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Abstract  Agroforestry systems integrate open 
and woody elements within agricultural landscapes, 
creating structurally complex ecosystems that pro-
vide habitats for diverse taxa, including spiders. 
This study examined the effect of agroforestry sys-
tems on ground-dwelling spiders across multiple 
European countries. In each country, several mature 

agroforestry plots were compared with non-agro-
forestry agricultural and woody reference plots. Our 
findings reveal that agroforestry supports species 
from both open and forested habitats, contributing 
to landscape-scale biodiversity. Alpha diversity was 
higher in silvopastures than in forests, but beta diver-
sity (turnover) was not significantly different between 
agroforestry and other habitat types. Instead, there 
was a trend towards decreasing spider richness with 
increasing field size, across all habitat types. High Supplementary Information  The online version 

contains supplementary material available at https://​doi.​
org/​10.​1007/​s10457-​025-​01373-8.
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variability in spider diversity across regions suggests 
that local environmental factors, such as tree species, 
management practices, and climate, play a key role in 
shaping spider communities. Our study supports that 
mosaic of small fields with diverse land uses, com-
bined with seminatural habitats and structurally het-
erogeneous productive systems like agroforestry, can 
enhance biodiversity and species-rich agricultural 
landscapes.

Keywords  Agroforestry · Community 
composition · Silvoarable systems · Silvopastoral 
systems · Spiders · α-diversity · β-diversity

Introduction

Agroforestry systems, which deliberately integrate 
trees with agricultural crops and/or pastures, have the 
potential to reconcile food production with biodiver-
sity conservation and broader environmental benefits 
(Pantera et  al. 2021; Smith et  al. 2013). The advan-
tages of agroforestry, based on the synergies between 
trees and crops or pastures, are both economic and 
environmental (Palma et al. 2007a; Kay et al. 2019a). 
Agroforestry systems improve carbon storage, soil 
fertility, water quality, and nutrient cycling while mit-
igating the risk of soil erosion (Malézieux et al. 2009; 
Mosquera-Losada and Prabhu 2019; Palma et  al. 
2007b; Pardon et  al. 2017; Smith et  al. 2013; Tor-
ralba et al 2016). Furthermore, agroforestry systems, 
due to their structural heterogeneity, provide valu-
able habitats for taxa such as birds (Edo et al. 2024; 
Hartel et  al. 2014; Gibbs et  al. 2016) and bats (Edo 
et al. 2025). These systems have also been shown to 
support arthropods (Boinot et al. 2019, 2020; Pardon 
et  al. 2019; Kay et  al. 2019b; McAdam et  al. 2007; 
Peng and Suon 1996; Bentrup et  al. 2019), offering 
promising opportunities to mitigate the drastic global 
decline in their diversity and abundance observed 
over recent decades (Müller et  al. 2024; van Klink 
et  al. 2021; Wagner et  al. 2021). A major driver of 
this ongoing decline of arthropods is habitat loss, pri-
marily caused by the simplification and homogeniza-
tion of agricultural systems (Benton et  al. 2002 and 
2003; Šálek et al. 2018).

Among arthropods, spiders are particularly sen-
sitive to environmental changes and occur in high 
diversity and density across all terrestrial ecosystems 

(Foelix 2011; Nyffeler 2000), making them excellent 
bioindicators and early-warning organisms for study-
ing shifts in the food web or habitat modifications 
(Marc et al. 1999; Branco and Cardoso 2020; Pearce 
and Venier 2006). In addition, as predators, spiders 
provide essential ecosystem services in agricultural 
landscapes, particularly through natural pest control 
(Michalko et al. 2019a,b; Marc et al. 1999; Nyffeler 
and Birkhofer 2017). Crop management practices 
that lead to habitat destruction and homogenization, 
along with forest fragmentation, have been shown 
to negatively impact spider communities (Birkhofer 
et  al. 2015a, b, c; Thorbek and Bilde 2004; Prieto-
Benítez and Méndez 2011). However, in some cases, 
spider populations may benefit from environmental 
changes, particularly when disturbances and man-
agement interventions enhance habitat heterogeneity. 
This can occur, for example, through low-intensity 
grazing in grasslands (Horvath et  al. 2009) or the 
introduction of woody elements in agricultural fields. 
The increased structural complexity provided by trees 
and vegetation strips in alley cropping systems has 
been shown to provide valuable habitats for over-
wintering spiders and to support spider abundances 
(Boinot et  al. 2019; Matevski et  al. 2024). Grazing, 
which influences vertical stratification and enhances 
field heterogeneity, has also been found to benefit spi-
der diversity and species richness in landscapes with 
agroforestry systems (Moreno et  al. 2016; Barriga 
et al. 2010). Although some studies have explored the 
effects of one type of agroforestry system (silvoarable 
or silvopastoral) on spiders in a particular region, to 
our knowledge, no study has investigated the impact 
of both silvoarable (tree-crop) and silvopastoral (tree-
pasture) systems on spiders at the European scale.

In this study, we investigated ground-dwelling spi-
der diversity in agroforestry systems (silvoarable and 
silvopastoral systems) and control plots across five 
temperate and three Mediterranean regions in western 
Europe. We compared ground-dwelling spider com-
munities in agroforestry systems with those found in 
open croplands, pastures, forests, and orchards, aim-
ing to improve our understanding of the effects of 
agroforestry systems on spider communities. Further-
more, we explored to what extent spider communities 
were affected by agroforestry type, whether cultivated 
or grazed.

These findings should inform about the potential 
role of agroforestry in the transition toward more 
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resilient and biodiversity-friendly agricultural sys-
tems while maintaining productivity, a key objective 
of modern agriculture (Tilman et al. 2011; Bommarco 
et al. 2013; Helfenstein et al. 2020).

We hypothesize that in agroforestry systems, 
where the combination of trees with cropland/pas-
tures enhances habitat heterogeneity, ground-dwelling 
spider communities will comprise species from both 
open and wooded habitats, as well as ecotone special-
ists and eurytopic species. Consequently, we expect 
species richness (α-diversity) to be higher in agro-
forestry systems compared to croplands, pastures, 
forests, and orchards. Additionally, due to the greater 
vertical heterogeneity in agroforestry systems, which 
creates a range of microclimates at ground level, we 
hypothesize that β-diversity—particularly the turno-
ver component within plots—will be higher in agro-
forestry systems than in other habitat types. We fur-
ther hypothesize that species richness will be higher 
in small plots than in larger ones due to spillover and 
resource complementation between habitats.

Material and methods

Study sites

Ground-dwelling spiders were sampled in 22 agro-
forestry and 44 control plots (hereafter termed as 
“plots”) across eight sites located in different bio-
geographical regions (in the following referred to as 
“sites”) (Fig.  1). Agroforestry plots were either sil-
voarable (combination of trees and crops; eight plots 
sampled across England, Switzerland and Southern 
France) or silvopastoral systems (combination of 
trees and livestock; fourteen plots sampled across 
Northern Ireland, Germany, Central France, Italy and 
Spain). Two to three agroforestry plots were sampled 
in each site. In addition to each agroforestry plot, spi-
ders were sampled in control plots that always con-
tained the same woody or agricultural components 
as the corresponding agroforestry plot. These control 
plots were located as close as possible to their refer-
ence agroforestry plot (between 200 m and 6 km) to 
minimize the variation of e.g. climate, soil, and the 
surrounding landscape (Fig.  1). In total, 13 open 
pastures, 13 forests and 2 orchards were sampled 
as controls for the silvopastoral plots (n = 14) and 6 
crop plots, 6 forests and 4 orchards were sampled as 
controls for the silvoarable plots (n = 8). Fruit or nut 

Fig. 1   Geographic location of the silvoarable (A–C) and sil-
vopastoral (D–H) study sites. Green circles = silvoarable sites: 
A = Wakelyns (UK), B = Möhlin and Sursee (CH), C = Restin-
clières (FR) Orange circles = silvopastoral sites: D = Loughgall 
(UK), E = Bannmühle (DE), F = Lamartine (FR), G = Tenuta di 

Paganico (IT), H = Dehesa de Majadas (ES). In each site, 2–3 
agroforestry (either silvopastoral or silvoarable) plots were 
sampled. In addition to each agroforestry plot, 2–3 control 
plots were sampled



	 Agroforest Syst          (2025) 99:272   272   Page 4 of 18

Vol:. (1234567890)

orchards were sampled only if the trees of the agro-
forestry plots were fruit (Germany and Switzerland) 
or pine trees (in Southern France). We defined for-
ests as areas with more than 10 percent tree cover 
over at least 0.5  ha and which contained trees aged 
more than 30  years, but excluding trees of agricul-
tural production systems (FAO 2018). The tree spe-
cies in the orchard controls were the same as those 
planted in the agroforestry plots. In this study, only 
agroforestry and orchard plots with mature trees 
planted at least 12 years prior to the year of sampling 
were studied. Information on plot management, tree 
species, age and density as well as crops or livestock 
associated to each plot can be found in Supporting 
Table S1. Plot size was measured using Google Earth 
(2025) (https://​www.​google.​com/​earth). On aver-
age, plot size was 2.51 ± 0.64 hectares (ha ± SE) for 
silvoarable plots, 9.3 ± 5.01 ha for silvopastoral plots, 
22.3 ± 6.89 ha for forests, 0.9 ± 0.21 ha for orchards, 
9.5 ± 6.68 ha for croplands, and 5.7 ± 1.91 ha for pas-
tures (sizes for each sampled plot are given in Sup-
porting Table S1).

Spider sampling and identification

Ground-dwelling spiders were sampled using pit-
fall traps during three different sampling periods in 
spring, when the spider activity-density is the highest 
(Cardoso et al. 2007). In England, Northern Ireland, 
Central France, Switzerland and Germany the sam-
pling took place in April, May and June 2021 while 
in Southern France, Italy and Spain it took place in 
March, April and May 2022. We aimed to sample the 
ground dwelling (epigeal) spider communities and 

compare them between habitats (silvoarable and sil-
vopastoral systems, forests, croplands, pastures and 
orchards), being aware that higher vegetation strata, or 
tree canopies are not sampled. Pitfall traps are highly 
effective in catching large numbers of species with 
minimal effort (Curtis 1980). In each plot, four pit-
fall traps (depth: 9.5 cm, diameter: 6.8 cm) were posi-
tioned equidistantly (6.6  m from each other) along 
a 20 m transect, at least 20 m away from the habitat 
edge. In wooded plots (forests, orchards and agrofor-
estry systems) the traps were positioned to cover both 
open and shaded areas, with the second trap always 
placed under a tree (1 m away from the tree trunk). In 
plots with trees planted in rows, the fourth trap was 
always placed in the middle of the crop/pasture row. 
The angle between the transect and the tree rows was 
varied to ensure the 20  m transect length between 
the center of the alley and the tree line (Fig. 2). Pit-
fall traps were filled with 100 ml of a 1:2 mixture of 
propylene glycol and tapwater, with odor-free deter-
gent added to break the surface tension and a bitter-
ing agent to prevent disturbance by large mammals 
(e.g. wild boar, deer). Traps were exposed for 10 days 
in each plot and this procedure was repeated for the 
three sampling periods, resulting in a total of 30 sam-
pling days per plot and a total of 264 pitfall traps 
placed across the 66 sampled plots. After 10  days, 
pitfall traps were emptied and the captured arthro-
pods were stored in ethanol (80% vol.). Adult spiders 
were identified to species level and immature spiders 
to family level using reference identification keys and 
European databases: Roberts (1996), Nentwig et  al. 
(2010), Oger (2015), World Spider Catalog (2025), 
Muséum national d’Histoire naturelle & Office 

Fig. 2   Equidistant placement of the pitfall traps on the 20 m transect. In plots with trees, trap 2 was always placed under a tree (1 m 
from the tree trunk) and trap 4 in the middle of the crop or pasture alley. Traps 1 and 3 are placed in the crop or pasture alley

https://www.google.com/earth
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français de la biodiversité (2003–2025), Arachnolo-
gische Gesellschaft e.V. (2025). The nomenclature 
follows the World Spider Catalogue (2025). The iden-
tifications of rare or cryptic species were confirmed 
by expert arachnologists (see Acknowledgements). 
Two potentially undescribed species (total of three 
individuals) could only be identified at genus level 
and were thus treated as morphospecies in this study. 
If females could not be identified at species level, the 
number of females was set proportionally to the num-
ber of males present in each site (2 females of Par-
dosa lugubris/saltans in Switzerland and 7 females 
of Pardosa proxima/tenuipes in Southern France and 
Switzerland).

Data analysis

Prior to the analysis of community composition 
(RDA), species richness and α-diversity, the results of 
the three sampling periods were summed per pitfall 
trap and per plot (sum of the identified spiders of 12 
traps per plot for each of the 66 different plots).

To assess the influence of different habitats types 
on spider community composition, we applied con-
strained ordination. A partial redundancy analy-
sis (pRDA) was performed based on the number of 
sampled individuals per species and per plot over 
the season, with land-use type (hereafter “Habitat”) 
as explanatory variable and site as conditional vari-
able (R package vegan, function rda, Oksanen et  al. 
2013). Only species that occurred on more than two 
plots were retained in the analysis. Prior to analysis, 
the community data matrices were Hellinger-trans-
formed, to reduce the impact of dominant species and 
meet the assumptions of linear ordination methods 
(Legendre and Gallagher 2001). The significance of 
the pRDA model was assessed using a permutation 
test with 9999 permutations (R package vegan, func-
tion permutest, Oksanen et al. 2013).

To assess the effect of habitat on α-diversity, spe-
cies richness and inverse-Simpson indices (hereaf-
ter termed as “Simpson diversity”) (Simpson 1943) 
were computed for each plot, using the PAST soft-
ware (Hammer 2001) (see Supplementary Table S1). 
Linear mixed-effect models were fitted (R pack-
age lme4, function lmer, Bates et  al. 2015b, a) with 
habitat type set as explanatory variable and “site” 
as a random factor, due to the nested design of the 
study (equations: lmer (SpR ~ Habitat + (1|Site) and 

lmer (Inv-Simpson ~ Habitat + (1|Site)). An Anova 
was conducted to evaluate the significance of the 
fixed effect, and post-hoc tests were used to deter-
mine the pairwise differences between habitats 
(R package emmeans, function emmeans, Lenth 
2022). To determine the effect of plot size on spe-
cies richness, linear mixed-effect models with the 
log transformed plot size as explanatory variable and 
“site” as random factor were fitted (equations: lmer 
(SpR ~ log(Size) + Habitat + (1|Site)). An Anova was 
conducted to evaluate the significance of the fixed 
effect. Due to damage by wildlife, 25 out of 792 trap 
catches were missing (see in Supplementary Table S1 
the total number of traps collected per plot). To make 
sure that the missing traps did not affect our results, 
we fitted a model with Habitat and Number of avail-
able samples as explanatory variables (equations: 
lmer (SpR ~ Habitat + Number of traps + (1|Site). As 
the results were highly similar, we show the results 
without accounting for missing traps.

To assess differences in β-diversity between habi-
tats, we performed pairwise comparisons of spider 
community composition using the Jaccard dissimilar-
ity index at two different levels: (a) pairwise compari-
son of the spider communities between plots within 
a same habitat in each site (identified spiders were 
summed per plot over the three samplings, pairwise 
comparison of 66 plots in total) (b) pairwise compari-
son of the communities between traps of a same plot, 
within habitat and within site (identified spiders were 
summed over the three samplings for each trap, pair-
wise comparison of 264 traps in total). For each pair-
wise comparison, ß-diversity ( ≎jac total Jaccard dis-
similarity) was partitioned into two components: the 
turnover ( ≎jtu species replacement) and nestedness 
( ≎jne species loss or gain due to differences in spe-
cies richness) (R package betapart, function beta.pair, 
Baselga 2010). The objective of this analysis was to 
determine the spider species turnover, independent of 
richness differences. Moreover, the nestedness com-
ponent did not contribute significantly to β-diversity 
patterns. For these reasons, we show only the results 
of the turnover component here. For both analyses (a) 
and (b), we calculated the mean values of turnover 
across habitat and generated a boxplot to visualize the 
distribution of this β-diversity component. To assess 
the effects of country and habitat type on β-diversity, 
we conducted an analysis of variance (Anova) (aov 
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( ≎tu, ~ Country + Habitat2) (package stats, function 
aov, (Chambers et al. 1992)).

Finally, we ran an indicator species analysis 
using the package labdsv, function indval, (Dufrêne 
and Legendre 1997) to assess, based on both their 
relative abundance and frequency within a habitat, 
which spider species are strongly associated with 
each habitat type. For the indicator species analysis, 
we excluded all species with < 6 individuals in total, 
and which occurred on < 5 plots. For species-level 
analyses (pRDA, α- and β-diversity), only adult spi-
ders (males and females) were included. In contrast, 
total abundances of families described in Sect. "Spi-
der communities and habitat" considered both adult 
and immature individuals, excluding only the earliest 
developmental stages of Lycosidae. For all statisti-
cal tests, p-values lower than 0.05 were considered as 
significant. All statistical analyses were conducted in 
R version 4.2.2 (R Core Team 2022).

Results

Spider communities and habitat

In total, we captured 10,100 spiders, including 8977 
adult individuals, belonging to 32 different fami-
lies and 308 species. The most abundant families 
were Lycosidae (49% of all individuals), Linyphi-
idae (27%), Gnaphosidae (7%), Tetragnathidae (5%) 
and Thomisidae (3%). According to the pRDA, spi-
der community composition differed significantly 
between habitat types (F = 1.72, p = 0.0001). In the 
pRDA, habitats explained 9.5% of the total variance 
after controlling for country effect (explaining 31.8% 
of the variance). Agroforestry systems occupied an 
intermediate position in ordination space, showing 
partial overlap with croplands, pastures, orchards 
and forests (Fig.  3). The RDA also highlights that 
silvopastures showed a higher dispersion and thus a 
more variable species composition than silvoarable 
systems.

Fig. 3   Composition of 
the spider communities in 
the different habitat types 
(silvopastures, pastures, 
orchards, croplands and 
silvoarable systems), 
analysed with redundancy 
analysis. Grey dots indicate 
centroids of spider species, 
and dashed lines represent 
minimum convex polygons 
around habitat types with 
the colored triangles indi-
cating individual sampling 
plots



Agroforest Syst          (2025) 99:272 	 Page 7 of 18    272 

Vol.: (0123456789)

α‑diversity

The most abundant species were Pardosa palustris 
(916 individuals), Pardosa saltans (848 ind.), Erig-
one dentipalpis (682 ind.), Pardosa amentata (540 
ind.), Pardosa pullata (478 ind.), Pardosa prativaga 
(454 ind.), Pachygnatha degeeri (403 ind.), Alo-
pecosa pulverulenta (392 ind.), Erigone atra (372 
ind.) and Tenuiphantes tenuis (240 ind.). Habitat 
type had a strong influence on spider species rich-
ness (F = 5.56, p < 0.001). Species richness was 49% 
higher in silvopastoral systems (p = 0.02) and 62% 
higher in orchards (p = 0.012) compared to forests 
(Fig. 4a, Supplementary Table S4a). Simpson diver-
sity differed significantly between habitats (F = 3.25, 
p = 0.013) and was significantly higher in silvopasto-
ral systems compared to forests (p = 0.032) (Fig. 4b, 
Supplementary Table S4b). There were no significant 
differences in species richness and Simpson diversity 
between the other habitats. Spider abundance showed 
no significant differences between the different habi-
tat types (Supplementary Figure S2 and Supplemen-
tary Table  S3). Spider species richness decreased 
marginally significantly with increasing plot size 

(F = 3.72, p = 0.0586, Fig. 5), due to shared variance 
with the habitat. Effects of plot size on spider abun-
dance (F = 0.401, p = 0.529) and Simpson diversity 
(F = 0.11, p = 0.743) were not significant.

β‑diversity (turnover)

Species turnover between plots ( ≎jtu ) differed sig-
nificantly between countries (F = 3.62, p = 0.019). 
However, there were no significant differences in 
between-plot species turnover among habitat types 
(F = 1.85; p = 0.169). Although not significant, turn-
over was the highest in forests and orchards and the 
lowest in silvoarable systems and pastures (Fig. 6a). 
Similarly, species turnover between traps of the same 
plot differed significantly between countries (F = 5.1; 
p = < 0.001) but not between habitat types (F = 1.15; 
p = 0.347) (Fig.  6b). Here, turnover was the highest 
in forests and the lowest in silvoarable and croplands 
(Fig. 6b).

Fig. 4   a Spider species richness (mean) b Inverse Simpson 
index (mean) (referred as Simpson diversity) per habitat type 
and with deviation error bars (in grey). Significance levels: 
*p < 0.05, 0.001 < **p < 0.01. See Supplementary Table  S4 

for the detailed results of species richness and Simpson diver-
sity in the different habitats as well as mixed-effect models 
and post hoc tests used to determine the pairwise differences 
between habitats
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Indicator species

The indicator species analysis showed a strong 
association of the two species Trochosa ruricola 
and Diplostyla concolor with silvoarable plots 
(Table  1). By contrast, no indicator species were 
found for silvopastures. Four species were associ-
ated with open agricultural land: Pardosa proxima, 
Diplocephalus graecus and Oedothorax apica-
tus were associated with croplands and Argenna 

subnigra was associated with pastures. Pardosa 
saltans was a significant indicator of forests while 
Ozyptila simplex, Hahnia nava, Pardosa hortensis 
and Micrargus subaequatilis were indicator species 
for orchards.

Fig. 5   Effect of plot size in hectares (ha) on spider species 
richness across habitat types: silvoarable (dark blue dots) and 
silvopastoral (dark green dots) agroforestry systems, forests 

(red dots), orchards (yellow dots), cropland (light green dots) 
and pastures (purple dots). (Color figure online)
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Discussion

As hypothesized, spider communities in agrofor-
estry systems comprised species from both open and 
wooded habitats, supporting a diversity of habitat 
preferences. Only few significant differences were 
observed in α-diversity between agroforestry sys-
tems and other habitat types, except that silvopas-
tures and orchards exhibited higher alpha diversity 
than forests. β-diversity (turnover) between plots and 
between traps within plots showed no significant dif-
ferences. Nevertheless, this study highlights the role 
of silvoarable and silvopastoral systems in supporting 

characteristic spider communities comprising species 
from different habitat types.

Spider communities

Our study demonstrated that spider community 
composition differed between habitats and that 
agroforestry systems support distinct spider assem-
blages comprising species from both open and 
wooded environments. This finding aligns with 
Matevski et  al. (2024), who identified the coexist-
ence of forest specialists, open-habitat special-
ists, and eurytopic spiders in silvoarable systems 

Fig. 6   Median species turnover ( ≎jtu ) calculated via pairwise comparison of the spider communities a between plots of the same 
habitat type in each country b between traps of a same plot

Table 1   Indicator species 
analysis indicating species 
association with different 
habitats. Higher indicator 
value indicates stronger 
association of species with 
the given habitat. The last 
column indicates the total 
number of plots on which 
the species was found. Only 
p-values < 0.05 and species 
occurring on more than five 
plots are listed in the table

Species Preferred habitat Indicator value P value Number 
of plots

Trochosa ruricola Silvoarable plots 0.410 0.009 22
Diplostyla concolor Silvoarable plots 0.541 0.002 13
Pardosa_saltans Forests 0.395 0.036 15
Ozyptila simplex Orchards 0.263 0.044 7
Hahnia nava Orchards 0.342 0.014 11
Pardosa hortensis Orchards 0.344 0.014 14
Micrargus subaequalis Orchards 0.351 0.006 7
Pardosa proxima Croplands 0.420 0.007 5
Diplocephalus graecus Croplands 0.428 0.003 5
Oedothorax apicatus Croplands 0.475 0.003 6
Argenna subnigra Pastures 0.296 0.027 5
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in Germany. Similarly, Hemm and Höfer (2012) 
reported that structurally diverse grasslands with 
shrubs and increased litter cover in Germany hosted 
forest dwellers, hygrophilous species, and open-
land spiders. Diaz et  al. (2013) also found that 
Spanish silvopastoral systems (“Dehesas”) support 
both forest and grassland species. The presence of 
spider communities with diverse habitat preferences 
in agroforestry can be attributed to their greater 
structural complexity compared to agriculture with 
no trees, or wooded habitats with no open areas. In 
some extensively grazed regions, such as the Dehe-
sas, agroforestry systems often form transitional 
zones between open grasslands and forests, thereby 
supporting communities characteristic of both eco-
systems (Hartel and Plieninger 2014; Moreno and 
Pulido 2009).

This spatial heterogeneity of agroforests is driven 
by the interplay of woody and herbaceous habitats. 
The presence of trees in agroecosystems strongly 
influences temperature, shading, humidity and wind 
speed (Stamps and Linit 1997; Smith et  al. 2013; 
Quinkenstein et  al. 2009), thereby modifying the 
ground-level microclimate, which in turn shapes the 
activity-density and composition of ground-dwelling 
spider communities (Entling et al. 2007; Wise 1993). 
For instance, Martin-Chave et  al. (2019b) observed 
altered circadian activity in Pardosa sp. within sil-
voarable systems compared to treeless croplands, and 
this was explained by the mitigation of daily tempera-
ture extremes, these areas remaining cooler during 
the day and warmer at night. In these systems, vegeta-
tion strips beneath tree rows, combined with minimal 
disturbance (primarily from reduced tillage), create 
buffered microclimates and provide high-value food 
resources for spiders and other arthropods (Stamps 
and Linit 1997; Boinot et al. 2019; Geiger et al. 2009; 
Mestre et  al. 2018; D’Hervilly et  al. 2022; Pardon 
et al. 2019; Bentrup et al. 2019).

The presence of livestock also enhances the het-
erogeneity of agroforestry systems. In silvopastoral 
plots, the structure of the herbaceous layer is largely 
shaped by grazing animals. By introducing localized 
disturbances and creating successional differences at 
a fine spatial scale, grazing significantly alters vegeta-
tion structure, thereby influencing spider assemblages 
(Horvath et  al. 2009; Gibson et  al. 1992). Previous 
studies have demonstrated shifts in spider commu-
nity composition under grazing systems (Hemm and 

Höfer 2012; Oyarzabal and Guimaraes 2021; Dennis 
2003; Gibson et al. 1992; Horvath et al. 2009; Birk-
hofer et  al. 2015a, b, c), supporting our findings of 
differences in spider assemblages between silvopas-
toral systems and ungrazed orchards, forests and sil-
voarable systems. Surprisingly, silvopastures were 
the only habitat type for which we found no indicator 
species. Thus, we did not detect any edge specialists 
that would be absent from the treeless or completely 
wooded control habitats – at least no such species that 
were frequent enough across countries to stand out 
significantly in our analysis.

Our study reinforces the link between spider com-
munities and habitat type, highlighting the influence 
of vegetation structure. The spatial heterogeneity of 
agroforestry systems provides a mosaic of habitats at 
small spatial scales that accommodate species with 
diverse environmental requirements, allowing open-
land specialists to coexist alongside forest dwellers.

In line with their more distinct position in the ordi-
nation (Fig. 1), more indicator species were found for 
orchards and croplands than for pastures and agro-
forestry. The indicator species identified for cropland 
are widely known agrobionts: Oedothorax apicatus 
for cool temperate, and Pardosa proxima and Diplo-
cephalus graecus for Mediterranean climate (Samu 
and Szinetár 2002; Isaia et al. 2018; Bach et al. 2023). 
Oedothorax apicatus was the only species with higher 
densities in crop plots than in semi-natural habi-
tats even during winter (Mestre et  al. 2018), which 
explains the strong association also shown in our 
study. The four indicator species of orchards are not 
typical agrobionts (Samu and Szinetár 2002). Never-
theless, according to Entling et  al. (2007), they pre-
fer relatively open habitats, which indicates a high 
disturbance level of the studied orchards despite the 
presence of trees. The presence of only one indicator 
species for forests is surprising and may reflect the 
high beta diversity of forests that is also reflected in 
their wider dispersion in Fig. 3. Highly distinct spider 
assemblages across the studied forests could preclude 
the emergence of widespread indicator species, which 
underlines a high conservation value of this relatively 
near-natural habitat. Trochosa ruricola and Diplo-
styla concolor, the two indicator species of silvoara-
ble systems, are common in farmland, but overwinter 
mostly in perennial herbaceous vegetation (Mestre 
et  al. 2018), which was present under the tree rows 
of the studied plots. The absence of indicator species 
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for silvopastures suggests that they support few if 
any ecotone specialists, but rather a mix of species of 
grasslands and forest.

Spider diversity

Contrary to our expectations and contrary to previous 
studies, we found no strong correlation between spi-
der α- or β-diversity and structural heterogeneity or 
grazing. Increased detritus and vegetation complexity 
within plots —promoted by practices such as poly-
cultures, weed strips, shrubs, mulching, leaf litter, 
intercropping, or reduced tillage and mowing— have 
been shown to enhance ground-dwelling spider abun-
dance (Langellotto and Denno 2004; Sunderland and 
Samu 2000) and diversity (Hemm and Höfer 2012). 
For example, Matevski et  al. (2024) reported higher 
ground-dwelling spider abundance in silvoarable sys-
tems compared to cropland, probably explained by 
their greater habitat heterogeneity. Grazing manage-
ment also plays an important role, as it affects veg-
etation structure and thereby shapes spider communi-
ties. A decrease in grazing intensity, which promotes 
higher and more structured complex vegetation, has 
been shown to increase spider species richness in 
grasslands (Horvath et al. 2009).

However, in line with our findings, some studies 
have also reported no effect of increased structural 
heterogeneity on spider species richness and diversity 
at plot scale. Moreno et  al. (2016) did not measure 
any effect of Spanish silvopastures on spider species 
richness at plot scale, but these Dehesas supported 
more spider species due to their higher β-diversity 
and heterogeneity at the landscape scale compared 
to adjacent open pastures. Imbert et al. (2020) found 
no difference in spider abundance between silvoara-
ble and arable plots, while Matevski et  al. (2024) 
observed higher spider abundance in silvoarable 
fields but no significant differences in species rich-
ness. In this last study, α- and β-diversity were sig-
nificantly higher in silvoarable systems than in crop-
lands only at specific distances from trees (1 m and 
7  m, respectively), but no overall differences were 
detected at the field level. Although species richness 
and taxonomic diversity are commonly used to assess 
the effects of land-use on spider diversity, studies 
have shown that patterns in species richness may not 
always align with patterns in the functional diversity 
of spider communities, both across habitat types and 

spatial scales (e.g. Birkhofer et al. 2015a, b, c; Joseph 
et al. 2018; Mahon et al. 2023; Pinto et al. 2021). The 
differences in community composition we observed 
could therefore also reflect differences in trait com-
position or functional diversity. However, our analysis 
of functional diversity revealed no significant differ-
ences between land-use types (results not shown).

The study by Matevski et  al. (2024) highlights 
considerable variability in the distribution of ground-
dwelling spiders in agroforestry systems, which may 
explain why we did not detect differences in species 
richness and diversity between agroforestry and other 
habitat types. The greater structural heterogeneity 
of agroforestry plots compared to more homogene-
ous control plots may reduce spider mobility while 
providing a wider range of suitable habitats. As gen-
eralist predators, spiders primarily move to find ref-
uge, prey, and mates. If these needs are met within a 
confined space, their mobility decreases, potentially 
enhancing survival rates (Sunderland and Samu 2000; 
Mensah 1999). The increased substrate diversity in 
structurally complex habitats, such as agroforestry 
systems, may offer more shelter opportunities and 
facilitate prey location and mating. Wandering spi-
ders, for instance, rely on substrate-borne vibrations, 
stridulations, and percussions for communication and 
mate-finding (Uetz and Stratton 1982). Additionally, 
spider prey—particularly meso- and macrofauna—
may benefit from the organic material accumulation 
in agroforestry systems, leading to increased prey 
density near trees and vegetation strips. This higher 
prey availability could also reduce spider movement, 
as they need to travel less to locate food (Imbert et al. 
2020). While vegetation corridors can enhance spatial 
connectivity and facilitate spider movement between 
isolated habitats (Baker 2007), structurally complex 
vegetation matrices have been shown to lower arthro-
pod mobility due to increased habitat permeability 
compared to open plots (Frampton et al. 1995). Con-
sequently, reduced spider mobility and their tendency 
to aggregate in undisturbed vegetation (Thorbek and 
Bilde 2004) may have contributed to lower capture 
rates in agroforestry plots (Curtis 1980).

Reduced mobility on their complex ground sur-
face may also explain the unexpectedly low spider 
diversity and species richness observed in forests, 
which typically support the highest spider abun-
dance and diversity across ecosystems. Forest cano-
pies and understory layers can host significant spider 
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biomass, with at least 20% of total biomass occurring 
above ground level (Nyffeler and Birkhofer 2017). 
Thus, the relatively low spider species richness in 
forests should be interpreted with care, since it can-
not be determined from our study whether it is due 
to truly reduced α-diversity or due to less complete 
sampling in forests compared to more open habitats. 
We suspect that a complete sampling of all layers 
would reveal stronger contrasts between the habitats 
involving trees (forests, orchards, silvoarable and sil-
vopastoral agroforestry) and the open cropland and 
pasture habitats (Jeanneret et al. 2022), although gen-
erally less spider species in Central Europe appear to 
be adapted to forest compared to open land (Entling 
et al. 2007).

Our study revealed considerable variability in spe-
cies richness and diversity among plots within each 
habitat type. Additionally, community composition 
and β-diversity varied substantially across countries. 
These variations may be attributed to the climatic dif-
ferences between our study regions. Three sites each 
were in the Mediterranean and Continental biogeo-
graphic regions, and the two other sites in the Atlan-
tic biogeographic region, reflecting a broad environ-
mental gradient across Europe (Roekaerts 2002). This 
geographic distribution likely influenced local species 
pools, land-use history, and ecological processes, 
contributing to the observed heterogeneity in arthro-
pod communities.

In addition, there were differences in tree and crop 
species, livestock types, and management practices 
across sampled sites. Various tree characteristics, 
including age, density, diversity, and species identity, 
influence microclimatic conditions and the quantity 
and quality of litter, thereby shaping arthropod and 
spider communities (Pardon et al. 2019; Sobek et al. 
2009; D’Hervilly et  al. 2022; Martin-Chave et  al. 
2019a, b; Ziesche and Roth 2008). Moreover, man-
agement practices such as mowing, grazing inten-
sity, tree cutting, and pruning affect canopy openness 
and ground microclimate, exerting strong effects on 
ground-dwelling spider assemblages (Gardner et  al. 
1995; Martin-Chave et al. 2019b; Quinkenstein et al. 
2009; Cattin et al. 2003; Hemm and Höfer 2012).

Interestingly and in line with our results, Lüscher 
et  al. (2014) in a pan-European study found a high 
effect of geographic location and plot management on 
spider diversity and composition but they measured 
no effect of surrounding landscape. These findings 

highlight the importance of local management in 
shaping arthropod biodiversity, often outweighing 
broader landscape influences. Thus, the pronounced 
regional differences observed in spider communi-
ties are not unexpected, given the environmental and 
management heterogeneity across our study sites. 
More consistent patterns might emerge in studies 
restricted to a single biogeographic region with more 
uniform management regimes. However, by includ-
ing country as a random effect in our analysis, we 
accounted for regional variability. Overall, our results 
indicate that agroforestry does not lead to consistent 
changes in species turnover of ground-dwelling spi-
ders—either within or between plots—across West-
ern and Southern Europe.

Finally, we found a marginally significant decrease 
in spider species richness with increasing field size, 
independently of habitat type. This aligns with previ-
ous studies demonstrating the positive effect of reduc-
ing crop field size on multitrophic diversity, includ-
ing spiders (Batáry et  al. 2017; Fahrig  et al. 2015; 
Šálek et al. 2018; Sirami et al. 2019; Tscharntke et al. 
2021). Small field size can facilitate spider immigra-
tion and spillover from field edges and neighboring 
habitats (Schmidt et  al. 2008; Schmidt and Tscharn-
tke 2005). In addition, the proximity of different 
habitat types can facilitate the use of multiple com-
plementary resources by spiders, such as flying insect 
prey from different ecosystem types (Middendorf 
et al. 2025). Small field sizes increase the density of 
ecosystem boundaries in a landscape, which has been 
shown to enhance connectivity and overall diversity 
of spiders and other taxa at the landscape scale (Hol-
land and Fahrig 2000; Gavish et al. 2012). Addition-
ally, increased crop diversity and the presence of 
seminatural habitats at the landscape scale have been 
shown to positively influence biodiversity, although 
the relative strength of these effects compared to 
field size reduction varies across studies (Fahrig et al. 
2015; Sirami et al. 2019; Šálek et al. 2018). Our find-
ings confirm the complementary roles of field size 
and presence of trees in biodiversity conservation: 
while smaller fields promote higher species richness, 
the increased heterogeneity provided by agroforestry 
systems widens the range of habitat conditions to 
include forest-adapted species.



Agroforest Syst          (2025) 99:272 	 Page 13 of 18    272 

Vol.: (0123456789)

Conclusions and management implications

Agroforestry systems create an ecological set-
ting where open and wooded habitats coexist in 
close proximity—an uncommon feature in many 
of today’s European agricultural landscapes. Our 
study demonstrated that this structural heterogene-
ity facilitates the coexistence of spider species with 
different habitat preferences, providing essential 
resources for both open-land and forest-dwelling 
species. As such, agroforestry systems may func-
tion as ecological corridors or “extended ecotones” 
within agricultural landscapes, promoting species 
movement between habitat fragments and buffering 
protected areas from the impacts of intensive agri-
culture (Diaz et al. 2013).

While β-diversity was similar across habitats, our 
findings indicate that agroforestry systems enhance 
overall biodiversity at the landscape scale by host-
ing distinct spider communities. Thus, agroforestry 
seems an ideal component of agricultural diversifi-
cation for biodiversity. Our study showed that the 
highest overall spider diversity at landscape scale 
would be supported by a mosaic of small habitats, 
each associated with distinct management prac-
tices and vegetation structures (e.g., wooded, open, 
grazed, and non-grazed areas).

However, the benefits of agroforestry for spi-
ders appeared less pronounced than those observed 
for other taxa such as bats and birds (Edo et  al. 
2024, 2025). This underlines the high ecological 
amplitude and diversity of spiders, which occur 
in considerable species richness, even in inten-
sive agricultural fields. These findings underscore 
the importance of considering multiple taxonomic 
groups when assessing the ecological value of land-
use strategies. Different taxa may respond in con-
trasting ways to habitat features and management 
practices. Therefore, a multi-taxa approach is essen-
tial for identifying complementary conservation 
strategies that effectively promote biodiversity in 
agricultural landscapes.
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