# Nutzung von Wildapfelgenetik in der Apfelzüchtung bei AGROSCOPE

Simone Bühlmann-Schütz & Team

**SKEK 2025 - Lyss** 

# Die Geschichte des Kulturapfels

- Das genetische Zentrum (<u>Center of Diversity</u>) des heutigen Kulturapfels (<u>Malus × domestica</u>) liegt ursprünglich im Tian-Shan-Gebiet in Zentralasien. Die dortigen Obstwälder sind etwa 10 bis 12 Millionen Jahre alt.
- Von diesem Ursprungsort aus wurde der Apfel vor Tausenden von Jahren entlang der Seidenstraße durch Menschen und Tiere nach Europa verbreitet.
- Das Apfelgenom von Malus x domestica setzt sich größtenteils aus den Genomen dreier Wildarten zusammen: dem zentralasiatischen Malus sieversii, dem aus dem Orient stammenden Malus orientalis sowie dem europäischen Holzapfel Malus sylvestris.



← Crop-to-wild hybridization
Bidirectional hybridizations

Quelle: South Tyrol Apple Consortium, 2022

Quelle: Cornille et al. 2014



# Agroscope

# Gattung *Malus*

Familie: Rosaceae

(Rosengewächse)

Unterfamilie: *Spiraeoideae* 

Tribus: **Pyreae** 

Untertribus: **Pyrinae** (Kernobst)

Gattung: *Malus* 

Art: *Malus domestica* 

Malus sieversii

Malus orientalis

Malus sylvestris

Malus baccata

. . . .



25 bis 50 Arten einschliesslich diverser Hybriden und Zierformen

# grosse züchterisch nutzbare Diversität



Quelle: Ashley Adamant Published Sep 01, 2024

# Zuchtziele und Resistenzzüchtung

- Homogene, gute Fruchtqualität
- Stabile Produktivität und hohe Erträge
- Gute Lagerfähigkeit und Haltbarkeit im Shelf-Life
- Resistenz / Toleranz gegenüber Krankheiten und Schädlingen
- Verwandte Wildarten mit monogener/qualitativer Resistenz
- Alte Sorten mit einem hohen Niveau an Robustheit («quantitativ oder qualitativ»)

- Moderne Sorten oder Zuchtklone mit einem hohen Niveau an Robustheit («quantitativ oder qualitativ»)
- Stetige Integration der neusten Er-kenntnisse aus der Züchtungsforschung

#### pyramidisiert / stacked

R-Gene gegen die gleiche Krankheit / Schädling

#### Phänotypisierung

Künstliche Inokulation im

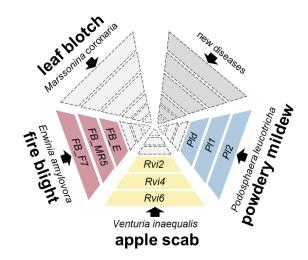
- Labor
- Gewächshaus
- Feld

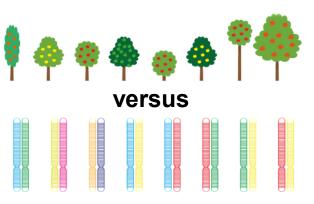
Bonitur im Feld

- mit PSM
- ohne PSM

#### kombiniert

R-Gene gegen verschiedene Krankheiten / Schädlinge


#### Genotypisierung


Molekulare Marker

- SSR or SCAR Marker
- SNP (single nucleotide polymorphism)

Genomische Selektion

 SNP array
 (Infinium® 20K SNP array or Affymetrix Axiom® Apple 480K SNP array)







Weltweit vernetzt

## Resistenzzüchtung - Apfelschorf

ca. 95 Jahre

#### ca. 70 Jahre



**Thomas Andrew Knight** Britischer Botaniker und Pomologe

atrosanguinea 804/240-57)

Nachweis von Feldimmunität in Malus Wildtypen (M. floribunda 821 und M.



Jahrhunderi

20.

Anfangs





Erste Vf/Rvi6-schorfreistente Apfelsorte "Prima" aus dem kooperativen Züchtungsprogramm PRI, U.S.A.

Gründung der Schweizerischen Versuchsanstalt für Obst- / Weinund Gartenbau in Wädenswil, erster Direktor Hermann Müller-Thurgau → 1892 Beginn der systematischen Kreuzungen von Obstsorten

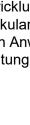


von Illinois, U.S.A.

Erste Kreuzungen mit der Quelle

der Vf/Rvi6-Schorfreistenz von M.

floribunda 821 an der Universität


Prof. Fritz Kobel Züchter des «Schweizer Orangen **Apfels**»



Dr. Markus Kellerhals Start der Resistenzzüchtung in der Schweiz



Prof. Dr. Cesare Gessler ETH Zürich + Team + internationale Projekte Entwicklung von molekularen Markern und deren Anwendung in der Züchtung





1998 Herausgabe Topaz, bis

heute eine der erfolgreichsten

Vf/Rvi6-schorfreistente Sorten

Erste Vf/Rvi6-schorfreistente Sorte "Ariwa" aus dem Schweizer Apfelzucht-programm

Anfang 1990

19

# Hauptkrankheiten beim Apfel in unserer Region

Robustheit / Teilresistenz: Genetische Ressourcen & moderne Sorten

Hauptresistenz (monogen): Hauptsächlich Wildäpfel & diverses Zuchtklone













**Blatt- & Fruchtschorf** Venturia inaequalis

Mehltau Podosphaera leucotricha

**Feuerbrand** Erwinia amylovora



diverse Blattläuse



**Obstbaumkrebs** Neonectria galligena



Blattfallkrankheit Diplocarpon coronariae



diverse Schädlinge



diverse Lagerkrankheiten



... und viele mehr...

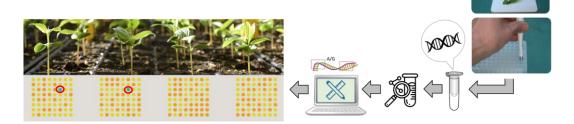
### Selektion der Nachkommen

#### Phänotypische Selektion



- Screening im Gewächshaus
- Selektion in der Topfanlage
- · Bonitur im Feld
- Degustation von Fruchtmustern
- Kalibration und Analytik
- Lagerversuche
- Sensorik Panel
- Konsumententest
- Nationales und internationales Testnetzwerk

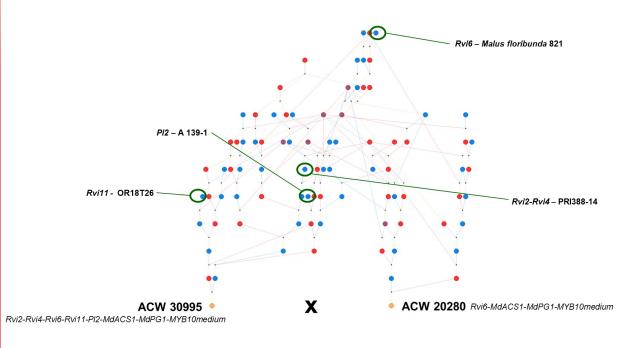
#### Marker gestützte Selektion


Möglich für bekannte monogene/qualitativ oder quantitativ (QTL) Resistenzgene...

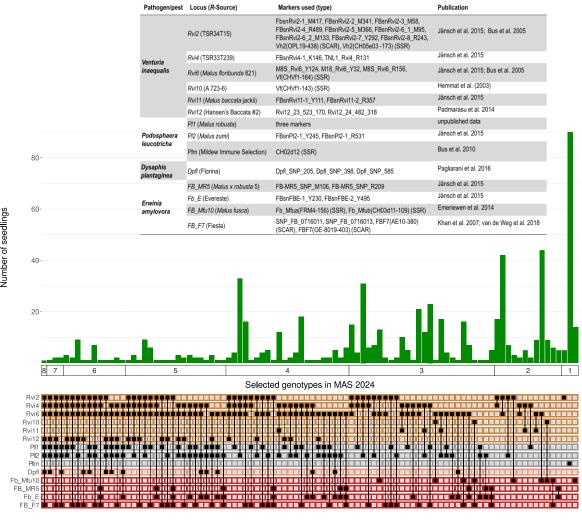
- Schorfresistenz
- Mehltauresistenz
- Feuerbrandresistenz
- ...

...und gewisse Fruchtqualitätsmerkmale (qualitativ oder quantitativ)



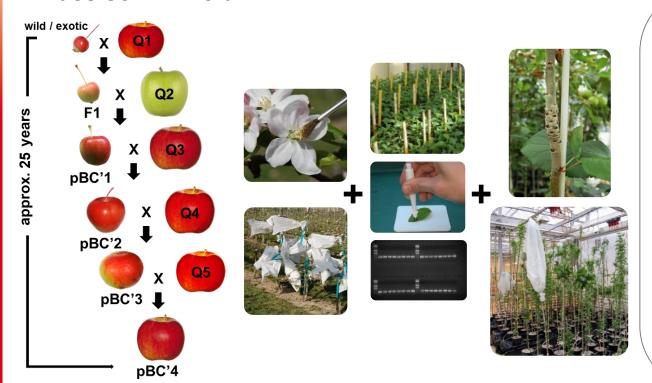

- Anteil rote Deckfarbe
- Reifezeitpunkt
- ...




# Marker gestützte Selektion

powdery mildewaphidsfire blight

#### Abstammung / Resistenzquellen




#### Selektion der Nachkommen



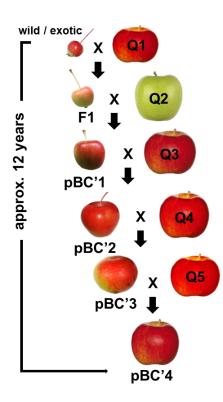
#### **U** Generationsbeschleunigung **«Low Input Fast-Track» (LIFT)**

#### Klassisch im Feld



klassische Züchtung

starke Resistenz aus Wildäpfeln oder exotischem Material


Markergestützte Selektion

kontrollierte Bedingungen im Gewächshaus

Künstliche Winterruhe im Kühlraum

bei Agroscope beim Apfel seit 2008 in Anwendung

#### «Fast-Track»



→ Verkürzung der Generationszeit von

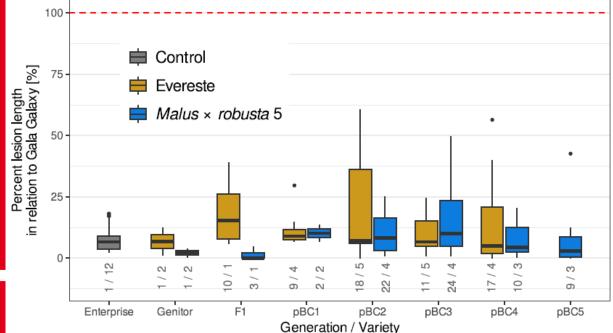
im Feld

4 bis 5 Jahre → ca. 2.5 Jahre im Gewächshaus

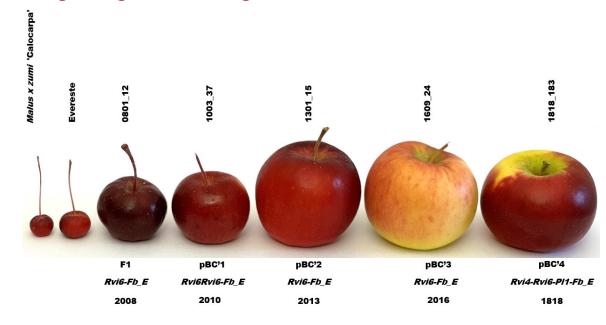




Low input fast-track (LIFT): an approach for fast introgression and stacking of (*R*-)genes into advanced apple selections - <a href="https://doi.org/10.1007/s00425-025-04780-4">https://doi.org/10.1007/s00425-025-04780-4</a>


## V

# Generationsbeschleunigung «LIFT»


- «Evereste» (Fb\_E) 2023 pBC'5 (1. Kreuzung 2008)
- Malus x robusta 5 (FB\_MR5) 2022 pBC'6 (1. Kreuzung 2008)

- Evereste» (Fb\_E) + Malus x robusta 5 (FB\_MR5) 2024 pBC'6 *FB\_MR5* + pBC'6 *Fb\_E* + *Rvi\_* + *Pl\_*
- Malus fusca (Fb\_Mfu10) 2024 pBC'3 Fb\_Mfu10 (1. Kreuzung 2014)

#### Anfälligkeit in der Feuerbrandtriebtestung



#### Steigerung der Fruchtgrösse und Qualität

















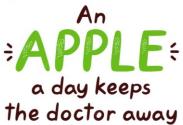















### Thank you for your attention

Simone Bühlmann-Schütz & Team simone.buehlmann-schuetz@agroscope.admin.ch

**Agroscope** good food, healthy environment www.agroscope.admin.ch







































# Wollt Sie mehr über die Obstzüchtung bei Agroscope erfahren, dann...

■ SRF Einstein «Mit Gentechnik zu nachhaltigeren Äpfeln?»

Mit Gentechnik zu nachhaltigeren Äpfeln?

SRF Schweizer Radio und Fernsehen

SRF Schweizer Radio und Fernsehen https://www.srf.ch > play > einstein > video > mit-gentec...

Einstein - Mit Gentechnik zu nachhaltigeren Äpfeln? - Play SRF



Die beliebtesten Äpfel, wie Gala und Golden Delicious, sind anfällig und müssen viel gespritzt werden. Gefragt sind robustere Sorten.

SRF · 26.10.2023



- Tages Anzeiger «Sie weiss, was den perfekten Apfel ausmacht» «Sie weiss, was den perfekten Apfel ausmacht»
- Website
  https://www.agroscope.admin.ch/agroscope/de/home/themen/pflanzenbau/pflanzenzuechtung/obst.html
- Comparison between artificial fire blight shoot and flower inoculations in apple <a href="https://doi.org/10.1007/s42161-023-01550-7">https://doi.org/10.1007/s42161-023-01550-7</a>
- Low input fast-track (LIFT): an approach for fast introgression and stacking of (R-)genes into advanced apple selections

  https://doi.org/10.1007/s00425-025-04780-4