of forage quality is essential for ensuring optimal animal
nutrition. Key parameters, such as Leaf Area Index (LAI) and grass coverage, are indicators
that provide valuable insights into forage health and productivity. Accurate measurement
is essential to ensure that livestock obtain the proper nutrition during various phases of
plant growth. This study evaluated machine learning (ML) methods for non-invasive as-
sessment of grassland development using RGB imagery, focusing on ryegrass and Timothy
(Lolium perenne L. and Phleum pratense L.). ML models were implemented to segment and
quantify coverage of live plants, dead material, and bare soil at three pasture growth stages
(leaf development, tillering, and beginning of flowering). Unsupervised and supervised
ML models, including a hybrid approach combining Gaussian Mixture Model (GMM) and
Nearest Centroid Classifier (NCC), were applied for pixel-wise segmentation and classi-
fication. The best results were achieved in the tillering stage, with R2 values from 0.72 to
0.97 for Timothy (α = 0.05). For ryegrass, the RGB-based pixel-wise model performed best,
particularly during leaf development, with R2 reaching 0.97. However, all models struggled
during the beginning of flowering, particularly with dead grass and bare soil coverage.

Keywords: machine learning; RGB imagery; forage crops; image segmentation; Leaf Area
Index; grass coverage

1. Introduction
Forages are critical for animal production systems, particularly for ruminants, due to

their role in economic nutrition and environmental conservation. Despite regional varia-
tions in their use, forages are vital for sustainable and cost-effective animal production [1].
Furthermore, grasslands cover 26% of the world’s land area and 70% of the global agricul-
tural area, supporting over 800 million people [2,3]. These lands often include unmanaged
or partially managed mixed grasses, legumes, and forbs, alongside millions of hectares
of highly managed pasture, hay, and silage crops. However, compilation of forage crops’
global acreage and value do not usually encompass all forage crops, and comprehensive
data are sometimes lacking [4]. Global climate change poses a significant challenge for
forage crop management and breeding, with northern regions expected to experience a
faster warming rate than the global average [5]. In Norway, rising winter and summer
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temperatures may extend the grassland growing season. Precipitation changes, including
extreme weather events and unstable winters, further complicate adaptation strategies.
These climatic shifts, whose most significant positive and negative changes are predicted to
occur in northernmost Europe, will introduce abiotic stresses that could negatively impact
forage yields [6]. Hence, given the complexity and contrasting effects of climate change,
more accurate information is needed to efficiently manage forage crops in light of the cur-
rent and forthcoming challenges. Norway, in particular, exhibits one of the highest global
demands for quality livestock production of meat, milk, and dairy products [7]. Thus,
substantial resources are allocated to forage production, indicating severe environmental
damage [8]. Hence, in Scandinavian countries, significant attention has been directed
towards the requirements and needs for food production based on ruminants [9]. Forage
production demands an increasingly substantial amount of resources, and this situation
is considered a bottleneck in the system [8]. Consequently, the relationship between the
requirements for grassland production and the degradation of natural resources has been
examined [10]. This examination has involved implementing precision agriculture (PA) pro-
cesses [11] to contrast qualitative information obtained through traditional methods, such
as field sampling or supervised visual estimation, which are often destructive and costly.

Efficient management of forage crops and grasslands is crucial for sustainable agri-
culture. PA techniques facilitate the implementation of different approaches to rapid and
accurate estimates of biomass, forage quality, and grassland productivity indicators. These
are essential in decision-making about cutting dates, fertilization, and grassland renova-
tion. For example, Dusseux et al. [12] evaluated the potential of Sentinel-2 satellite data to
estimate dry grassland biomass using grassland height as a measurement. Within the elec-
tromagnetic spectrum, the Red-edge, Near Infra-Red, and Short Wave Infra-Red spectral
bands appeared to contain substantial information that could be utilized for the estimation
of grassland biomass. Moreover, Rueda-Ayala and Höglind [13], using unmanned aerial
vehicles (UAVs), conducted a research study to determine the ideal grass conditions for
successfully establishing Trifolium pratense L. through sod-seeding. The study highlighted
the challenges of introducing red clover into dense swards and emphasized the importance
of site-specific considerations for grassland renovation. Similarly, Rueda-Ayala et al. [14]
assessed grass ley fields using UAVs and on-ground methods (RGB-D information). Plant
height, biomass, and volume using digital grass models were estimated. The sensing
systems accurately determined parameters by comparing estimated values with ground
truth, considering basic economic considerations.

Fricke et al. [15] explored the use of ultrasonic sensors, both statically and mounted
on vehicles, to estimate sward heights and correlate these measurements with forage
mass. This approach provides a non-destructive method for yield mapping in precision
agriculture. Additionally, laboratory studies assessed forage crops to predict quality pa-
rameters, further enhancing the application of these technologies. Building on this, Berauer
et al. [16] introduced visible-near-infrared spectroscopy (vis-NIRS), which demonstrated
high accuracy in predicting forage quality parameters, such as ash, fat, and protein, in
bulk samples from species-rich montane pastures. This method also proved valuable for
detecting the impacts of climate change and land management on forage quality. On the
other hand, RGB imagery, while effective for many agricultural applications, faces notable
limitations, particularly in scenarios involving leaf overlap. Overlapping leaves can obscure
key sections of the plant, reducing the accuracy of feature detection and analysis. This
issue is particularly pronounced in grass mixtures, where the uniformity of vegetation can
further complicate segmentation and classification tasks. In contrast, distance sensors [16],
which operate based on principles like time-of-flight, offer complementary advantages by
enabling the measurement of plant height and the indirect estimation of biomass through
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height–biomass relationships. These sensors are typically categorized into two main types:
ultrasonic devices and LiDAR (Light Detection and Ranging) systems. Ultrasonic sensors
rely on sound waves to measure distances, while LiDAR employs laser pulses, providing
higher resolution and precision [17]. Both ultrasonic and LiDAR technologies have seen
widespread adoption in modern agricultural practices due to their versatility and efficiency.
Their ability to rapidly collect data across extensive field areas makes them particularly
valuable for applications like crop monitoring, yield estimation, and resource optimization.
LiDAR can also be implemented by supplementing spectral data with structural and in-
tensity information, enabling higher accuracy in species classification and mapping. This
integration enhances the use of LiDAR in ecological studies and its potential to streamline
operational species monitoring [18,19].

However, the integration of non-invasive technologies—including vis-NIRS, ultra-
sonic and depth sensors, UAVs, and satellite sensing—has created a robust foundation
for more precise, efficient, and sustainable management of grasslands and forage crops.
Furthermore, advancements in artificial intelligence (AI) have driven significant progress
in feature extraction techniques, enabling better assessment of key traits, like leaf area
index (LAI), plant height, and biomass. These innovations collectively represent a leap
forward in optimizing forage crop management. In AI, machine learning (ML) has become
the standard for image analysis [19]. Recent ML advances have opened new avenues for
enhancing these processes, leveraging remote sensing technologies, advanced algorithms,
and diverse datasets to derive valuable insights. In the context of forage crop management,
ML algorithms have been increasingly used and achieved remarkable success in various
forage crop assessment and management. For example, Oliveira et al. [20] demonstrated
the potential of UAV remote sensing for managing and monitoring silage grass swards.
Their study utilized drone photogrammetry and spectral imaging to estimate biomass,
nitrogen content, and other quality parameters in grasslands. Training machine learning
models, such as Random Forest (RF) and multiple linear regression (MLR), with reference
measurements achieved promising accuracy in biomass estimation, nitrogen uptake, and
digestibility. Similarly, Lussem et al. [21] utilized UAV-based imaging sensors and pho-
togrammetric structure-from-motion processing to estimate dry matter yield (DMY) and
nitrogen uptake in temperate grasslands. They compared linear regression, Random Forest
(RF), support vector machine (SVM), and partial least squares (PLS) regression models.
Combining structural and spectral features improved prediction accuracy across all models,
with RF and SVM outperforming PLS. This study underscored the efficacy of integrating
various data features for robust grassland monitoring. In contrast, Xu et al. [22] focused
on the use of terrestrial laser scanning (TLS) for estimating aboveground biomass (AGB)
in grasslands. TLS provides detailed canopy structural information, which can be used to
build regression models. Their study compared four regression methods: simple regression
(SR), stepwise multiple regression (SMR), Random Forest (RF), and artificial neural network
(ANN). The SMR model achieved the highest prediction accuracy, indicating that incor-
porating multiple structural variables from TLS data can significantly enhance biomass
estimation. Chen et al. [23] explored the integration of Sentinel-2 imagery with advanced
ML techniques for estimating pasture biomass on dairy farms. Their sequential neural
network model incorporated time-series satellite data, field observations, and climate vari-
ables. The model achieved a reasonable prediction accuracy, with an R2 of ≈0.6, suggesting
that high spatio-temporal resolution satellite data, when combined with ML models, can
provide valuable insights for pasture management. On the other hand, other authors
have employed alternative techniques, such as multispectral imaging. Zwick et al. [24]
focused on remote sensing-based approaches for forage monitoring in rural Colombia.
Using multispectral bands from Planetscope acquisitions and various vegetation indices
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(VIs), they developed models to predict crude protein (CP) and dry matter (DM). The study
highlighted the importance of site-specific model optimization, with different regression
algorithms performing best at different sites. The integration of multiple regression tech-
niques and feature selection methods demonstrated the adaptability required for diverse
climatic conditions. Interestingly, Defalque et al. [25] introduced a novel approach by
incorporating cattle parameters and environmental and spectral data to estimate biomass
and dry matter in grazing systems. Their study utilized Pearson’s correlation analysis and
Recursive Feature Elimination (RFE) for variable selection. Non-linear models achieved the
best prediction results, particularly Extreme Gradient Boosting (XGB) and Support Vector
Regressor (SVR). This research highlighted the significant impact of herd characteristics on
pasture quantity estimation, providing a comprehensive approach to pasture monitoring.

The aforementioned literature highlights the potential of ML to significantly enhance
the assessment and evaluation of forage crops and grasslands within the agricultural sector.
However, there is a recognized need for further development, particularly concerning
ground truth measurements. This advancement specifically aims to reduce reliance on
traditional field-based methods, such as destructive sampling and visual assessment,
which are known to be labor-intensive, time-consuming, and prone to error [22]. This
study presents a low-cost and rapid non-destructive estimation of grassland productivity
parameters using ML-based analysis of RGB imagery through artificially generated sward
images, specifically focusing on the forage crops ryegrass and Timothy (Lolium perenne L.
and Phleum pratense L., respectively). The proposed methodology enabled the accurate
segmentation and quantification of live plant material, dead plant material, and bare soil
cover coverage. Furthermore, this approach facilitated the determination of LAI, a critical
biophysical indicator of vegetation health and photosynthetic capacity. By leveraging ML
algorithms, this study addresses the challenges of traditional field sampling, making the
process more efficient and accurate. Hence, the utilization of RGB imagery allowed for rapid
and cost-effective data acquisition, enabling frequent monitoring of grassland dynamics.

2. Materials and Methods
2.1. Methodology Overview

In this study, a hybrid approach combining Gaussian Mixture Model (GMM) and
Nearest Centroid Classifier (NCC) algorithms was employed for image segmentation and
classification (Figure 1). The process begins with acquiring images capturing vegetative
structures, followed by image preprocessing to enhance the quality of the input data.
Preprocessing ensures that the images are cleaned and prepared for analysis, removing
any distortions or noise that might affect the accuracy of the results. Next, the features
from the images are extracted using various segmentation parameters. Three different
approaches are employed for feature extraction: in method A, the pixel values are derived
from RGB and Y’CbCr color spaces alongside CMYK components. Method B introduces the
Modified Excess Green Index (MExG) to enhance the identification of green vegetation. In
contrast, method C further simplifies the feature extraction by focusing on RGB and Y’CbCr,
paired with MExG. Following feature extraction, Principal Component Analysis (PCA) is
applied for dimensionality reduction, streamlining the dataset by reducing the number of
variables, making it easier to process without compromising essential information. Once
the features are extracted, the workflow moves into the segmentation phase, where GMM
and NCC are applied to cluster and classify the pixels into categories, such as bare soil,
living grass, and withered grass. The GMM algorithm helps identify pixel groupings based
on the extracted features, while NCC fine-tunes the classification by comparing the pixel
values against pre-defined centroids. Although GMM is typically used for unsupervised
tasks, its incorporation into this supervised pipeline demonstrates its versatility in hybrid
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frameworks. Similar methods have shown that GMM can function well as a preliminary
segmentation tool, increasing overall accuracy by using pixel groupings as intermediate
inputs for supervised classifiers [26,27]. For example, GMM has demonstrated superiority
in detecting homogenous pixel regions in Object-Based Image Analysis (OBIA) before
the application of supervised techniques, like Random Forest classifiers or SVM [27].
The segmentation results are used to generate artificial images that simulate the sward
structures, which are further utilized for training the machine learning models. In the
final stage, the models are evaluated through regression analyses to assess their ability to
predict key vegetation parameters. Specifically, the models aim to estimate the LAI, which
provides insights into vegetation density and health, as well as the coverage of bare soil,
living grass, and withered grass. The results from these analyses are used to validate the
models’ performance for accurately segmenting and quantifying vegetative structures in
ryegrass and timothy crops, ensuring that the machine learning algorithms provide reliable
estimates for practical agricultural applications. In the following chapters, each process
step, including model training, evaluation, and segmentation accuracy, will be explained
in detail.

Agronomy 2025, 15, x FOR PEER REVIEW 5 of 26 
 

 

essential information. Once the features are extracted, the workflow moves into the 
segmentation phase, where GMM and NCC are applied to cluster and classify the pixels 
into categories, such as bare soil, living grass, and withered grass. The GMM algorithm 
helps identify pixel groupings based on the extracted features, while NCC fine-tunes the 
classification by comparing the pixel values against pre-defined centroids. Although 
GMM is typically used for unsupervised tasks, its incorporation into this supervised 
pipeline demonstrates its versatility in hybrid frameworks. Similar methods have shown 
that GMM can function well as a preliminary segmentation tool, increasing overall 
accuracy by using pixel groupings as intermediate inputs for supervised classifiers [26,27]. 
For example, GMM has demonstrated superiority in detecting homogenous pixel regions 
in Object-Based Image Analysis (OBIA) before the application of supervised techniques, 
like Random Forest classifiers or SVM [27]. The segmentation results are used to generate 
artificial images that simulate the sward structures, which are further utilized for training 
the machine learning models. In the final stage, the models are evaluated through 
regression analyses to assess their ability to predict key vegetation parameters. 
Specifically, the models aim to estimate the LAI, which provides insights into vegetation 
density and health, as well as the coverage of bare soil, living grass, and withered grass. 
The results from these analyses are used to validate the models’ performance for 
accurately segmenting and quantifying vegetative structures in ryegrass and timothy 
crops, ensuring that the machine learning algorithms provide reliable estimates for 
practical agricultural applications. In the following chapters, each process step, including 
model training, evaluation, and segmentation accuracy, will be explained in detail. 

 

Figure 1. Workflow for an automated image analysis pipeline for segmenting and evaluating 
grassland images. The pipeline leverages image processing, machine learning, and statistical 
analysis to accurately classify and quantify different grass structures. 

2.2. Study Site and Experimental Design 

The study was carried out at the NIBIO Særheim research station (Klepp Stasjon, 
Norway, 58°46′22″ N; 5°40′38″ E) at three fields dedicated to permanent ley grass 
production [13]. Four field trials were implemented based on the most commonly used 
grass species in the region: ryegrass (Lolium perenne L.) and Timothy (Phleum pratense L.). 
After the first cut, one field (25.25 m × 12.50 m) with ryegrass and one of the same 
dimensions with Timothy were evaluated during late summer 2017. Moreover, after the 
first cut, one ryegrass field (16.8 m × 10.5 m) and another of the same dimensions for 
Timothy were evaluated during early spring 2018. Each experiment had 4 replication 

Figure 1. Workflow for an automated image analysis pipeline for segmenting and evaluating
grassland images. The pipeline leverages image processing, machine learning, and statistical analysis
to accurately classify and quantify different grass structures.

2.2. Study Site and Experimental Design

The study was carried out at the NIBIO Særheim research station (Klepp Stasjon,
Norway, 58◦46′22′′ N; 5◦40′38′′ E) at three fields dedicated to permanent ley grass pro-
duction [13]. Four field trials were implemented based on the most commonly used grass
species in the region: ryegrass (Lolium perenne L.) and Timothy (Phleum pratense L.). After
the first cut, one field (25.25 m × 12.50 m) with ryegrass and one of the same dimensions
with Timothy were evaluated during late summer 2017. Moreover, after the first cut, one
ryegrass field (16.8 m × 10.5 m) and another of the same dimensions for Timothy were
evaluated during early spring 2018. Each experiment had 4 replication blocks and 10 levels
of initial grass plant cover were tested, ranging between 0 and 100%, achieved with a low-
dose application of glyphosate [11]. The total amount of precipitation for the late-summer
2017 lapse was 402 mm, and for the early-spring 2018 lapse was 138 mm. Further site
characteristics, such as soil type, climatic conditions during the experiment, management
practices, and experimental design, are described in [13,14]. Data collection took place
in mid-July through mid-September 2017 (late summer), during pasture regrowth after
the first cut, and in mid-April through May 2018 (spring), during the beginning of the
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growing season until the end of vegetative development stage, before the first cut. About
400 images were acquired per experiment, totaling 1605; the images were mainly taken
aiming at cloudy and low-sun days to avoid shadows, which could affect the segmentation
processes (see Table 1). To establish ground truth measurements of each plot, a 1 m × 1 m
field quadrat, representing the region of interest (ROI), was randomly selected across the
planned initial coverage plot. Field measurements were conducted immediately after
image acquisition to obtain ground-truth data, i.e., visual plant, dead material and bare
soil coverages and destructive samples for LAI determination. LAI, which characterizes
plant canopies, was determined using a systematic approach with image analysis software,
following the approach by Nielsen et al. [28] relating LAI and crop canopy. It is defined as
the total leaf area relative to the ground area. The process began by selecting a 1 m × 1 m
quadrant and placing it on a representative area of the grassland. The grass within the
quadrant was then cut at ground level, ensuring all leaf material within the sampled area,
i.e., the ROI, was collected. After harvesting, the leaves were separated from other plant
parts, such as stems and flowers, to focus solely on leaf material for the LAI calculation.
Grass samples were collected exclusively from within the designated quadrat to maintain
consistency in the analysis, even if some plant parts extended beyond its boundaries. This
approach ensured standardized sample sizes and prevented overestimation. The collected
samples were then dried in a 65 ◦C oven until they reached a constant weight, which
removes moisture and allows for precise measurement of the dry matter content. The
leaves were then spread out on a white sheet of millimeter graph paper, carefully arranged
to avoid overlap and ensure even distribution, and marked with a bold black line of 10 cm
as reference. This prepared sheet with leaves was placed on a flatbed scanner and scanned
at high resolution to capture detailed images of the leaves. These images were saved in a
digital PNG format. The scanned images were analyzed using FIJI image analysis software
(version 2.9.0) to automatically calculate the area covered by the leaves by processing the
number of pixels corresponding to the leaf material in the image. This calculation provided
a precise measurement of the total leaf area in cm2. Finally, the LAI was determined by
comparing the total leaf area, as measured by the software, to the 1 m2 sampled area, and
the values were extrapolated to the area in m2. Ryegrass and Timothy sward coverages
were also assessed by visual estimation. Images were acquired at the three developmental
stages of Timothy and ryegrass: leaf development (initial leaf formation), tillering (full leaf
formation and tillering), and beginning of flowering (end of vegetative growth).

2.3. Sensors and Computing Environment

Image acquisition was performed using two consumer-grade cameras. The cameras
were mounted on agricultural machinery, enabling a standardized and quantifiable ap-
proach to data collection. This setup ensured consistent data acquisition at a height of
1.75 m, which is particularly advantageous for research applications and large-scale data
analysis requiring precision and reproducibility. Images were captured with a SONY DSC-
HX60V. Additionally, Digital Hemispherical Photography (DHP) images were obtained
using a low-cost camera (APEMAN A60) positioned at a similar height. The SONY camera
captured high-resolution still images, featuring a 20.4 MP CMOS sensor and a 24–720 mm
equivalent focal range. The APEMAN A60, equipped with a wide-angle (170◦) fish-eye
lens and producing 12 MP still images, provided complementary hemispherical perspec-
tives. All images had an approximate final resolution of 2736 × 2736 pixels (further details
see Table 1). The experiments were conducted in a standard, cost-effective computing
environment using a Dell Tower with an Intel Core i7-7700k processor and 16 GB of RAM.
The system operated on Linux 18.10, a free and open-source operating system, ensuring
accessibility and flexibility. All data processing, analysis, and model implementation were
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carried out using Python 2.7, a reliable and widely used programming language, and Visual
Studio Code (VS Code), a robust and versatile programming platform. This configuration
was intentionally selected to demonstrate the practicality and accessibility of the proposed
method, showcasing its capability to operate on moderately powered, commercially avail-
able hardware without reliance on high-performance computing clusters or specialized
equipment such as GPUs.

Table 1. Field-based image acquisition specifications for data collection setup and conditions for
grass species ryegrass and timothy imaging.

Parameter
Late Summer 2017 Early Spring 2018

Experiment Experiment

Location NIBIO Særheim research station, Klepp Stasjon, Norway (58.76◦ N, 5.65◦ E)

Grass Species Ryegrass (Lolium perenne L.) and timothy (Phleum pratense L.)

Field Size and Layout 2 fields (each 25.25 m × 12.50 m),
4 replication blocks per field

2 fields (each 16.8 m × 10.5 m),
4 replication blocks per field

Growth Stage and Timing

Late summer (mid-July to
mid-September 2017), regrowth after

first cut; phenological stages: leaf
development, tillering, beginning

of flowering

Early spring (mid-April to June 2018),
from early season to end of

vegetative stage before first cut;
phenological stages: leaf

development, tillering, beginning
of flowering

Soil Coverage Treatments 0–100% grass cover achieved via low-dose glyphosate application

Number of Images 805 800

Camera Models SONY DSC-HX60V (RGB) and APEMAN A60 (DHP)

Camera Specifications
(SONY DSC-HX60V)

20.4 MP CMOS sensor, focal range 24–720 mm (35 mm eq.), ~2736 × 2736 px
image resolution

Camera Specifications
(APEMAN A60) 12 MP still images, 170◦ fish-eye lens, ~2736 × 2736 px image resolution

Image Acquisition Method Cameras mounted at ~1.75 m above ground; handheld and vehicle-mounted
platforms to ensure consistency

Acquisition Still images captured manually on cloudy/low-sun days to minimize shadows

Weather Conditions
Cloudy, low-sun conditions preferred;
precipitation for the late-summer-2017

period: 402 mm

Cloudy, low-sun conditions
preferred; precipitation for the

early-spring-2018 period: 138 mm

Soil and Climate Umbric podzol, sandy loam (63% sand, 28% silt, 9% clay), ~7% OM; cold
maritime climate (~1180 mm annual precipitation)

2.4. Image Pre-Procesing

In preparation for the analysis of the images acquired by the consumer-grade cameras
SONY DSC-HX60V and APEMAN A60 cameras, the latter equipped with a fish-eye lens,
a meticulous preprocessing stage is implemented. This crucial phase serves to rectify
distortions inherent to the fish-eye lens and enhance overall image quality. The prepro-
cessing workflow encompasses several key steps. Initially, camera calibration is executed
to ascertain the intrinsic parameters of each camera, including focal length and lens dis-
tortion coefficients. This calibration is facilitated through the utilization of a calibration
grid or checkerboard pattern. The resultant parameters are subsequently employed to
rectify images and ameliorate lens distortions. The ROI encapsulates the analysis target
and is delineated following calibration. This delineation can be performed manually or
automated through image segmentation techniques. To streamline further processing, the
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ROI is partitioned into four quadrants. Corner detection algorithms are applied within each
quadrant to pinpoint distinct and stable feature points. These identified corners function
as reference points for subsequent transformations and measurements. The final stage
involves orthorectification, a process that geometrically corrects the ROI and mitigates
distortions arising from camera tilt and perspective, particularly crucial for images captured
with the fish-eye lens. An overview of this preprocessing workflow is visually represented
in Figure 2.
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Figure 2. Structured Workflow for Image Preprocessing, covering all essential steps from defining the
ROI to ensuring accurate orthorectification.

The image preprocessing workflow begins with camera calibration as the initial step.
This step is crucial to ensure accurate measurements and interpretations from the captured
images. The RGB cameras in this workflow provide high-resolution images with an average
size of 2736 × 2736 pixels, offering substantial detail and information. One of the key
distinctions between the two cameras employed is the presence of “fish-eye” distortion in
the second camera. This distortion is inherent to wide-angle lenses, such as those commonly
used in action cameras. The “fish-eye” distortion causes straight lines to appear curved
and objects closer to the edges of the image to be stretched, resulting in a characteristic
“bulging” effect. This distortion can significantly impact the accuracy of measurements and
analysis if not properly accounted for. Figure 3 effectively illustrates the difference between
the images captured by the two cameras.
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Figure 3. Comparison of sward field images captured with Apeman A60 (a) and Sony DSC-HX60V
(b) cameras.

In Figure 3, the left image, captured by the camera without barrel distortion, also
known as the “fish-eye” lens effect, exhibits straight lines and consistent object proportions
throughout the image. In contrast, the right image, captured by the camera with barrel dis-
tortion, displays curved lines and distorted object proportions, particularly near the edges
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of the image. The “fish-eye” distortion, evident as a bulging effect that elongates objects
near the edges, is a critical factor in image preprocessing. Correcting this distortion involves
calibrating and quantifying distortion parameters, which are then applied to transform
images for accurate analysis. An adjustment procedure, based on a proposed calibration
method by [29], was developed to address this issue effectively. The algorithm for detecting
intersection points and correcting distortion in the calibration process was implemented
according to [29] to ensure precision and robustness. Multiple images of a 14 × 25 cm
checkerboard calibration pattern were captured from various viewpoints to account for
diverse perspectives. The algorithm began by detecting intersection points, then images
were converted to grayscale to reduce complexity while preserving geometric features, and
the Shi-Tomasi corner detection method [30] was applied to identify prominent corners
based on eigenvalues of the gradient covariance matrix. In cases where parts of the pattern
were obscured by grass or other elements, a convex hull algorithm reconstructed missing
intersection points by connecting the outermost detected features. To further refine the
localization of corners, the Canny edge detection method [31] was used, enhancing robust-
ness in challenging conditions. Once the intersection points were detected, a homography
matrix was computed to align these points with the undistorted reference checkerboard
pattern, assuming zero distortion. To address the assumption of zero distortion during the
initial calculation of intrinsic and extrinsic parameters, preliminary tests were conducted
to evaluate the validity of this approach. These tests were performed using a standard
checkerboard-type calibration pattern, captured from multiple views to account for varying
perspectives and potential distortion effects. This alignment corrected geometric inconsis-
tencies in the images. Subsequently, intrinsic and extrinsic parameters of the camera were
calculated to achieve accurate system calibration. The RANSAC algorithm was used to
refine point matching, eliminating outliers and ensuring robust accuracy against noise or
partial occlusions. The distortion correction process, while effective, resulted in slight pixel
displacements near the image edges. However, this secondary distortion was negligible
for the analysis, since the ROI was confined to a 1 m2 area within the visible white frame.
The ROI was defined through a series of image segmentation steps. Initially, the images
were transformed into the HSV color scale, followed by binarization. Erosion and dilation
operations were performed as part of opening and closing morphological operations, using
a kernel matrix of 3 × 5 and 5 × 5 pixels, respectively. The Shi-Tomasi method was then
applied to delineate the ROI polygon accurately, and when vegetation obscured parts of
the frame, the convex hull algorithm ensured completeness. Finally, the ROI underwent
ortho-rectification using a vertical plane, where a refined homography matrix was calcu-
lated with the support of the RANSAC algorithm [32]. The resulting area was cropped, and
any residual pixels from the white frame were removed.

2.5. Sward Image Feature Extraction Models

The methodology employed for plant structure segmentation integrates advanced
image processing, feature extraction, and the proposed ML techniques. Pixel-wise segmen-
tation using color information was implemented, leveraging diverse color representations,
including the Y’CbCr color space, CMYK color model, and the MExG, to enhance spectral
information and feature discrimination. Three models were developed for feature extrac-
tion: Model A combined RGB, Y’CbCr, and CMYK values; Model B added the MExG index
to RGB, Y’CbCr, and CMYK values; and Model C combined Y’CbCr values with the MExG
index. Vector data were scaled using a Min–Max Scaler to fit within a 0–255 range, elimi-
nating the need for explicit normalization while retaining key features. A hybrid machine
learning approach was employed, utilizing the GMM for unsupervised probability distri-
bution modeling and the NCC for supervised pixel classification. Dimensionality reduction
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using PCA isolated two principal components: PC1 captured variance related to vegetation
health (e.g., chlorophyll content, canopy cover), while PC2 captured variance related to soil
conditions (e.g., moisture, structure). PCA addressed multicollinearity among variables like
C, M, Yk, R, G, and Y’, optimizing the feature set and ensuring effective data representation.
Correlation and statistical analyses further refined the methodology. Correlation analysis
detected redundancies, while ANOVA identified influential variables, the vegetation index
being the most impactful, followed by Y’, C, M, R, and G channels. The multi-step image
processing pipeline, which included transformations of RGB data into various color spaces
and calculated vegetation indices, enabled comprehensive feature extraction and effective
classification. This approach facilitated accurate segmentation and representation of living
plants, dead vegetation, and bare soil, despite the inherent complexities and variability in
the data.

2.6. GMM–NCC Machine Learning Hybrid Approach

This study explored a hybrid approach combining GMM and NCC to effectively
classify plant structures. The GMM was utilized, also considering a smoother version of
the Kmeans algorithm. The use of GMM was implemented in the three possibilities for
data generation, i.e., feature extraction models A, B, and C, for the initial classification of
plant structures. In search of better differentiation, an attempt was made to implement a
supervised classification method that uses the information provided by the GMM segmen-
tation. Due to this, a variant of the KNN algorithm, the nearest centroid classifier (NCC),
was adapted [33]. This algorithm assigns the class based on the centroid closest to it, said
centroid, depending on the training samples. The procedure followed for adapting the
GMM–NCC algorithm is explained in the following sequence: GMM was applied to input
images, grouping pixels into live plant structures, dead material, and soil. To improve the
accuracy of these clusters, class boundaries were refined through pixel-level corrections
using an image manipulation program, resulting in precise reference masks. These refined
masks served as the basis for a synthetic data augmentation process, through which syn-
thetic images were generated to expand the dataset. The augmented dataset preserved the
original class assignments while simulating a broader range of conditions. The mean values
of each cluster from these synthetic images were then calculated and used as centroids to
train the NCC. The application of this procedure sought to improve classification, especially
in the boundaries between classes, where possible misclassifications occur.

The initial segmentation was applied by applying the GMM algorithm based on the
artificial images, which were then validated on both forage species. The mean values of
each cluster were obtained (live plant structures, dead ones, and soil). With the mean value
of each cluster, the NCC algorithm was applied, in which said mean value was the centroid
used for discrimination. The application of this procedure sought to improve classification,
especially in the boundaries between classes, where possible misclassifications occur. The
initial segmentation was performed using the GMM algorithm, which was applied to
artificial images (i.e., computer-generated images) obtained through a synthetic data aug-
mentation process. This process expanded the variability of the input data by simulating
realistic scenarios based on previously segmented structures. From these clusters, the
mean values of each were applied by applying the GMM algorithm based on the artificial
images, i.e., computer-generated images, and then validated on both forage species. The
mean values of each cluster were obtained (live plant structures, dead ones, and soil).
With the mean value of each cluster, the NCC algorithm was applied, in which said mean
value was the centroid used for discrimination. The application of this procedure sought
to improve classification, especially in the boundaries between classes, where possible
misclassifications occur.
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2.7. Artificial Sward Images Generation

An automated color image processing tool capable of segmenting intricate grass struc-
tures in ley swards, including green leaves, straw, and bare soil, which are considered in the
calculation of the LAI using artificial intelligence techniques, was developed. Utilizing data
from color scale transformations applied to all RGB channels, including transformations to
the color space achromatic luminance and blue and red chromatic channels (Y’CbCr) and
the color model cyan, magenta, yellow, and key (CMYK), the GMM in conjunction with
NCC achieved excellent classification outcomes. Implementing the GMM algorithm created
a dataset of 30 artificial images (Figure 4). For this purpose, an algorithm was created to
convert the images of the GMM grouping into binary masks and later generate a label
for each pixel value. These labeled images will serve as input for training the supervised
NCC algorithm, which will ultimately be used to estimate parameters such as vegetation
coverage and support the calculation of the LAI in subsequent analyses.
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Figure 4. This figure displays a sample from the dataset of 30 artificial sward images, which includes
two forage crop species, ryegrass (Lolium perenne L.) and Timothy (Phleum pratense L.).

Therefore, image processing and segmentation were conducted utilizing unsupervised
and supervised machine learning algorithms, including a combination of both. Unsuper-
vised algorithms were implemented initially due to the absence of a previously classified
image dataset. As aforementioned, the GMM based on the expectation–maximization
algorithm with random samples was employed [34]. Original images exceeding 2000 pixels
in dimension were rescaled to 912 × 912 to concentrate analysis on the ROI. The resulting
groups from GMM were arranged into a set of 30 artificial images, created pixel by pixel
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through the computational combination of 912 × 912 pixels for each artificial image. This
artificial dataset served as training data and binary masks for labeling living plants, dead
plants, and bare soil classes. Each computer-generated image consists of labeled segments
resulting from GMM-based segmentation. While the GMM provided an initial segmenta-
tion, minor inaccuracies required refinement, particularly in boundary regions. For this
purpose, labeling was performed using GIMP version 2.10.10 (developed by the GIMP
Development Team) to apply targeted pixel-level corrections under the visual supervision
of the known classes. The initial segmentation, generated by GMM, served as an objective
reference, and corrections were limited to specific boundary regions where ambiguities
were identified. To minimize operator error, we adhered to a standardized protocol that
included systematic visual refinement, cross-validation using a Python algorithm to assign
class values (0 to bare soil, 1 to living structures, and 2 to dead material), and multiple
reviews of the corrected regions to ensure accuracy and consistency. It is important to
note that GIMP was used exclusively for these focused adjustments and not for full-scale
manual labeling (Figure 5).
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Figure 5. Clustering of three classes using the unsupervised GMM classifier. The data was first
reduced using PCA, and numbers indicate the centroids of each cluster. Black “x” marks represent
the transformed sample data points. The clusters are categorized as follows: Cluster 0 represents
bare soil, Cluster 1 corresponds to living structures, and Cluster 2 indicates dead material.

The implementation of GMM as an unsupervised classifier allowed the artificial
creation of images with labels for the three classes: living plant, dead plant, and bare
soil. This class separation was acceptable and especially accurate for the living plant class
(Figure 6), keeping an undistorted plant shape when segmenting the classes.
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2.8. NCC Model Training

Once the artificially generated images were obtained, they were used as “labeled
segments” to test various supervised classification models, aiming to improve decision
boundary definition, particularly in edge cases where the GMM clustering was less effective.
Among the models tested, the NCC outperformed the others. A detailed description of
this process can be found in Rueda-Ayala et al. [14]. To ascertain the independence of the
algorithm’s class allocation efficacy from both the image to which it is applied and the
quantity of each plant structure present within the image, experiments were conducted
utilizing images of the same experiment captured at three distinct coverage stages of the
same crop (leaf development, tillering, beginning of flowering). Following the evaluation
of the segmentation’s efficacy at the various coverage stages, the GMM–NNC algorithm
was employed. Figure 7 illustrates the segmentation outcome acquired after implementing
the GMM–NNC algorithm as an example of the analyzed images.

Models A, B, and C were utilized as supervised machine learning models and sub-
sequently analyzed in accordance with the threshold of the MExG. Model A entailed the
conversion of RGB color values into Y’CbCr and CMYK color spaces to facilitate the capture
of a more comprehensive range of color information. Model B combined RGB, Y’CbCr,
and CMYK color values with the MExG to enhance green areas and enable more precise
differentiation of plant material. Model C directly converted RGB values to the Y’CbCr
color space and subsequently calculated the MExG index based on these Y’CbCr values,
thereby combining luminance and chrominance data with vegetation-focused green in-
tensity. Employing the GMM, the mean values of each cluster (live plant structures, dead
plant structures, and soil) were obtained. Subsequently, utilizing the mean value of each
cluster, the NCC algorithm was applied, wherein this mean value served as the centroid
for discrimination purposes.
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Figure 7. The figure consists of four images: (a) the original image, (b) the segmentation of living
structures, (c) the segmentation of dead structures, and (d) the segmentation of bare soil. These
images demonstrate the effectiveness of the GMM–NCC algorithm in distinguishing between different
components within the scene.

Conversely, the analysis of RGB images, encompassing the color spaces Y’CbCr and
the CMYK model, necessitates substantial computational power if the analysis is conducted
on a pixel-by-pixel basis. This requirement is attributable to the number of features calcu-
lated per pixel in each image, i.e., features resulting from the combination of R, G, B, Y’, Cb,
Cr, C, M, Y, and K. For instance, if nine features were selected per pixel, a 912 × 912 image
would yield approximately 7,500,000 features to be analyzed. Reducing the dimensionality
to only two features per pixel in a 912 × 912 image resulted in 1,500,000 features per image
that underwent analysis and segmentation, thereby significantly reducing the requisite
computational power. When classification is executed at the pixel level, for the combination
GMM–NCC, the classification was initially conducted in accordance with the spatial loca-
tion of pixels, whereby neighboring pixels with information about one class were grouped.
Subsequently, the classification was executed based on the probability that a group of pixels
belongs to the same class.

2.9. Model Comparison

To assess the effectiveness of the implemented algorithms, a comprehensive compar-
ison was conducted between the model estimated percentage results for live structures,
dead structures, soil, and LAI against the visual coverage and LAI destructively calculated.
This comparison was performed for all models tested and across the three grass growth
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stages of both grass species in the following manner. First, linear regression analyses (with
an α = 0.05) comparing the model coverage estimations of live plant, dead material, and
bare soil versus their corresponding visual coverage assessments, each at leaf development,
tillering, and beginning of flowering. Similarly, destructive LAI measurements (per m2)
were compared with their model estimations at the same grass development stages. The
resulting R2 coefficients indicated the model estimation accuracy. Then, to further compare
between models, a linear mixed-effects model, fitted by the restricted maximum likelihood
approach (REML) was applied using the statistical software R, version 4.4.1 [35] and the
package ‘nlme’ [36]. The models (A, B, and C) and the grass development stages (leaf
development, tillering, and beginning of flowering) were assigned as fixed factors. The
10 initially planned grass coverage levels nested in the replication blocks were assigned as
random. Marginal means were adjusted with the Tukey HSD (α = 0.05) method and their
corresponding 95% confidence limits were calculated with the ‘emmeans’ package [37].
Marginal means compared allowed grouping models by their statistical difference.

3. Results and Discussion
3.1. Feature Extraction and Initial Model Training

This section presents the outcomes and insights derived from the application of the
proposed ML techniques for plant structure segmentation, encompassing living and dead
vegetative structures as well as bare soil. The analysis builds upon data vectors representing
features extracted from processed images, which were utilized by the ML algorithms to
LAI and sward coverage. The performance of these algorithms was benchmarked against
ground truth data to evaluate their accuracy and reliability. Given the significant variability
in the shape, dimensions, and structural complexity of living plants, traditional segmenta-
tion methods based solely on shape or structure recognition were found to be inadequate.
The results highlight the effectiveness of the employed methodologies in overcoming these
challenges, providing a robust framework for segmenting complex vegetative structures.
The presence of overlapping structures further complicated the segmentation process, mak-
ing it challenging to delineate individual structures accurately. A pixel-wise segmentation
approach utilizing color information was employed to overcome these limitations. There-
fore, in the image analysis stage aimed at feature extraction, a multi-faceted approach was
adopted to extract meaningful features and segment plant coverage accurately. A diverse
set of color representations, including the Y’CbCr color space, the CMYK color model,
and the MExG, were combined to capture a wide range of spectral information relevant
to identification, i.e., living and dead vegetative structures and bare soil. This approach
leveraged the strengths of different color spaces and vegetation indices to enhance feature
discrimination. These proposed models for image processing and segmentation pipeline
are involved in the next stage of a hybrid approach utilizing both unsupervised and su-
pervised machine learning algorithms. The GMM, initialized with random samples, was
employed to model the underlying probability distribution of the image data. The GMM
algorithm better solves the classification stage, being highly used for the unsupervised
classification of multi-class information. Moreover, the GMM algorithm presents better
results for differentiating the background from the objects of interest [38]. Due to these
advantages, the use of GMM was determined, in the three possibilities of data generation,
i.e., feature extraction models A, B, and C, for the initial classification of plant structures.
The NCC algorithm was then used to assign pixels to different classes based on their feature
vectors and proximity to pre-defined cluster centers or labeled training data. Thus, prior to
image segmentation, three different methods were tested for feature extraction to optimize
color information and enhance image analysis. The first method involved transforming
the RGB color values of each pixel into two additional color spaces: Y’CbCr and CMYK.
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The YCbCr and YCMYK color scales were selected owing to their inherent advantages in
discerning an object from the backdrop of an image. These advantages are attributable to
the distinct separation of luminance and chrominance values within these scales [39]. The
Y’CbCr color space separates image luminance (Y’) from chrominance components, with Cb
representing blue and Cr representing red, making it perceptually uniform. This meant that
equal changes in these channels correspond to equal changes in perceived color. The CMYK
model, used primarily in printing, is based on subtractive color mixing and represents
cyan, magenta, yellow, and black (key). By converting RGB data into these two additional
color spaces, this method captures a broader range of color information, critical for detailed
analysis, as described by Equation (1), representing model A henceforth. In contrast, the
RGB, Y’CbCr, and CMYK color values were further enhanced by calculating the MExG
in the second model. The MExG is an effective vegetation index, particularly useful in
highlighting green areas by amplifying the green channel while minimizing the influence
of red and blue channels. This technique allowed for more precise differentiation of plant
material within the image by combining the detailed color representation of the three color
models with the focused green intensity provided by the MExG index. Hence, this model
(Equation (3), i.e., model B) is a combination that provides a richer set of data for image
analysis, with the calculations following equations 1 and 2, as defined by Burgos-Artizzu
et al. [40]. The third model (model C) involved a direct conversion of RGB values to the
Y’CbCr color space, followed by calculating the MExG index based on these Y’CbCr values.
This technique effectively combined the luminance and chrominance data from Y’CbCr
with the vegetation-focused green intensity provided by the MExG index. This method
enabled the extraction of color and luminance information, offering a comprehensive image
content analysis outlined in Equation (4). Notably, all vector data generated through these
methods were scaled using a Min–Max Scaler to fit within a standard range of 0–255,
eliminating the need for explicit normalization [41]. This approach preserves the inherent
characteristics of certain variables, such as vegetation indices, which could be distorted
by standard normalization techniques [42]. This is advantageous as it allows the data to
be directly used in subsequent analyses without requiring additional preprocessing steps
while ensuring that key features are retained.

Model A: Pixelij = [R, G, B, Y′, Cb, Cr, C, M, Y, K] (1)

MExG = 1.262G − 0.884R − 0.311B (2)

Model B: Pixelij = [R, G, B, Y′, Cb, Cr, C, M, Y, MExG] (3)

Model C: Pixelij = [R, G, B, Y′, Cb, Cr, MExG] (4)

Dimensionality reduction was performed using PCA to optimize the feature set and
address multicollinearity issues. PCA, a statistical technique for identifying patterns in
high-dimensional data, was applied to isolate the most influential vectors from the MExG
feature set. This ensured that critical information was retained while reducing redundancy.
PCA revealed two principal components that are pivotal in categorizing the three classes
of interest: living plants, dead plants, and bare soil. The first principal component (PC1)
primarily captured variance related to vegetation health and vitality, emphasizing features
such as chlorophyll content, leaf area index, and canopy cover. High values indicated
healthy vegetation, while low values corresponded to dead or sparse vegetation. The
second principal component (PC2) captured variance associated with soil conditions and
moisture levels, distinguishing bare soil from living and dead plants. Features such as
soil structure, moisture content, and surface roughness were highlighted, with high values
indicating dry, compacted soil and low values representing moist, porous soil. Correlation
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analysis among variables in the dataset identified high negative correlations among the
C, M, Yk, R, G, and Y’ channels in the color scales, indicating multicollinearity. To refine
the analysis, a subset of images was manually labeled, and a correlation analysis was
conducted between independent variables and the target classes (living plants, dead plants,
and soil). ANOVA results demonstrated that the vegetation index was the most influential
variable, followed by the Y’, C, M, R, and G channels. PCA reduced the dimensionality of
the feature set, minimizing redundancy and improving interpretability. This reduction was
essential due to the increased data volume per image, allowing effective classification and
enhanced data representation for subsequent analyses.

3.2. Evaluation of Supervised and Unsupervised Learning Outcomes

The hybrid approach used in this study, integrating an unsupervised GMM with a
supervised NCC, effectively segmented and classified the grass components of live plant
material, dead plant material, and soil. The GMM was initially employed for clustering and
segmenting pixels based on the extracted features, i.e., models A, B, and C, which provided
an unsupervised classification of RGB imagery. This stage identified the preliminary
groupings of different elements in the grassland ecosystem. Artificial sward images were
generated from those groups to enhance the supervised learning stage and avoid manual
labeling of grass structures. These artificial images, created by pixel-wise segmentation,
simulated real-world sward structures and were used to train the NCC. The supervised
stage of the NCC algorithm refined the segmentation by assigning pixels to specific classes—
live grass, dead grass, or soil—based on their proximity to pre-defined cluster centroids
derived from the GMM output. The artificial images were generated by manually correcting,
on a pixel-by-pixel basis, the groups identified by the GMM. These corrected images were
then employed as ‘labelled segments’ to subsequently test various supervised classification
models as complementary approaches to the GMM. A detailed description of this process
can be found in Rueda-Ayala et al. [14]. Among the evaluated supervised algorithms,
the NCC yielded favorable results, demonstrating speed and precision. Furthermore, we
chose the NCC approach to highlight the practical and accessible nature of the proposed
methodology. Specifically, the classification tasks were conducted on a moderately powered,
commercially available computer, without the need for high-performance computing
clusters or specialized GPU equipment. Tables 2–5 show the models’ estimation accuracy,
indicated by the R2 values of the model estimations versus the ground truth measurements
at different Timothy and ryegrass growth stages.

Table 2. Stage-wise Comparison of LAI derived from feature models and LAI measured as ground
truth (R2). Cursive letters indicate the grouping of marginal means of estimations. If two or more
share the same letters, they are rather comparable and not statistically different (α = 0.05).

Model
Stage A B C Forage Grass

leaf development 0.77 ab 0.79 ab 0.79 ab Timothy
tillering 0.72 ab 0.73 a 0.74 a Timothy

beginning of flowering 0.52 b 0.52 b 0.52 b Timothy

leaf development 0.19 Bb 0.39 Bb 0.40 Bb Ryegrass
tillering 0.74 Aa 0.73 Ac 0.16 Bc Ryegrass

beginning of flowering 0.32 Bb 0.23 Bb 0.22 Bb Ryegrass
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Table 3. Stage-wise Comparison of Living Grass Structure Coverage: Features Models vs. Visual Esti-
mation as ground truth (R2). Cursive letters indicate the grouping of marginal means of estimations.
Upper-case letters show model comparisons; lower-case show comparisons among plant growth
stages. If two or more of share the same letters, they are rather comparable and not statistically
different (α = 0.05).

Model
Stage A B C Forage Grass

leaf development 0.76 b 0.75 b 0.75 b Timothy
tillering 0.84 b 0.82 b 0.82 b Timothy

beginning of flowering 0.84 a 0.84 a 0.84 a Timothy

leaf development 0.33 Bb 0.71Aa 0.74 Aa Ryegrass
tillering 0.97 Aa 0.96 Aa 0.18 Bb Ryegrass

beginning of flowering 0.52 Bb 0.42 Bb 0.4 Bb Ryegrass

Table 4. Stage-wise Comparison of dead Grass Structure Coverage: Features Models vs. Visual Esti-
mation as ground truth (R2). Cursive letters indicate the grouping of marginal means of estimations.
Upper-case letters show model comparisons; lower-case show comparisons among plant growth
stages. If two or more share the same letters, they are rather comparable and not statistically different
(α = 0.05).

Model
Stage A B C Forage Grass

leaf development 0.63 B 0.64 B 0.64 B Timothy
tillering 0.83 A 0.8 A 0.79 A Timothy

beginning of flowering 0.82 B 0.81 B 0.81 B Timothy

leaf development 0.37 b 0.79 a 0.80 a Ryegrass
tillering 0.97 a 0.97 a 0.03 c Ryegrass

beginning of flowering 0.38 b 0.30 b 0.29 b Ryegrass

Table 5. Stage-wise Comparison of bare soil Coverage: Features Models vs. Visual Estimation as
ground truth (R2). Cursive letters indicate the grouping of marginal means of estimations. Upper-case
letters show model comparisons; lower-case show comparisons among plant growth stages. If two or
more share the same letters, they are rather comparable and not statistically different (α = 0.05).

Model
Stage A B C Forage Grass

leaf development 0.58 a 0.66 a 0.66 a Timothy
tillering 0.09 b 0.11 b 0.13 b Timothy

beginning of flowering 0.53 a 0.56 a 0.56 a Timothy

leaf development 0.15 Ba 0.35 Ba 0.38 Ba Ryegrass
tillering 0.79 Aa 0.81 Aa 0.81 Aa Ryegrass

beginning of flowering 0.04 Bb 0.03 Bb 0.02 Bb Ryegrass

The comparison of Models A, B, and C in predicting various vegetation metrics for
timothy and ryegrass revealed key insights into the performance of each model across
different growth stages. The analysis was based on four key parameters: LAI, living grass
structure coverage, dead grass structure coverage, and bare soil coverage. In each case,
the models were compared against ground truth data measured in the field. Regarding
growth stages, i.e., grass coverage, the proposed data collection method is designed to
provide standardized and objective measurements, addressing the limitations of human
perception as identified in the literature. Andújar et al. [43] demonstrated that, while
visual estimations of weed cover are generally accurate for broad assessments, they can be
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inconsistent and subject to observer bias. Their study found a good correlation between
visual estimates of weed cover and objective parameters, such as actual weed cover and
biomass. Additionally, their analyses of reliability and repeatability revealed no significant
differences in visual estimations made by different observers, or the same observer, at
different times, regardless of the scale used. Thus, in our study, by using a camera-based,
standardized methodology (the cameras were mounted in agricultural machinery, ensuring
a constant height), this approach minimizes subjective variability and enhances the accuracy
and repeatability of data collection, making it well-suited for both scientific research and
practical agricultural applications. On the other hand, in contrast to the SONY camera, the
choice of the APEMAN A60 fish-eye camera was intentional to demonstrate the flexibility
and adaptability of the proposed system, highlighting that it is not constrained by the type
or cost of the camera used. The system is designed to function effectively with any camera,
ranging from high-end professional models to affordable, widely available consumer-grade
devices. The inclusion of a fish-eye camera in this study serves as a clear example of its
adaptability to diverse optical configurations, showcasing its robustness across different
imaging setups. While fish-eye cameras require additional post-processing to correct for
distortion, this is a minor trade-off compared to the significant advantage of enabling a
wide range of users to implement the system using the equipment they already have access
to. This approach ensures that the system remains accessible and scalable, meeting the
needs of both resource-constrained and well-equipped users alike.

In Table 2, the performance of the models in predicting LAI for Timothy and ryegrass
was examined. For Timothy, all three models performed similarly during the initial and
middle stages, with R2 values ranging from 0.52 to 0.79, showing that they all captured
the LAI effectively during these early growth periods. The REML analysis showed no
difference among models but a decrease in accuracy when estimates are done on images
at the beginning of flowering (R2 values of 0.52). This indicated that estimating LAI
became more challenging as the grass finished the vegetative growth, likely due to the
increased complexity, density and overlapping of leaves. In contrast, the performance for
ryegrass showed a poor performance in general, except for models A and B at tillering
stage, ranking first on their marginal means grouping. Models A, B and C performed poorly
with R2 ranging between 0.16 and 0.40. This suggested that Model A struggled to capture
LAI for ryegrass accurately in its early and full vegetative development stages. At the
beginning of flowering the estimation becomes challenging, since ryegrass does not have a
completely vertical development by the end of its vegetative period. At this stage, many
leaves and tillers overlap, producing a shadowing effect that is captured as a darker color
in the acquired image, which was misclassified as bare soil. All models had an acceptable
performance on Timothy at leaf development and tillering, being statistically similar (R2 s
> 0.72 and similar grouping, Table 2). The models performed poorly at the beginning of
floweringR2 ranging between 0.22 to 0.32). Although Timothy has a vertical growth at the
end of the vegetative stage, leaves overlap much, thus resulting in the aforementioned issue.
This issue does not influence destructive LAI assessment, because the observer removes
the true number of leaves present in the sample. This issue poses a huge limitation to
ML algorithms in estimating coverage and LAI during advanced grass growth stages. On
the other hand, Table 3 presents the models’ accuracies to estimate living grass coverage
against visual estimation. For Timothy, all models performed similarly and consistently
well across the growth stages, with R2 values around 0.75 to 0.84. A slight decrease in model
performance was observed for the stages of leaf development and tillering (b marginal
means grouping), being different than at the beginning of flowering (a grouping). In
contrast, the performance for ryegrass coverage estimation was more variable. At leaf
development, Model A performed poorly (R2 = 0.33; grouping Bb), while Models B and
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C delivered significantly better results (R2 = 0.71 and 0.74, respectively; grouping Aa). At
tillering stage, models A and B performed exceptionally well (R2 > 0.96), being statistically
different than Model C (R2 = 0.18; grouping Bb). All models declined in their performance
at the beginning of flowering (R2 ranging from 0.40 to 0.52; grouping Bb).

In Table 4, the accuracy of the models in predicting dead grass structure coverage
was summarized. A similar pattern was observed for Timothy’s live plant coverage
estimation. All models performed similarly at all grass growth stages, but particularly
at tillering (R2 between 0.79 and 0.83). For ryegrass at leaf development, Models B and
C outperformed Model A. At tillering, the accuracy of Model C was significantly poor
(R2 = 0.03), while Models A and B achieved the best results (R2 = 0.97). However, all
models declined in accuracy at the beginning of flowering, but there were no differences
among them. Estimates of bare soil coverage (Table 5) were of acceptable accuracy at
leaf development and beginning of flowering for timothy (group a) and good at tillering
for ryegrass (grouping Aa). In the remaining stages, all models showed a similarly poor
performance. This can be explained by the fact that thresholding methodologies are
characterized by their relative simplicity but may not exhibit adequate adaptability and
robustness in dynamic field environments and multitemporal instances, especially for
images acquired under diverse illumination conditions [44].

3.3. Practical Implications and Future Directions

Canopy cover estimation has previously utilized ML-based classification methods.
Unsupervised methods, such as k-means clustering, and supervised methods, like Decision
Tree (DT), SVM, and Random Forest (RF), have been employed. These methods have often
outperformed the thresholding method. However, classification methods necessitate a
degree of human intervention, hindering automation. Moreover, sample selection can be
time-consuming, and model training and application may be computationally intensive [45].
In contrast to ML approaches that rely on pixel-level features, certain scenarios exist where
color alone is insufficient for classification. For instance, soil may appear green when
partially covered by vegetation or brown due to plant aging, which involves visual changes
in vegetation transitioning from green to yellow, beige, or brown. This overlap in color
ranges further complicates the distinction between soil, crop residues, and aging vegetation,
presenting significant challenges for color-based classification approaches. To overcome
these challenges, incorporating textural and contextual information becomes necessary for
improved segmentation of vegetation and background in RGB images. One approach to
enhance the results of our study could involve methodologies based on color–texture–shape
characteristics. These methods incorporate contextual and spatial information alongside
pixel values extracted from images. Initially, researchers employed handcrafted features,
such as Bag of Words, SIFT, GLCM, and Canny Edge Detectors, to address the limitations of
pixel-level features. However, the high dimensionality of these features required substantial
amounts of data for effective training of algorithms that distinguish between vegetation
and background [46]. Although these techniques enhanced segmentation quality, their
complexity and high-dimensional nature demanded large, meticulously curated datasets
and substantial parameter fine-tuning, making them less adaptable to diverse conditions
commonly found in agricultural imagery [47]. Deep learning (DL) has revolutionized
feature extraction by enabling automated, end-to-end learning directly from raw input data,
eliminating the need for manual feature selection based on domain expertise and leveraging
multiple layers of abstraction to identify relevant representations [48,49]. Furthermore, the
advent of DL has revolutionized feature extraction, allowing for the automated extraction
of essential features from datasets. DL approaches, particularly Convolutional Neural Net-
works (CNNs), excel at learning multi-scale and task-specific representations directly from
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raw data. While deep learning models are also heavily dependent on large, high-quality
datasets, recent advancements in generative models, such as Stable Diffusion and Gener-
ative Adversarial Networks (GANs), offer a viable solution to mitigate data limitations.
These methods can produce artificial imagery that mimics real-world patterns, effectively
expanding training datasets and enhancing model generalization. By augmenting real data
with synthetic samples, deep learning models can achieve robust performance even when
real data availability is constrained. This advancement highlights a distinct advantage of
deep learning approaches over traditional methods, particularly in domains where data
collection is re-source-intensive or limited by environmental factors [50,51]. DL approaches
outperform traditional handcrafted features and ML techniques in vegetation segmentation
tasks, making them a promising solution [52]. State-of-the-art approaches, such as Extreme
Learning Machines (ELM) [53] custom Convolutional Neural Network (cCNN) [54], and
semi-supervised Multilayer Perceptron models (MLP) [55], have achieved significant accu-
racy improvements. Nonetheless, these approaches often rely on extensive labeled datasets,
specialized computational infrastructures (e.g., GPUs), and complex feature engineering
pipelines. These dependencies present practical limitations in real-world field conditions,
where such resources may not be readily available. On the other hand, the calculation of in-
trinsic and extrinsic camera parameters is a critical aspect of distortion correction, as errors
in estimating these parameters significantly influence the effectiveness of the correction
applied to images. ML algorithms allow for a better differentiation between live vegetation,
dead structures, and soil, compared to using vegetation indices for segmentation. In the
generation of data for the segmentation of plant structures, the YCbCr color scale plays a
fundamental role in achieving notable separability between live vegetation structures and
the image background due to the YCbCr scale’s ability to better represent chrominance.
The combined use of vegetation indices with different color scales provides the necessary
data for structure segmentation through the application of ML algorithms. While this
approach required higher computational resources compared to shape-based methods, it
effectively minimized the risk of erroneously assigning a larger area of pixels to a particular
class. Thus, by classifying each pixel independently, this method allows for fine-grained
analysis. This strategy ensured greater precision and accuracy in segmenting complex
living structures, allowing researchers to gain valuable insights into their organization and
function. However, due to the implementation of PCA, data dimensionality reduction was
essential for decreasing processing time, potentially reducing the time from 90 s to 17 s
when processing an image. A ratio of 0.9 for the cumulative explained variance was used
during PCA implementation, ensuring that the majority of the original information was
preserved while minimizing computational overhead [56]. This method ensures that no
important details are lost during dimensionality reduction, allowing efficiency and data
quality to be balanced. The GMM algorithm offers better class separability and greater data
uniformity within each class. In contrast, supervised algorithms allow for a segmentation
of plant structures that closely approximates field truth. Still, they also distort the shapes
present in the resulting segmentation as they learn on a pixel scale. The high correlation be-
tween visual estimation and the measured LAI suggests a dependent relationship between
these variables, with slight differences arising because, in visual estimation, weeds are not
discarded, as they are during LAI measurement through field sampling. This demonstrates
that weeds in the analyzed images directly impact the estimation of the Leaf Area Index,
representing an advantage of using Machine Learning algorithms for plant structure seg-
mentation over the traditional field sampling method. The main differences in correlation
values between coverage obtained by algorithms and visual estimation occur during the
early stages of coverage, as human perception of structure percentage is subjective. In
contrast, values obtained through any of the analyzed ML algorithms provide greater



Agronomy 2025, 15, 356 22 of 25

certainty in determining the percentage of plant structures. Similarly, visual estimation and
the field measurement method of LAI do not exclude early-stage plant structures, which is
why using ML algorithms for coverage estimation provides a result closer to ground truth.

Manually segmenting vegetation structures in grasslands is highly time-consuming,
making labeling of each image a challenging and resource-intensive task. The current
approach—employing a clustering algorithm (GMM) followed by a fine-tuning step using
an NCC—was specifically chosen to enable image segmentation on a moderately pow-
ered, commercially available computer without requiring dedicated GPU resources. This
methodological choice provides a practical solution that can be broadly implemented
without the need for high-end computational infrastructures. While recent deep learning
segmentation models have demonstrated remarkable performance in various domains of
image analysis, this study focused on establishing a baseline method that is less complex
and computationally demanding. Furthermore, the novelty of the proposed algorithm lies
in its ability to operate without an initially labeled dataset. The GMM + NCC generates syn-
thetic images that enable accurate plant structure segmentation on conventional computing
hardware by applying minimal pixel-level corrections. Compared to traditional supervised
methods (e.g., DT, SVM, RF), which yield higher accuracy but demand extensive and time-
consuming labeling, the GMM + NCC approach is resource-efficient. Evenly, cutting-edge
methods, such as ELM, cCNN, or MLP variations, achieve outstanding accuracy, they
also require more specialized computational resources and large volumes of labeled data.
In contrast, the proposed approach offers a balanced strategy between performance and
practical feasibility.

4. Conclusions
In Norway, Sweden, and Denmark, both ryegrass (Lolium perenne L.) and timothy

grass (Phleum pratense L.) are particularly significant as forage crops, owing to their adapt-
ability to the region’s cool temperate climates and where dairy and beef production are
prevalent. Similarly, ryegrass holds a notable position in Canada’s forage industry, thriving
in Asian countries predominantly due to the cultivation of timothy grass. In the United
States, these grasses are essential, with ryegrass and timothy grass being widely cultivated
across various regions as primary sources of livestock feed. Additionally, Timothy grass is
significant in New Zealand, and ryegrass is notable in Brazil. Thus, gaining insights into
key parameters, such as LAI and grass coverage, are essential for effectively managing
these forage crops. These parameters provide critical information about the health, pro-
ductivity, and sustainability of forage systems, enabling farmers and researchers to make
informed decisions that optimize crop performance, animal nutrition, and land use. This
study successfully developed an automated image processing tool capable of segmenting
intricate grass structures in ley swards using a combination of artificial intelligence tech-
niques to assess LAI and grass coverage. By leveraging both unsupervised and supervised
machine learning algorithms, specifically GMM and NCC, the tool demonstrated strong
performance in distinguishing between living plants, dead material, and bare soil across
various growth stages of Timothy and ryegrass. The integration of multiple color spaces
(RGB, Y’CbCr, CMYK) and vegetation indices, such as the MExG, further enhanced the
model’s ability to segment plant structures accurately. The results highlighted the utility
of GMM–NCC for ground coverage and LAI estimation, providing reliable segmentation
outcomes at leaf development and tillering stages of crop development. However, the
study also identified challenges with model performance during the beginning of the flow-
ering stage due to increased vegetation density and structure complexity, particularly for
ryegrass. Model B emerged as the most consistent among the evaluated models, although
improvements are necessary for greater accuracy in later stages. Future work should focus
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on refining the models by incorporating additional spectral bands, advanced vegetation
indices like NDVI, and deep learning techniques for more robust feature extraction and
segmentation. Enhancing the model’s ability to process multitemporal data and handle
varying environmental conditions would further improve segmentation reliability. Overall,
this study underscores the potential of machine learning algorithms for automated vegeta-
tion analysis, offering a significant advantage over traditional manual methods in speed,
precision, and scalability. On the other hand, the study employs a GMM–NCC approach for
grassland image segmentation, offering a practical and computationally efficient solution
on standard hardware, avoiding the complexity and resource demands of deep learning
models. Furthermore, new research lines can focus on integrating and comparing advanced
DL approaches into this pipeline. The segmented images obtained through the proposed
solution can efficiently generate training datasets to support the development, training,
and evaluation of state-of-the-art deep learning models.
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