Arbuscular mycorrhizal fungi as microbial indicators to characterize soils and their use intensity

Fritz Oehl, Ecotoxicology, Müller-Thurgau-Strasse 29, 8820 Wädenswil

Objectives

During the last 20 years, we studied the diversity of the Arbuscular Mycorrhizal Fungi (AMF; Mucoromyceta) in a series of natural and agricultural soils, in different continents, under different climatic conditions, and subjected to different farming and soil tillage practices. In this presentation, some general conclusions are drawn on our findings.

Fig.1 Vesicular-Arbuscular Mycorrhiza. Molecular analyses are needed to identify AMF fungi without laborious spore isolation from the soils. (Photo: Mike Anderson Corazon-Guivin, 2019)

Materials and Methods

Arbuscular mycorrhizal fungi were isolated from soils and identified by spore morphology as described in Baltruschat et al. (2019). Multiple fungi were also characterized by molecular analyses as described in Oehl et al. (2019). AMF systematics currently comprise three classes, 16 families & 48 genera (Baltruschat et al. 2019).

Table 1 AMF species richness in natural and agricultural ecosystems

Soil type	Natural ecosystems	Natural systems	Organic farming/ Low input	Reduced tillage systems	High- input systems
Calcaric Leptosol Oehl et al. 2010	Grasslands	27-33	20-25		21-23
Calcaric Regosol Oehl et al. 2003	Grasslands	24-31			22-24/13
Calcaric Chernosem Baltruschat et al.			26-33	23-27	16-19
Haplic Luvisol Oehl et al. 2003, 2004, 2005, 2009	Grasslands	26-32	25-31	25-33*	22-24 (IP Suisse) 16-19 (Conv.)
Humic Cambisol Oehl et al. 2010	Grasslands	32-39			21-25
Vertic Cambisol Säle et al. 2015	Grasslands	38	33-33	28-32	
Cambisol/Luvisols Maurer et al. 2018, *	Grasslands	33-35	26-30	25-27	20
Ferralsol (semi- humid to semi-arid) Tschabi et al. 2008	Sudan and Guyana savanna	28-38	15-19 (Yam fields)		5-10 (Cotton fields)
'Moist' Ferralsol (semi-humid) Pontes et al. 2017a	Cerrado savanna forest	26-33	·	24-26	15-21 (-28)
Ferralsol (semi-arid) Pontes et al. 2017b	Caatinga dry savanna	44	29-36		
Ferralsol (semi-arid) Marinho et al. 2019	Caatinga dry savanna	51-56	25-42		

Introduction

AM fungi are an important component of fertile soils, as e.g. they improve plant growth and health, stabilize soil aggregation and retain macro- and micro-nutrients in the upper soil layers. Currently, > 300 species are known worldwide. This number is rapidly increasing, since many detected species have not yet been described, for others only sequence types were so far obtained, while steadily new sequence types emerge in the data bases.

 $\ensuremath{\mbox{Fig.2}}$ Illustrations of AM fungal spores/species with different indicator value in European soils.

Results

Multiple AMF species as well as the overall AMF community structure can be used as powerful indicators in various aspects such as agricultural sustainability, soil fertility, water and nutrient budgets, or soil degradation due to over-uses or climate change. About 2-60 species were detected in natural and agricultural soils depending among other factors - on climate, land use type and intensity, plant species diversity and specific soil parameters (Table 1). In a wide range of soils, a high AMF diversity can be found even under intensive agricultural production, as long as the majority of the fungi have suitable conditions during one vegetation period. Also herbicide and even repeated fungicide applications might then be minor factors affecting the communities in the soils. AMF diversity can, however, be dramatically decreased, especially when the hyphal network is periodically disturbed by harsh tillage practices, or when plants suffer due to increasing droughts.

Conclusions

Many AMF species are ubiquitous. However, several AMF species are useful microbial indicator species for fertile or less fertile soils in Europe, depending on soil characteristics (especially soil pH and texture), land use intensity and climatic conditions. Other AMF species can be used as indicators in warmer, sub-tropical/tropical climates of different humidity, soil and land use conditions.

References

Baltruschat et al. 2019. Catena 182, 11 pages Marinho et al. 2019. Fungal Ecol 40, 82-91 Maurer et al. 2018. Agrarf Schweiz 9, 384-391 Oehl et al. 2019. Sydowia 71, 129-137 Oehl & Koch. 2018. J Appl Bot Fruit Qual 91, 56-60** Oehl et al. 2017. Biol Fertil Soils 53, 777-797* Oehl et al. 2010. Soil Biol Biochem 42, 724-738 Pontes et al. 2017. Biotropica 49, 413-427 Pontes et al. 2017. Appl Soil Ecol 117-118, 178-189 Säle et al. 2015. Soil Biol Biochem 84, 38-52 Tschabi et al. 2008. Mycorrhiza 18, 181-195