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Abstract Agroforestry systems integrate open
and woody elements within agricultural landscapes,
creating structurally complex ecosystems that pro-
vide habitats for diverse taxa, including spiders.
This study examined the effect of agroforestry sys-
tems on ground-dwelling spiders across multiple
European countries. In each country, several mature
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agroforestry plots were compared with non-agro-
forestry agricultural and woody reference plots. Our
findings reveal that agroforestry supports species
from both open and forested habitats, contributing
to landscape-scale biodiversity. Alpha diversity was
higher in silvopastures than in forests, but beta diver-
sity (turnover) was not significantly different between
agroforestry and other habitat types. Instead, there
was a trend towards decreasing spider richness with
increasing field size, across all habitat types. High
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variability in spider diversity across regions suggests
that local environmental factors, such as tree species,
management practices, and climate, play a key role in
shaping spider communities. Our study supports that
mosaic of small fields with diverse land uses, com-
bined with seminatural habitats and structurally het-
erogeneous productive systems like agroforestry, can
enhance biodiversity and species-rich agricultural
landscapes.

Keywords Agroforestry - Community
composition - Silvoarable systems - Silvopastoral
systems - Spiders - a-diversity - p-diversity

Introduction

Agroforestry systems, which deliberately integrate
trees with agricultural crops and/or pastures, have the
potential to reconcile food production with biodiver-
sity conservation and broader environmental benefits
(Pantera et al. 2021; Smith et al. 2013). The advan-
tages of agroforestry, based on the synergies between
trees and crops or pastures, are both economic and
environmental (Palma et al. 2007a; Kay et al. 2019a).
Agroforestry systems improve carbon storage, soil
fertility, water quality, and nutrient cycling while mit-
igating the risk of soil erosion (Malézieux et al. 2009;
Mosquera-Losada and Prabhu 2019; Palma et al.
2007b; Pardon et al. 2017; Smith et al. 2013; Tor-
ralba et al 2016). Furthermore, agroforestry systems,
due to their structural heterogeneity, provide valu-
able habitats for taxa such as birds (Edo et al. 2024,
Hartel et al. 2014; Gibbs et al. 2016) and bats (Edo
et al. 2025). These systems have also been shown to
support arthropods (Boinot et al. 2019, 2020; Pardon
et al. 2019; Kay et al. 2019b; McAdam et al. 2007;
Peng and Suon 1996; Bentrup et al. 2019), offering
promising opportunities to mitigate the drastic global
decline in their diversity and abundance observed
over recent decades (Miiller et al. 2024; van Klink
et al. 2021; Wagner et al. 2021). A major driver of
this ongoing decline of arthropods is habitat loss, pri-
marily caused by the simplification and homogeniza-
tion of agricultural systems (Benton et al. 2002 and
2003; Salek et al. 2018).

Among arthropods, spiders are particularly sen-
sitive to environmental changes and occur in high
diversity and density across all terrestrial ecosystems

@ Springer

(Foelix 2011; Nyffeler 2000), making them excellent
bioindicators and early-warning organisms for study-
ing shifts in the food web or habitat modifications
(Marc et al. 1999; Branco and Cardoso 2020; Pearce
and Venier 2006). In addition, as predators, spiders
provide essential ecosystem services in agricultural
landscapes, particularly through natural pest control
(Michalko et al. 2019a,b; Marc et al. 1999; Nyfteler
and Birkhofer 2017). Crop management practices
that lead to habitat destruction and homogenization,
along with forest fragmentation, have been shown
to negatively impact spider communities (Birkhofer
et al. 2015a, b, c; Thorbek and Bilde 2004; Prieto-
Benitez and Méndez 2011). However, in some cases,
spider populations may benefit from environmental
changes, particularly when disturbances and man-
agement interventions enhance habitat heterogeneity.
This can occur, for example, through low-intensity
grazing in grasslands (Horvath et al. 2009) or the
introduction of woody elements in agricultural fields.
The increased structural complexity provided by trees
and vegetation strips in alley cropping systems has
been shown to provide valuable habitats for over-
wintering spiders and to support spider abundances
(Boinot et al. 2019; Matevski et al. 2024). Grazing,
which influences vertical stratification and enhances
field heterogeneity, has also been found to benefit spi-
der diversity and species richness in landscapes with
agroforestry systems (Moreno et al. 2016; Barriga
et al. 2010). Although some studies have explored the
effects of one type of agroforestry system (silvoarable
or silvopastoral) on spiders in a particular region, to
our knowledge, no study has investigated the impact
of both silvoarable (tree-crop) and silvopastoral (tree-
pasture) systems on spiders at the European scale.

In this study, we investigated ground-dwelling spi-
der diversity in agroforestry systems (silvoarable and
silvopastoral systems) and control plots across five
temperate and three Mediterranean regions in western
Europe. We compared ground-dwelling spider com-
munities in agroforestry systems with those found in
open croplands, pastures, forests, and orchards, aim-
ing to improve our understanding of the effects of
agroforestry systems on spider communities. Further-
more, we explored to what extent spider communities
were affected by agroforestry type, whether cultivated
or grazed.

These findings should inform about the potential
role of agroforestry in the transition toward more
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resilient and biodiversity-friendly agricultural sys-
tems while maintaining productivity, a key objective
of modern agriculture (Tilman et al. 2011; Bommarco
et al. 2013; Helfenstein et al. 2020).

We hypothesize that in agroforestry systems,
where the combination of trees with cropland/pas-
tures enhances habitat heterogeneity, ground-dwelling
spider communities will comprise species from both
open and wooded habitats, as well as ecotone special-
ists and eurytopic species. Consequently, we expect
species richness (a-diversity) to be higher in agro-
forestry systems compared to croplands, pastures,
forests, and orchards. Additionally, due to the greater
vertical heterogeneity in agroforestry systems, which
creates a range of microclimates at ground level, we
hypothesize that p-diversity—particularly the turno-
ver component within plots—will be higher in agro-
forestry systems than in other habitat types. We fur-
ther hypothesize that species richness will be higher
in small plots than in larger ones due to spillover and
resource complementation between habitats.
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Fig. 1 Geographic location of the silvoarable (A-C) and sil-
vopastoral (D-H) study sites. Green circles =silvoarable sites:
A =Wakelyns (UK), B=Mbohlin and Sursee (CH), C=Restin-
clieres (FR) Orange circles =silvopastoral sites: D=Loughgall
(UK), E=Bannmiihle (DE), F=Lamartine (FR), G=Tenuta di

AGROFORESTRY PLOTS

CONTROL PLOTS

Material and methods
Study sites

Ground-dwelling spiders were sampled in 22 agro-
forestry and 44 control plots (hereafter termed as
“plots”) across eight sites located in different bio-
geographical regions (in the following referred to as
“sites”) (Fig. 1). Agroforestry plots were either sil-
voarable (combination of trees and crops; eight plots
sampled across England, Switzerland and Southern
France) or silvopastoral systems (combination of
trees and livestock; fourteen plots sampled across
Northern Ireland, Germany, Central France, Italy and
Spain). Two to three agroforestry plots were sampled
in each site. In addition to each agroforestry plot, spi-
ders were sampled in control plots that always con-
tained the same woody or agricultural components
as the corresponding agroforestry plot. These control
plots were located as close as possible to their refer-
ence agroforestry plot (between 200 m and 6 km) to
minimize the variation of e.g. climate, soil, and the
surrounding landscape (Fig. 1). In total, 13 open
pastures, 13 forests and 2 orchards were sampled
as controls for the silvopastoral plots (n=14) and 6
crop plots, 6 forests and 4 orchards were sampled as
controls for the silvoarable plots (n=38). Fruit or nut

SILVOPASTORAL PLOTS
n=14

SILVOARABLE PLOTS
n=8

?

FOREST

PASTURE

CROPLAND

Paganico (IT), H=Dehesa de Majadas (ES). In each site, 2-3
agroforestry (either silvopastoral or silvoarable) plots were
sampled. In addition to each agroforestry plot, 2-3 control
plots were sampled
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orchards were sampled only if the trees of the agro-
forestry plots were fruit (Germany and Switzerland)
or pine trees (in Southern France). We defined for-
ests as areas with more than 10 percent tree cover
over at least 0.5 ha and which contained trees aged
more than 30 years, but excluding trees of agricul-
tural production systems (FAO 2018). The tree spe-
cies in the orchard controls were the same as those
planted in the agroforestry plots. In this study, only
agroforestry and orchard plots with mature trees
planted at least 12 years prior to the year of sampling
were studied. Information on plot management, tree
species, age and density as well as crops or livestock
associated to each plot can be found in Supporting
Table S1. Plot size was measured using Google Earth
(2025) (https://www.google.com/earth). On aver-
age, plot size was 2.51 +0.64 hectares (ha+SE) for
silvoarable plots, 9.3 +5.01 ha for silvopastoral plots,
22.3+6.89 ha for forests, 0.9+0.21 ha for orchards,
9.5+6.68 ha for croplands, and 5.7 +1.91 ha for pas-
tures (sizes for each sampled plot are given in Sup-
porting Table S1).

Spider sampling and identification

Ground-dwelling spiders were sampled using pit-
fall traps during three different sampling periods in
spring, when the spider activity-density is the highest
(Cardoso et al. 2007). In England, Northern Ireland,
Central France, Switzerland and Germany the sam-
pling took place in April, May and June 2021 while
in Southern France, Italy and Spain it took place in
March, April and May 2022. We aimed to sample the
ground dwelling (epigeal) spider communities and

compare them between habitats (silvoarable and sil-
vopastoral systems, forests, croplands, pastures and
orchards), being aware that higher vegetation strata, or
tree canopies are not sampled. Pitfall traps are highly
effective in catching large numbers of species with
minimal effort (Curtis 1980). In each plot, four pit-
fall traps (depth: 9.5 cm, diameter: 6.8 cm) were posi-
tioned equidistantly (6.6 m from each other) along
a 20 m transect, at least 20 m away from the habitat
edge. In wooded plots (forests, orchards and agrofor-
estry systems) the traps were positioned to cover both
open and shaded areas, with the second trap always
placed under a tree (1 m away from the tree trunk). In
plots with trees planted in rows, the fourth trap was
always placed in the middle of the crop/pasture row.
The angle between the transect and the tree rows was
varied to ensure the 20 m transect length between
the center of the alley and the tree line (Fig. 2). Pit-
fall traps were filled with 100 ml of a 1:2 mixture of
propylene glycol and tapwater, with odor-free deter-
gent added to break the surface tension and a bitter-
ing agent to prevent disturbance by large mammals
(e.g. wild boar, deer). Traps were exposed for 10 days
in each plot and this procedure was repeated for the
three sampling periods, resulting in a total of 30 sam-
pling days per plot and a total of 264 pitfall traps
placed across the 66 sampled plots. After 10 days,
pitfall traps were emptied and the captured arthro-
pods were stored in ethanol (80% vol.). Adult spiders
were identified to species level and immature spiders
to family level using reference identification keys and
European databases: Roberts (1996), Nentwig et al.
(2010), Oger (2015), World Spider Catalog (2025),
Muséum national d’Histoire naturelle & Office

Trépl

Q o >
Trap2 Trap3 Trapd

Fig. 2 Equidistant placement of the pitfall traps on the 20 m transect. In plots with trees, trap 2 was always placed under a tree (1 m
from the tree trunk) and trap 4 in the middle of the crop or pasture alley. Traps 1 and 3 are placed in the crop or pasture alley
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frangais de la biodiversité (2003-2025), Arachnolo-
gische Gesellschaft e.V. (2025). The nomenclature
follows the World Spider Catalogue (2025). The iden-
tifications of rare or cryptic species were confirmed
by expert arachnologists (see Acknowledgements).
Two potentially undescribed species (total of three
individuals) could only be identified at genus level
and were thus treated as morphospecies in this study.
If females could not be identified at species level, the
number of females was set proportionally to the num-
ber of males present in each site (2 females of Par-
dosa lugubris/saltans in Switzerland and 7 females
of Pardosa proximaltenuipes in Southern France and
Switzerland).

Data analysis

Prior to the analysis of community composition
(RDA), species richness and a-diversity, the results of
the three sampling periods were summed per pitfall
trap and per plot (sum of the identified spiders of 12
traps per plot for each of the 66 different plots).

To assess the influence of different habitats types
on spider community composition, we applied con-
strained ordination. A partial redundancy analy-
sis (pRDA) was performed based on the number of
sampled individuals per species and per plot over
the season, with land-use type (hereafter “Habitat”)
as explanatory variable and site as conditional vari-
able (R package vegan, function rda, Oksanen et al.
2013). Only species that occurred on more than two
plots were retained in the analysis. Prior to analysis,
the community data matrices were Hellinger-trans-
formed, to reduce the impact of dominant species and
meet the assumptions of linear ordination methods
(Legendre and Gallagher 2001). The significance of
the pRDA model was assessed using a permutation
test with 9999 permutations (R package vegan, func-
tion permutest, Oksanen et al. 2013).

To assess the effect of habitat on a-diversity, spe-
cies richness and inverse-Simpson indices (hereaf-
ter termed as “Simpson diversity”) (Simpson 1943)
were computed for each plot, using the PAST soft-
ware (Hammer 2001) (see Supplementary Table S1).
Linear mixed-effect models were fitted (R pack-
age Ime4, function Imer, Bates et al. 2015b, a) with
habitat type set as explanatory variable and ‘“site”
as a random factor, due to the nested design of the
study (equations: Imer (SpR~Habitat+ (1ISite) and

Imer (Inv-Simpson~Habitat+ (1ISite)). An Anova
was conducted to evaluate the significance of the
fixed effect, and post-hoc tests were used to deter-
mine the pairwise differences between habitats
(R package emmeans, function emmeans, Lenth
2022). To determine the effect of plot size on spe-
cies richness, linear mixed-effect models with the
log transformed plot size as explanatory variable and
“site” as random factor were fitted (equations: lmer
(SpR ~log(Size) + Habitat + (11Site)). An Anova was
conducted to evaluate the significance of the fixed
effect. Due to damage by wildlife, 25 out of 792 trap
catches were missing (see in Supplementary Table S1
the total number of traps collected per plot). To make
sure that the missing traps did not affect our results,
we fitted a model with Habitat and Number of avail-
able samples as explanatory variables (equations:
Imer (SpR~Habitat+ Number of traps + (1ISite). As
the results were highly similar, we show the results
without accounting for missing traps.

To assess differences in p-diversity between habi-
tats, we performed pairwise comparisons of spider
community composition using the Jaccard dissimilar-
ity index at two different levels: (a) pairwise compari-
son of the spider communities between plots within
a same habitat in each site (identified spiders were
summed per plot over the three samplings, pairwise
comparison of 66 plots in total) (b) pairwise compari-
son of the communities between traps of a same plot,
within habitat and within site (identified spiders were
summed over the three samplings for each trap, pair-
wise comparison of 264 traps in total). For each pair-
wise comparison, B-diversity (<, total Jaccard dis-
similarity) was partitioned into two components: the
turnover (<, species replacement) and nestedness
(<jne species loss or gain due to differences in spe-
cies richness) (R package betapart, function beta.pair,
Baselga 2010). The objective of this analysis was to
determine the spider species turnover, independent of
richness differences. Moreover, the nestedness com-
ponent did not contribute significantly to p-diversity
patterns. For these reasons, we show only the results
of the turnover component here. For both analyses (a)
and (b), we calculated the mean values of turnover
across habitat and generated a boxplot to visualize the
distribution of this B-diversity component. To assess
the effects of country and habitat type on B-diversity,
we conducted an analysis of variance (Anova) (aov

@ Springer
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Fig. 3 Composition of
the spider communities in
the different habitat types
(silvopastures, pastures,
orchards, croplands and
silvoarable systems),
analysed with redundancy
analysis. Grey dots indicate
centroids of spider species,
and dashed lines represent
minimum convex polygons
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the colored triangles indi-
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(=,,» ~ Country + Habitat2) (package stats, function
aov, (Chambers et al. 1992)).

Finally, we ran an indicator species analysis
using the package labdsv, function indval, (Dufréne
and Legendre 1997) to assess, based on both their
relative abundance and frequency within a habitat,
which spider species are strongly associated with
each habitat type. For the indicator species analysis,
we excluded all species with <6 individuals in total,
and which occurred on<5 plots. For species-level
analyses (pRDA, a- and p-diversity), only adult spi-
ders (males and females) were included. In contrast,
total abundances of families described in Sect. "Spi-
der communities and habitat" considered both adult
and immature individuals, excluding only the earliest
developmental stages of Lycosidae. For all statisti-
cal tests, p-values lower than 0.05 were considered as
significant. All statistical analyses were conducted in
R version 4.2.2 (R Core Team 2022).
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Results
Spider communities and habitat

In total, we captured 10,100 spiders, including 8977
adult individuals, belonging to 32 different fami-
lies and 308 species. The most abundant families
were Lycosidae (49% of all individuals), Linyphi-
idae (27%), Gnaphosidae (7%), Tetragnathidae (5%)
and Thomisidae (3%). According to the pRDA, spi-
der community composition differed significantly
between habitat types (F=1.72, p=0.0001). In the
pRDA, habitats explained 9.5% of the total variance
after controlling for country effect (explaining 31.8%
of the variance). Agroforestry systems occupied an
intermediate position in ordination space, showing
partial overlap with croplands, pastures, orchards
and forests (Fig. 3). The RDA also highlights that
silvopastures showed a higher dispersion and thus a
more variable species composition than silvoarable
systems.
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a-diversity

The most abundant species were Pardosa palustris
(916 individuals), Pardosa saltans (848 ind.), Erig-
one dentipalpis (682 ind.), Pardosa amentata (540
ind.), Pardosa pullata (478 ind.), Pardosa prativaga
(454 ind.), Pachygnatha degeeri (403 ind.), Alo-
pecosa pulverulenta (392 ind.), Erigone atra (372
ind.) and Tenuiphantes tenuis (240 ind.). Habitat
type had a strong influence on spider species rich-
ness (F=5.56, p<0.001). Species richness was 49%
higher in silvopastoral systems (p=0.02) and 62%
higher in orchards (p=0.012) compared to forests
(Fig. 4a, Supplementary Table S4a). Simpson diver-
sity differed significantly between habitats (F=3.25,
p=0.013) and was significantly higher in silvopasto-
ral systems compared to forests (p=0.032) (Fig. 4b,
Supplementary Table S4b). There were no significant
differences in species richness and Simpson diversity
between the other habitats. Spider abundance showed
no significant differences between the different habi-
tat types (Supplementary Figure S2 and Supplemen-
tary Table S3). Spider species richness decreased
marginally significantly with increasing plot size

Silvoarable Silvopastoral Forest Orchard Cropland  Pasture
= n=14 =19 n= n=6 n=13

for the detailed results of species richness and Simpson diver-
sity in the different habitats as well as mixed-effect models
and post hoc tests used to determine the pairwise differences
between habitats

5?% 6‘;&, &

(F=3.72, p=0.0586, Fig. 5), due to shared variance
with the habitat. Effects of plot size on spider abun-
dance (F=0.401, p=0.529) and Simpson diversity
(F=0.11, p=0.743) were not significant.

B-diversity (turnover)

Species turnover between plots (<;,) differed sig-
nificantly between countries (F=3.62, p=0.019).
However, there were no significant differences in
between-plot species turnover among habitat types
(F=1.85; p=0.169). Although not significant, turn-
over was the highest in forests and orchards and the
lowest in silvoarable systems and pastures (Fig. 6a).
Similarly, species turnover between traps of the same
plot differed significantly between countries (F=5.1;
p= <0.001) but not between habitat types (F=1.15;
p=0.347) (Fig. 6b). Here, turnover was the highest
in forests and the lowest in silvoarable and croplands
(Fig. 6b).

@ Springer



272 Page 8 of 18

Agroforest Syst (2025) 99:272

40

w
o
|

Spider species richness
N
o
|

10

40 60 80

Plot size (in ha)

Fig. 5 Effect of plot size in hectares (ha) on spider species
richness across habitat types: silvoarable (dark blue dots) and
silvopastoral (dark green dots) agroforestry systems, forests

Indicator species

The indicator species analysis showed a strong
association of the two species Trochosa ruricola
and Diplostyla concolor with silvoarable plots
(Table 1). By contrast, no indicator species were
found for silvopastures. Four species were associ-
ated with open agricultural land: Pardosa proxima,
Diplocephalus graecus and QOedothorax apica-
tus were associated with croplands and Argenna

@ Springer

(red dots), orchards (yellow dots), cropland (light green dots)
and pastures (purple dots). (Color figure online)

subnigra was associated with pastures. Pardosa
saltans was a significant indicator of forests while
Ozyptila simplex, Hahnia nava, Pardosa hortensis
and Micrargus subaequatilis were indicator species
for orchards.
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) calculated via pairwise comparison of the spider communities a between plots of the same

Table 1 Indicator species
analysis indicating species
association with different

habitats. Higher indicator
value indicates stronger
association of species with
the given habitat. The last
column indicates the total
number of plots on which
the species was found. Only
p-values < 0.05 and species
occurring on more than five
plots are listed in the table

Species Preferred habitat Indicator value P value Number
of plots
Trochosa ruricola Silvoarable plots 0.410 0.009 22
Diplostyla concolor Silvoarable plots 0.541 0.002 13
Pardosa_saltans Forests 0.395 0.036 15
Ozyptila simplex Orchards 0.263 0.044 7
Hahnia nava Orchards 0.342 0.014 11
Pardosa hortensis Orchards 0.344 0.014 14
Micrargus subaequalis Orchards 0.351 0.006 7
Pardosa proxima Croplands 0.420 0.007 5
Diplocephalus graecus Croplands 0.428 0.003 5
Oedothorax apicatus Croplands 0.475 0.003 6
Argenna subnigra Pastures 0.296 0.027 5

Discussion

As hypothesized, spider communities in agrofor-
estry systems comprised species from both open and
wooded habitats, supporting a diversity of habitat
preferences. Only few significant differences were
observed in o-diversity between agroforestry sys-
tems and other habitat types, except that silvopas-
tures and orchards exhibited higher alpha diversity
than forests. f-diversity (turnover) between plots and
between traps within plots showed no significant dif-
ferences. Nevertheless, this study highlights the role
of silvoarable and silvopastoral systems in supporting

characteristic spider communities comprising species
from different habitat types.

Spider communities

Our study demonstrated that spider community
composition differed between habitats and that
agroforestry systems support distinct spider assem-
blages comprising species from both open and
wooded environments. This finding aligns with
Matevski et al. (2024), who identified the coexist-
ence of forest specialists, open-habitat special-
ists, and eurytopic spiders in silvoarable systems
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in Germany. Similarly, Hemm and Hofer (2012)
reported that structurally diverse grasslands with
shrubs and increased litter cover in Germany hosted
forest dwellers, hygrophilous species, and open-
land spiders. Diaz et al. (2013) also found that
Spanish silvopastoral systems (“Dehesas”) support
both forest and grassland species. The presence of
spider communities with diverse habitat preferences
in agroforestry can be attributed to their greater
structural complexity compared to agriculture with
no trees, or wooded habitats with no open areas. In
some extensively grazed regions, such as the Dehe-
sas, agroforestry systems often form transitional
zones between open grasslands and forests, thereby
supporting communities characteristic of both eco-
systems (Hartel and Plieninger 2014; Moreno and
Pulido 2009).

This spatial heterogeneity of agroforests is driven
by the interplay of woody and herbaceous habitats.
The presence of trees in agroecosystems strongly
influences temperature, shading, humidity and wind
speed (Stamps and Linit 1997; Smith et al. 2013;
Quinkenstein et al. 2009), thereby modifying the
ground-level microclimate, which in turn shapes the
activity-density and composition of ground-dwelling
spider communities (Entling et al. 2007; Wise 1993).
For instance, Martin-Chave et al. (2019b) observed
altered circadian activity in Pardosa sp. within sil-
voarable systems compared to treeless croplands, and
this was explained by the mitigation of daily tempera-
ture extremes, these areas remaining cooler during
the day and warmer at night. In these systems, vegeta-
tion strips beneath tree rows, combined with minimal
disturbance (primarily from reduced tillage), create
buffered microclimates and provide high-value food
resources for spiders and other arthropods (Stamps
and Linit 1997; Boinot et al. 2019; Geiger et al. 2009;
Mestre et al. 2018; D’Hervilly et al. 2022; Pardon
et al. 2019; Bentrup et al. 2019).

The presence of livestock also enhances the het-
erogeneity of agroforestry systems. In silvopastoral
plots, the structure of the herbaceous layer is largely
shaped by grazing animals. By introducing localized
disturbances and creating successional differences at
a fine spatial scale, grazing significantly alters vegeta-
tion structure, thereby influencing spider assemblages
(Horvath et al. 2009; Gibson et al. 1992). Previous
studies have demonstrated shifts in spider commu-
nity composition under grazing systems (Hemm and
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Hofer 2012; Oyarzabal and Guimaraes 2021; Dennis
2003; Gibson et al. 1992; Horvath et al. 2009; Birk-
hofer et al. 2015a, b, c¢), supporting our findings of
differences in spider assemblages between silvopas-
toral systems and ungrazed orchards, forests and sil-
voarable systems. Surprisingly, silvopastures were
the only habitat type for which we found no indicator
species. Thus, we did not detect any edge specialists
that would be absent from the treeless or completely
wooded control habitats — at least no such species that
were frequent enough across countries to stand out
significantly in our analysis.

Our study reinforces the link between spider com-
munities and habitat type, highlighting the influence
of vegetation structure. The spatial heterogeneity of
agroforestry systems provides a mosaic of habitats at
small spatial scales that accommodate species with
diverse environmental requirements, allowing open-
land specialists to coexist alongside forest dwellers.

In line with their more distinct position in the ordi-
nation (Fig. 1), more indicator species were found for
orchards and croplands than for pastures and agro-
forestry. The indicator species identified for cropland
are widely known agrobionts: Oedothorax apicatus
for cool temperate, and Pardosa proxima and Diplo-
cephalus graecus for Mediterranean climate (Samu
and Szinetar 2002; Isaia et al. 2018; Bach et al. 2023).
Oedothorax apicatus was the only species with higher
densities in crop plots than in semi-natural habi-
tats even during winter (Mestre et al. 2018), which
explains the strong association also shown in our
study. The four indicator species of orchards are not
typical agrobionts (Samu and Szinetar 2002). Never-
theless, according to Entling et al. (2007), they pre-
fer relatively open habitats, which indicates a high
disturbance level of the studied orchards despite the
presence of trees. The presence of only one indicator
species for forests is surprising and may reflect the
high beta diversity of forests that is also reflected in
their wider dispersion in Fig. 3. Highly distinct spider
assemblages across the studied forests could preclude
the emergence of widespread indicator species, which
underlines a high conservation value of this relatively
near-natural habitat. Trochosa ruricola and Diplo-
styla concolor, the two indicator species of silvoara-
ble systems, are common in farmland, but overwinter
mostly in perennial herbaceous vegetation (Mestre
et al. 2018), which was present under the tree rows
of the studied plots. The absence of indicator species
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for silvopastures suggests that they support few if
any ecotone specialists, but rather a mix of species of
grasslands and forest.

Spider diversity

Contrary to our expectations and contrary to previous
studies, we found no strong correlation between spi-
der o- or B-diversity and structural heterogeneity or
grazing. Increased detritus and vegetation complexity
within plots —promoted by practices such as poly-
cultures, weed strips, shrubs, mulching, leaf litter,
intercropping, or reduced tillage and mowing— have
been shown to enhance ground-dwelling spider abun-
dance (Langellotto and Denno 2004; Sunderland and
Samu 2000) and diversity (Hemm and Hofer 2012).
For example, Matevski et al. (2024) reported higher
ground-dwelling spider abundance in silvoarable sys-
tems compared to cropland, probably explained by
their greater habitat heterogeneity. Grazing manage-
ment also plays an important role, as it affects veg-
etation structure and thereby shapes spider communi-
ties. A decrease in grazing intensity, which promotes
higher and more structured complex vegetation, has
been shown to increase spider species richness in
grasslands (Horvath et al. 2009).

However, in line with our findings, some studies
have also reported no effect of increased structural
heterogeneity on spider species richness and diversity
at plot scale. Moreno et al. (2016) did not measure
any effect of Spanish silvopastures on spider species
richness at plot scale, but these Dehesas supported
more spider species due to their higher p-diversity
and heterogeneity at the landscape scale compared
to adjacent open pastures. Imbert et al. (2020) found
no difference in spider abundance between silvoara-
ble and arable plots, while Matevski et al. (2024)
observed higher spider abundance in silvoarable
fields but no significant differences in species rich-
ness. In this last study, o- and fB-diversity were sig-
nificantly higher in silvoarable systems than in crop-
lands only at specific distances from trees (I m and
7 m, respectively), but no overall differences were
detected at the field level. Although species richness
and taxonomic diversity are commonly used to assess
the effects of land-use on spider diversity, studies
have shown that patterns in species richness may not
always align with patterns in the functional diversity
of spider communities, both across habitat types and

spatial scales (e.g. Birkhofer et al. 2015a, b, c; Joseph
et al. 2018; Mahon et al. 2023; Pinto et al. 2021). The
differences in community composition we observed
could therefore also reflect differences in trait com-
position or functional diversity. However, our analysis
of functional diversity revealed no significant differ-
ences between land-use types (results not shown).

The study by Matevski et al. (2024) highlights
considerable variability in the distribution of ground-
dwelling spiders in agroforestry systems, which may
explain why we did not detect differences in species
richness and diversity between agroforestry and other
habitat types. The greater structural heterogeneity
of agroforestry plots compared to more homogene-
ous control plots may reduce spider mobility while
providing a wider range of suitable habitats. As gen-
eralist predators, spiders primarily move to find ref-
uge, prey, and mates. If these needs are met within a
confined space, their mobility decreases, potentially
enhancing survival rates (Sunderland and Samu 2000;
Mensah 1999). The increased substrate diversity in
structurally complex habitats, such as agroforestry
systems, may offer more shelter opportunities and
facilitate prey location and mating. Wandering spi-
ders, for instance, rely on substrate-borne vibrations,
stridulations, and percussions for communication and
mate-finding (Uetz and Stratton 1982). Additionally,
spider prey—particularly meso- and macrofauna—
may benefit from the organic material accumulation
in agroforestry systems, leading to increased prey
density near trees and vegetation strips. This higher
prey availability could also reduce spider movement,
as they need to travel less to locate food (Imbert et al.
2020). While vegetation corridors can enhance spatial
connectivity and facilitate spider movement between
isolated habitats (Baker 2007), structurally complex
vegetation matrices have been shown to lower arthro-
pod mobility due to increased habitat permeability
compared to open plots (Frampton et al. 1995). Con-
sequently, reduced spider mobility and their tendency
to aggregate in undisturbed vegetation (Thorbek and
Bilde 2004) may have contributed to lower capture
rates in agroforestry plots (Curtis 1980).

Reduced mobility on their complex ground sur-
face may also explain the unexpectedly low spider
diversity and species richness observed in forests,
which typically support the highest spider abun-
dance and diversity across ecosystems. Forest cano-
pies and understory layers can host significant spider
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biomass, with at least 20% of total biomass occurring
above ground level (Nyffeler and Birkhofer 2017).
Thus, the relatively low spider species richness in
forests should be interpreted with care, since it can-
not be determined from our study whether it is due
to truly reduced a-diversity or due to less complete
sampling in forests compared to more open habitats.
We suspect that a complete sampling of all layers
would reveal stronger contrasts between the habitats
involving trees (forests, orchards, silvoarable and sil-
vopastoral agroforestry) and the open cropland and
pasture habitats (Jeanneret et al. 2022), although gen-
erally less spider species in Central Europe appear to
be adapted to forest compared to open land (Entling
et al. 2007).

Our study revealed considerable variability in spe-
cies richness and diversity among plots within each
habitat type. Additionally, community composition
and f-diversity varied substantially across countries.
These variations may be attributed to the climatic dif-
ferences between our study regions. Three sites each
were in the Mediterranean and Continental biogeo-
graphic regions, and the two other sites in the Atlan-
tic biogeographic region, reflecting a broad environ-
mental gradient across Europe (Roekaerts 2002). This
geographic distribution likely influenced local species
pools, land-use history, and ecological processes,
contributing to the observed heterogeneity in arthro-
pod communities.

In addition, there were differences in tree and crop
species, livestock types, and management practices
across sampled sites. Various tree characteristics,
including age, density, diversity, and species identity,
influence microclimatic conditions and the quantity
and quality of litter, thereby shaping arthropod and
spider communities (Pardon et al. 2019; Sobek et al.
2009; D’Hervilly et al. 2022; Martin-Chave et al.
2019a, b; Ziesche and Roth 2008). Moreover, man-
agement practices such as mowing, grazing inten-
sity, tree cutting, and pruning affect canopy openness
and ground microclimate, exerting strong effects on
ground-dwelling spider assemblages (Gardner et al.
1995; Martin-Chave et al. 2019b; Quinkenstein et al.
2009; Cattin et al. 2003; Hemm and Hofer 2012).

Interestingly and in line with our results, Liischer
et al. (2014) in a pan-European study found a high
effect of geographic location and plot management on
spider diversity and composition but they measured
no effect of surrounding landscape. These findings
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highlight the importance of local management in
shaping arthropod biodiversity, often outweighing
broader landscape influences. Thus, the pronounced
regional differences observed in spider communi-
ties are not unexpected, given the environmental and
management heterogeneity across our study sites.
More consistent patterns might emerge in studies
restricted to a single biogeographic region with more
uniform management regimes. However, by includ-
ing country as a random effect in our analysis, we
accounted for regional variability. Overall, our results
indicate that agroforestry does not lead to consistent
changes in species turnover of ground-dwelling spi-
ders—either within or between plots—across West-
ern and Southern Europe.

Finally, we found a marginally significant decrease
in spider species richness with increasing field size,
independently of habitat type. This aligns with previ-
ous studies demonstrating the positive effect of reduc-
ing crop field size on multitrophic diversity, includ-
ing spiders (Batary et al. 2017; Fahrig et al. 2015;
Salek et al. 2018; Sirami et al. 2019; Tscharntke et al.
2021). Small field size can facilitate spider immigra-
tion and spillover from field edges and neighboring
habitats (Schmidt et al. 2008; Schmidt and Tscharn-
tke 2005). In addition, the proximity of different
habitat types can facilitate the use of multiple com-
plementary resources by spiders, such as flying insect
prey from different ecosystem types (Middendorf
et al. 2025). Small field sizes increase the density of
ecosystem boundaries in a landscape, which has been
shown to enhance connectivity and overall diversity
of spiders and other taxa at the landscape scale (Hol-
land and Fahrig 2000; Gavish et al. 2012). Addition-
ally, increased crop diversity and the presence of
seminatural habitats at the landscape scale have been
shown to positively influence biodiversity, although
the relative strength of these effects compared to
field size reduction varies across studies (Fahrig et al.
2015; Sirami et al. 2019; Salek et al. 2018). Our find-
ings confirm the complementary roles of field size
and presence of trees in biodiversity conservation:
while smaller fields promote higher species richness,
the increased heterogeneity provided by agroforestry
systems widens the range of habitat conditions to
include forest-adapted species.
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Conclusions and management implications

Agroforestry systems create an ecological set-
ting where open and wooded habitats coexist in
close proximity—an uncommon feature in many
of today’s European agricultural landscapes. Our
study demonstrated that this structural heterogene-
ity facilitates the coexistence of spider species with
different habitat preferences, providing essential
resources for both open-land and forest-dwelling
species. As such, agroforestry systems may func-
tion as ecological corridors or “extended ecotones”
within agricultural landscapes, promoting species
movement between habitat fragments and buffering
protected areas from the impacts of intensive agri-
culture (Diaz et al. 2013).

While p-diversity was similar across habitats, our
findings indicate that agroforestry systems enhance
overall biodiversity at the landscape scale by host-
ing distinct spider communities. Thus, agroforestry
seems an ideal component of agricultural diversifi-
cation for biodiversity. Our study showed that the
highest overall spider diversity at landscape scale
would be supported by a mosaic of small habitats,
each associated with distinct management prac-
tices and vegetation structures (e.g., wooded, open,
grazed, and non-grazed areas).

However, the benefits of agroforestry for spi-
ders appeared less pronounced than those observed
for other taxa such as bats and birds (Edo et al.
2024, 2025). This underlines the high ecological
amplitude and diversity of spiders, which occur
in considerable species richness, even in inten-
sive agricultural fields. These findings underscore
the importance of considering multiple taxonomic
groups when assessing the ecological value of land-
use strategies. Different taxa may respond in con-
trasting ways to habitat features and management
practices. Therefore, a multi-taxa approach is essen-
tial for identifying complementary conservation
strategies that effectively promote biodiversity in
agricultural landscapes.
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