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Maintaining and enhancing soil organic carbon (SOC) in agricultural soils is proposed as a key practice 
to mitigate climate change. While there is agreement on the co-benefits of SOC accrual on other 
agroecosystem services, its potential trade-offs in terms of greenhouse gas emissions and nutrient 
losses are still under debate. We present a global dataset compiling the results of 232 articles that 
experimentally compare the effects of agricultural management practices with a potential to preserve 
or enhance SOC against conventional practices. The dataset reports 570 experimental effects of 
practices to minimise soil disturbance, diversify cropping systems, or increase organic inputs in 254 
experiments across 38 countries. The dataset further reports the qualitative (positive, neutral or 
negative) effects of these management practices on SOC accrual, crop yield, and other response 
variables related to soil structure, soil biota, CO2 and N2O emissions, and nitrogen and phosphorus 
losses. This dataset helps understanding the synergies and trade-offs of SOC accrual practices with 
other ecosystem services, detect current knowledge gaps, and guide future agricultural policies.

Background & Summary
Maintaining and enhancing soil organic carbon (SOC) stocks is currently on the scientific and political agenda 
as a mechanism to adapt to, and mitigate, climate change1,2. In agricultural soils, management practices aiming 
at SOC preservation and/or accrual include: 1. Minimising soil disturbance by reducing or eliminating tillage, 2. 
Diversifying cropping systems in space or time, either using cropping elements (e.g., crop rotations, cover crops, 
intercropping) or non-cropping elements (e.g., tree or shrub hedgerows, flower strips, either within or around 
the field), and 3. Increasing organic inputs to soil by retaining crop residues or incorporating other organic 
residues3–6. SOC accrual can have synergies with many other agroecosystem services, including the mainte-
nance or improvement of soil structure and the preservation or stimulation of biodiversity, but may come at 
the cost of increased greenhouse gas (GHG) emissions and nutrient losses7–10. Results in the literature, how-
ever, are inconsistent and show context dependencies. We performed a systematic literature synthesis to review 
whether agricultural management practices aiming at SOC preservation and/or accrual show synergies with 

1Department of environment and Agronomy, instituto nacional de investigación y tecnología Agraria y Alimentaria, 
Spanish national Research council (iniA, cSic), Madrid, Spain. 2Wageningen environmental Research, Wageningen 
University & Research, Wageningen, netherlands. 3Agroscope, Zürich, Switzerland. 4Aarhus University, Department 
of Agroecology, P.O. Box 50, Blichers Allé 20, DK-8830, Tjele, Denmark. 5estación experimental del Zaidín, Spanish 
national Research council (eeZ, cSic), Granada, Spain. 6Université de Bourgogne, INRAE, Institut Agro Dijon, 
Agroécologie, Dijon, France. 7Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden. 8Lietuvos 
Agrariniu Ir Misku Mokslu Centras (LAMMC), Akademija, Kedainiai, Lithuania. 9Department of Plant and Microbial 
Biology, University of Zurich, Zurich, Switzerland. ✉e-mail: sarasm@inia.csic.es; marta.goberna@inia.csic.es

Data DeSCRIPtOR

OPeN

https://doi.org/10.1038/s41597-025-05238-8
http://orcid.org/0000-0001-8136-3396
http://orcid.org/0000-0001-7040-1924
http://orcid.org/0000-0003-3461-4492
http://orcid.org/0000-0001-5303-3429
mailto:sarasm@inia.csic.es
mailto:marta.goberna@inia.csic.es
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-025-05238-8&domain=pdf


2Scientific Data |          (2025) 12:929  | https://doi.org/10.1038/s41597-025-05238-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

other agroecosystem services, including the maintenance of soil structure, the preservation of soil biodiversity, 
and trade-offs with climate regulation services including GHG (CO2 and N2O) emissions, and nutrient (N and P) 
losses. We also addressed whether such synergies and trade-offs vary across pedoclimatic regions and amplify 
with time since the adoption of target management practices. We followed the steps of a systematic literature 
synthesis, including the formulation of research questions and the design of a review protocol to define eligibility 
criteria for data inclusion or exclusion, search terms, as well as data selection, extraction and synthesis11.

In this paper, we present a global dataset based on results from agricultural experiments worldwide, estab-
lished since 1846 and having a mean duration of 10 years. Data were extracted from 232 articles published 
between 1991 and 2021, which altogether reported 570 experimental effects. The articles covered 254 experi-
ments located at 239 sites in 38 countries (Fig. 1). The dataset includes (i) general information on the articles; 
(ii) general information on the experimental sites, soil properties and climate conditions; (iii) general agricul-
tural management practices (fertilisation, weeding, etc); (iv) experimental management practices aiming at SOC 
preservation/accrual, (v) qualitative responses in terms of SOC accrual, crop yield, soil structure, soil biota, 
GHG emissions, and nutrient losses of target management practices against conventional practices.

Methods
Definition of eligibility criteria and search terms. We established the eligibility criteria following the 
Population-Intervention-Control-Outcome (PICO) framework12. We searched for published articles on agricul-
tural systems in mineral soils that experimentally compare management practices aimed at SOC accrual and 
conventional practices. Articles had to include quantitative measurements of SOC accrual, synergies and/or 
trade-offs (Table 1).

We defined the search terms and combination of Booleans related to three types of management practices 
and five types of response variables (Table 2). Search terms were reviewed by co-authors specialised in soil 
science and soil biology and further fine-tuned through systematic searches in Web of Science (WoS) using an 
iterative procedure as follows. We performed literature searches in WoS Core Collection using the search terms 
defined within each category of management practices and response variables separately. Our initial strategy 
was to use combinations of search terms that maximise the number of records retrieved. After each search, we 
randomly screened the abstracts of several articles to evaluate the extent to which they matched our scope. This 
process led us to redefine the search terms, generally making them more stringent to discard unrelated articles.

We performed the systematic literature search using the search terms in Table 2 in WoS Core Collection as of 
13 April 2021. We carried out several combined searches, each one including terms for:

 1. A management practice, either related to minimising soil disturbance, diversifying cropping systems, or 
increasing organic inputs,

 2. A response variable related to SOC accrual, which was used in all searches to guarantee that studies includ-
ed a quantitative measurement of SOC or SOM content, and

 3. Another response variable, either related to the synergies of SOC accrual, i.e. soil structural or biological 
parameters, or to the trade-offs of SOC accrual, i.e. GHG emissions or nutrient losses.

Fig. 1 Geographic distribution of the 239 experimental sites assessing the effects of agricultural management 
practices aiming at SOC accrual against conventional practices, reported in 232 articles. Map produced with 
Geo Point Plotter https://dwtkns.com/pointplotter/.
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Combined searches retrieved 1,216 articles. We exported all records from WoS, detected duplicated records 
(i.e. articles that were retrieved in more than one search) using the intersect function in the base package for R v 
4.0.513. After removing 445 duplicated reports, we retained 771 articles. The selection process is reported in the 
PRISMA diagram14 (Fig. 2).

Data selection and extraction. Among the 771 references obtained, we were able to retrieve 769 articles 
and further assessed them for eligibility using expert judgement rather than automatic tools. This led us to exclude 
539 records (70% of the original articles retrieved) based on general aspects (i.e. language other than English, only 
abstract available; 21 articles excluded), the type of article (review, opinion papers; 159 articles excluded), a focus 
on non-soil habitats (29 articles excluded), forest soils (9 articles excluded), organic soils (6 articles excluded), or 
experimental designs not matching our criteria (e.g. lack of replication, lack of control, lack of statistical analy-
sis, assessment practices other than those targeted here, etc.; 315 articles excluded). The remaining 232 full-text 
articles that met all criteria were used in our synthesis15–246. For each article, we extracted information and coded 
it systematically in an Excel file using predefined contents (see detailed description in the section Data Records). 
Extracted information was related to the environmental characteristics, experimental design, and agricultural 
management practices assayed in the studies, and to their effects on the selected response variables. Table 3 sum-
marises all the fields contained in the database, which are further detailed in Supplementary Table 1.

Data Records
The data are accessible in the Zenodo repository, available at https://zenodo.org/communities/trace-soils/247. An 
Excel file (TRACE-Soils_GlobalDatasetSOCAccrual.xlsx) with different sheets is provided:

 1. The sheet ‘Readme’ presents the contact information of the authors, research project and funding source,
 2. The sheet ‘Original Articles’ contains the list of 771 non-duplicate articles retrieved from WoS, with coded 

information on the reasons for exclusion of 539 articles. Here, all articles coded as ‘INCL’ constitute the list 
of 232 articles retained to perform the literature synthesis,

 3. The sheet ‘Metadata’ contains descriptive information for all data available in the sheet ‘Database’, including 
the nature of the data (text, number, categorical), a detailed description of the variable, and whether the 
variable is based on predefined contents available in the ‘Drop Down Lists’ sheet. All fields coded in Table 3 
and Supplementary Table 1 are described in the ‘Metadata’ sheet,

 4. The sheet ‘Database’ contains all data extracted from 232 articles used to perform the literature synthesis 
(see details on the structure of this sheet below),

 5. The sheet ‘Drop Down Lists’ contains the predefined content of all categorical variables in the database.

In the ‘Database’ sheet, data in each row correspond to an experimental comparison between a management 
practice aiming at SOC accrual and the corresponding control. When an article reported several management 
practices, one row was filled per treatment. Since only one management practice is recorded in each row, the 
interactive effects of minimising soil disturbance, diversifying cropping systems, and increasing organic inputs 
are not considered. The columns in the database are structured into different sections (summarised in Table 3 
and Supplementary Table 1), which are described below.

Inclusion Criteria Description

POPULATION: Published research on 
agricultural systems in mineral soils

We included articles in English that reported replicated agricultural experiments with and without management practices 
aiming at SOC accrual, published in any year and any location around the world. We focused on arable lands, grasslands, 
as well as agrosilvicultural, silvopastoral, and agrosilvopastoral systems. We excluded forest soils, as well as tree crops 
grown for timber, fibre, or biomass. We focused on mineral soils, thus excluding organic soils (i.e. soils in peatlands, 
wetlands or classified as Histosols). Experiments could be of any time length and spatial scale.

INTERVENTION: Agricultural systems with 
management practices aiming at SOC accrual

Articles had to experimentally test the effects of one or more of the following agricultural practices separately:
• Minimise soil disturbance: adoption of reduced or no tillage practices,
• Diversify cropping systems through: (i) Increasing crop diversity: use of intercropping, crop rotations, cover crops, catch 
crops or forage crops; (ii) Increasing non-crop diversity: plantation of flower strips, tree, shrub or grass hedgerows or isles 
either within or around the fields, or use of practices to increase landscape complexity,
• Increase organic matter inputs: landspreading or application of organic residues - such as manure, compost, biochar - 
retention of crop residues, or inoculation of beneficial microorganisms.
In cases of articles reporting multiple experiments, multiple practices or more than one level of a single practice, we 
extracted data for each treatment separately.

CONTROL: Agricultural systems with 
conventional practices

Control refers to conventional practices as compared to the SOC-enhancing practices but otherwise under the same 
management and experimental conditions:
• Conventional inversion tillage,
• No intercropping, monocultures or less diverse rotations, no cover crops, no catch crops, or no forage crops,
• No flower strips or hedgerows, no practices to increase landscape complexity,
• No use of organic amendments, no crop residue retention, no inoculants.

OUTCOME: Quantitative measures of SOC 
accrual, its potential synergies and trade-offs

Articles had to include quantitative data on soil organic carbon (SOC) or soil organic matter (SOM) stock, content or 
sequestration rate, as well as quantitative data for at least one of the other response variables of interest:
• Soil structure parameters: porosity, compaction, aggregation, and/or water content,
• Biological soil parameters: biomass and/or diversity of groups of fauna and/or microbiota,
• CO2 or N2O emissions: determined as field or laboratory fluxes, or balances,
• N or P losses: leaching, runoff, crop uptake, or change in soil content.

Table 1. PICO framework that describes the criteria for article inclusion.
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General information on the articles and experimental sites. Article identifier. The “Article_ID” 
section contains the article reference (authors, article title, journal title, journal volume, page numbers, year of 
publication) and the digital object identifier (doi).

Environment includes information on the country, climatic zone (Köppen classification), geographic coor-
dinates, the type of cropping system, and the main crop studied in the experiment. The vast majority of experi-
ments (93%) were performed on arable land, rather than permanent or temporary grasslands, agrosilvicultural, 
silvopastoral, or agrosilvopastoral lands. Most experiments (60%) had a single crop rather than crop rotations 
(40%). The most common crops were maize (27% of the experiments using one crop), rice (18%), wheat (15%), 
and other cereals (8%).

Experiment contains information on the name of the experimental site, spatial and temporal scale of the 
experiment, soil texture, soil pH, and sampling depth. Most experiments (79%) were performed on field plots. 
Experiments lasted from a few months to over 160 years, with an average duration of 10 years and a median of 
5 years (Fig. 3). Soil properties were highly variable, both in terms of pH ranging from 4.5 to 8.8 (Fig. 3) and 
particle size distribution, with most soils having a silt loam (22%) or sandy loam texture (21%). Sampling depth 
was restricted to the upper 0–15 cm (69%) or 0–30 cm layers (28%) in most cases, with very few cases reporting 
data from subsurface soil horizons. If data from more than two soil layers were reported, results were coded in 
different rows.

Management includes descriptions of the main agricultural management practices of the experimental 
site. It includes data on N and P fertilisation types and rates. For the total 393 cases in which fertilisation was 
reported, 222 cases (56%) were based on inorganic fertilisation followed by the combined use of organic and 
mineral fertilisers (21%). Median fertilisation rates were ca. 150 kg N ha−1 yr−1 and 70 kg P ha−1 yr−1 (Fig. 3). 
The section also includes data for the type of irrigation, liming, type of pest and weed control, although most 
publications did not specify these practices.

experimental management practices aiming at SOC accrual. Minimise soil disturbance sum-
marises the experimental management practices related to the reduction of soil disturbance (minimum and 
no-tillage) compared to a control (standard tillage), which constituted 29% of all experimental practices found 
(Fig. 4). It includes information on the type of tillage practice applied “soil_dist1” and the specific implement used 
“soil_dist2” (e.g. chisel, disk, harrowing, strip tillage). Information on the use of glyphosate, till depth and crop 
residue retention are also provided.

Diversify cropping systems describes the experimental management practices related to the diversification 
of cropping systems, based on either cropping or non-cropping elements (12% of all practices). Diversification 
refers to the increase of crop types, either across time or space, through the use of cover crops, crop rotations, or 
intercropping (Fig. 4). The variable “div_crop1” indicates the type of diversification (e.g. use of cover crops), and 
“div_crop2” relates to the specific technique applied for each div_crop1 (e.g. legumes, grasses, brassicas, species 
mixtures, etc.). The type of experimental control used (e.g. monoculture, no cover crop) and the total number of 
crop species included both in the diversified treatment and the conventional practice are indicated. The second 
part reports experiments including diversification of non-cropping elements, which refers to the use of flower 
stripes, shrub or tree hedges, or vegetation islands either within or around the fields (Fig. 4).

Increase organic inputs includes data on articles aimed to increase organic matter inputs, which constituted 
the majority of the reports found (58%). The dataset specifies whether organic inputs were based on organic 
amendments, retaining crop residues, or inoculating beneficial microorganisms (“increase_om1”). Further, the 
specific residue applied (“increase_om2”) and the type of control (e.g. no amendment, no residue retention, etc) 
are indicated.

Search terms related to agricultural management practices # Records

Minimise soil disturbance: no-till* OR no-plo* OR zero-till* OR zero-plo* OR low-till* OR low-plo* OR direct-drill* OR direct-seed* OR 
minimum-till* OR minimum-plo* OR reduced-till* OR reduced-plo* OR conservation-till* OR conservation-plo* OR chisel* OR stubble-
till* OR stubble-plo* OR mulch-till* OR mulch-plo* OR ridge-till* OR ridge-plo* OR strip-till* OR strip-plo* OR harrow*

27,029

Diversify cropping systems:

Increase crop diversity: crop-diver* OR (intercrop* OR inter-crop*) OR (interrow* OR inter-row*) OR cover-crop* OR crop-rotation OR 
crop-association OR catch-crop* OR succession-planting OR winter-crop* OR forage-crop* OR fodder-crop* OR agroforestry 41,788

Increase non-crop diversity: divers* AND (hedge* OR flower*-strip OR flower*-crop OR buffer-strip OR margin) 12,066

Increase OC inputs: compost* OR manure OR dung OR sludge OR biosolid OR slurry OR crop-residue OR vegetation-residue OR 
stubble-retention OR (mulch* NOT plastic) OR organic-amend* OR organic-fert* OR biochar OR digestate OR (inocul* AND (“AMF” OR 
mycorrh* OR “PGPR” OR plant-growth-promoting-bacteria))

264,706

Search terms related to SOC accrual, its synergies and trade-offs

SOC: soil AND (“SOC” OR “TOC” OR organic-c* OR c-seq* OR carbon-seq* OR c-stock* OR carbon-stock*) 71,752

Soil structure: soil-structur* OR (soil AND (porosity OR pore-space OR pore-geometry OR pore-connectivity OR air-permeab* OR gas-
diffusiv* OR hydraulic-conduct* OR bulk-density OR aggregat* OR penetration-resistance)) 63,798

Soil biota: (soil OR rhizosph* OR edaph*) AND divers* AND (invertebrate OR *fauna OR protist OR nematode OR earthworm OR mite 
OR collembol* OR enchytr* OR arthropod OR insect OR myriapod OR tardigrad* OR microb* OR microorg* OR bacteria OR fung* OR 
mycorrh* OR “AMF” OR *nitrif*)

42,210

GHG emissions: (emission OR flux OR loss*) AND (CO2 OR carbon-dioxide OR N2O OR nitrous-oxide OR greenhouse-gas OR “GHG”) 187,000

Nutrient losses: (leach* OR runoff OR run-off) AND (NO3 OR nitrate OR nitrogen OR ammonium OR phosphorus OR phosphate) 36,342

Table 2. Search terms related to agricultural management practices and response variables. The number of 
records retrieved in WoS in April 2021 for each set of search terms is given.
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Response variables. For each response variable, we coded the qualitative response between a management 
practice aiming at SOC accrual and the control based on statistical comparisons reported in the original stud-
ies as follows: i) Increase, indicates a significant increase in the response variable in target versus conventional 

Fig. 2 PRISMA diagram14 showing the workflow of article identification, screening, inclusion and exclusion. 
Numbers indicate the number of articles included (green boxes) or excluded (blue boxes) at each step.

Environmental and Management Description

Article Environment Experiment Management Minimise soil disturbance Diversify cropping systems Increase organic inputs

Reference country exp_site fertilisation_type soil_dist1 div_crop1 increase_om1

doi climatic_zone exp_spatial_scale N_fertilisation_rate soil_dist2 div_crop2 increase_om2

latitude exp_time_scale P_fertilisation_rate till_depth num_sps increase_om_control

longitude soil_texture P2O5_fertilisation_rate crop_residue_retention div_crop_control

cropping_system soil_ph liming glyphosate num_sps_control

main_crop soil_depth water_management soil_dist_control div_noncrop1

pest_control till_depth_control div_noncrop2

pest_control_appl crop_res_ret_control div_noncrop_control

weed_control

weed_control_appl

SOC accrual, its synergies and trade-offs

SOC accrual Crop yield Soil structure Soil biota Soil biota GHG emissions Nutrient losses

SOC_accrual_resp crop_yield_resp mechanics_resp microb1_diversity_resp fauna1_diversity_resp CO2_emission_resp N_response

SOC_accrual_var crop_yield_var mechanics_var microb1_diversity_var fauna1_diversity_var CO2_emission_var N_variable

aggregation_resp microb1_biomass_resp fauna1_biomass_resp N2O_emission_resp P_response

aggregation_var microb1_biomass_var fauna1_biomass_var N2O_emission_var P_variable

water_resp [] []

water_variable

porosity1_response

porosity1_variable[]

Table 3. Information retrieved from the 232 articles included in the database. [] Indicates repetition as many 
times as necessary, ‘resp’ indicates response and ‘var’ indicates variable. A detailed version of this table is 
provided in Supplementary Table 1, and its contents are described in the Data Records section.
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management practices; ii) Decrease, indicates a significant decrease in the response variable in target versus 
conventional management practices; iii) Neutral, indicates non-significant differences between target and con-
ventional management. In some instances, responses are coded as: iv) ‘non-reported’, indicating that data are 
available but statistical tests were not performed in the original study, v) ‘varying’, indicating varying responses 
(e.g. across sampling times), or vi) ‘change’, indicating significant changes in specific categorical response variables 
(e.g. community structure of soil biota). Finally, we also registered the metrics used to quantify each response var-
iable (e.g. for the variable ‘water content’ we specified whether it was measured as soil water content, infiltration, 
saturated or unsaturated hydraulic conductivity, or water retention).

SOC accrual and crop yield. The qualitative response of SOC accrual was coded as explained above. Most stud-
ies reported the change in SOC concentration (76%) or stocks (15%), whereas the remaining studies reported 
changes in SOM, SOC sequestration rates, among others. We also recorded the shifts in crop yield, although the 
number of cases reporting it was relatively low (139 out of 570 total study cases).

Synergies of SOC accrual includes responses of: (i) Soil structure, including soil mechanics (38% of study 
cases), aggregation and structure (28%), soil water and movement (24%), porosity and gas movement (17%); (ii) 
Soil biota, several groups of fauna and microbiota were coded, as well as their response in terms of biomass and 
diversity. While 40% of all study cases reported information on microbial groups, only 2% included information 
on soil fauna. When several groups of fauna, microorganisms, or several porosity properties were quantified in 
the same experiment, they were included as separate variables.

Trade-offs of SOC accrual includes responses of: (i) GHG (CO2 and N2O) emissions, most of which were 
fluxes measured in the field (45% of all cases for CO2 and 63% for N2O) or in the laboratory (50% and 33%, 
respectively), and (ii) Nutrient (N and P) losses, reported as N and P runoff and/or leaching (17% and 28% of all 
cases for N and P, respectively) or changes in soil content (77% and 63% for N and P, respectively).

technical Validation
The careful application of the PICO framework12 and the PRISMA guidelines14 ensures the accuracy and repro-
ducibility of our data collection from published peer-reviewed journals. Articles were randomly assigned to the 
co-authors, who all followed the same procedures for data extraction. To ensure homogeneity in data extraction, 
drop-down lists were generated and agreed upon for most of the variables in the database (except for variables 

Fig. 3 Density plots showing the frequency distribution of a few parameters in the dataset, including the 
duration of the experiments, soil pH, nitrogen (N) and phosphorus (P) fertilisation rates, and tillage depth 
under reduced (RT, including minimum and no tillage) and standard tillage (ST) practices.
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such as the duration of the field experiments or the geographic coordinates). The final version of the dataset was 
reviewed by two co-authors to further ensure the homogeneity of data extraction. Observational and experi-
mental studies without enough replication (n < 3) or inappropriate statistics were discarded. Neutral responses 
(i.e. the statistically-checked absence of response) were reported to avoid the over-representation of significant 
effects. All qualitative data on SOC accrual, its potential synergies, and trade-offs, were extracted from numer-
ical sources, checked for statistically-proven responses, and only then coded into the corresponding response 
categories (increase, neutral, decrease). We plotted the frequency distribution of the numeric variables, and 
returned to the original articles to verify any extreme values. Similarly, for categorical variables we built contin-
gency tables of the counts for each factor level to check for possible errors.

Appropriate comprehension of the adoption of agricultural management techniques at the global scale 
requires data from different geographical, climatic, pedological and agronomical scenarios. Our dataset, how-
ever, is biased towards temperate areas and northern latitudes. Only 11% of our records are from Mediterranean 
climates, 7% from tropical areas, and 7% from dry regions (Fig. 4). As previously reported248, our results reflect 
the current uneven distribution of publications in global science249, and highlight the necessity to collectively 
support science in the Global South.

Usage Notes
This dataset represents an exhaustive exploration of the synergies and trade-offs of SOC accrual in mineral soils 
due to agricultural management practices at a global scale. We gathered the responses of synergies and trade-offs 
of SOC in a qualitative manner due to the broad coverage of management practices, response variables and geo-
graphic scope of our study. This exploratory database allows 1. developing a comprehensible understanding of 
the multiple effects of SOC accrual on other agroecosystem services maintaining a wide focus, and 2. detecting 
main knowledge gaps and future research needs. Further, the dataset can constitute the basis to identify the set 
of articles that can be useful to additionally address specific scientific questions using a quantitative (rather than 
qualitative) synthesis. This would require revisiting the articles to calculate the effect sizes of target versus con-
ventional management practices. While such a quantitative approach would permit calculating the magnitude of 
the effects, it will necessarily narrow down the scope of the research questions and reduce the set of articles that 
allow answering them. Our dataset is especially useful to identify knowledge gaps and uncertainties in relation to 
the effects of SOC accrual on soil services. It can be used by scientists and decision makers to explore beneficial 
and detrimental side-effects of both general and specific agricultural practices at varying spatial scales and time 
frames. However, please note that the number of observations for certain combinations of management practices 
and responses, especially in certain climates or related to soil biota are low, suggesting that inferences of certain 
patterns should be done cautiously. Finally, our dataset can easily be updated when new information is available.

Fig. 4 Distribution of the counts of experimental effects recorded for specific management practices in the 
three categories targeted (minimising soil disturbance, diversifying cropping systems, increasing organic inputs) 
throughout five climatic zones. N indicates the number of experimental effects.
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Code availability
Data visualisation was conducted using R v 4.4.113. Scripts used with R programming language and additional 
related files to make the graphs presented in this paper are available at https://zenodo.org/communities/trace-
soils/247.
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