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A B S T R A C T

Semi-natural grasslands under extensive grazing host a high diversity of plants whose diverse flower traits are 
crucial for insect pollinators, which are facing a worrying decline. We investigated how grazing regimes in dry 
calcareous grasslands influence the diversity and composition of flower traits important for pollinators. We 
measured the taxonomic diversity (TD) of the plant community, as well as the functional diversity (FD) and the 
community-weighted means (CWM) of seven morphological, phenological, and reflectance flower traits for 
insect-pollinated species across 116 plots in 22 farms and nearby abandoned areas spanning six regions in Italy 
and Switzerland. We compared managed and abandoned areas to assess differences in FD and CWM, and fitted 
two piecewise structural equation models to infer direct and indirect effects of grazing regimes on TD, FD and 
CWM. Extensive grazing did not alter flower traits’ FD compared to abandonment, but favoured flowers’ 
characteristics beneficial to pollinators, e.g., increased CWMs of flower size, flowering period length, and UV 
reflectance. Across different grazing regimes, local grazing pressure emerged as a key driver of TD and, in turn, of 
the FD and CWM of several flower traits. Plant communities with a more even distribution of dominant and rare 
species were positively associated with the FD of flower symmetry, flowering initiation and UV reflectance, as 
well as the representation of zygomorphic and non-yellow flowers. Maintaining extensive grazing is essential to 
preserve flower characteristics that are important for pollinators. Managing grazing intensity patterns at local 
spatial scales is crucial to increase the diversity of flower traits, which, in turn, may support a broad range of 
insect pollinators.

1. Introduction

Semi-natural grasslands are among the most diverse ecosystems 
worldwide (Dengler et al., 2014; Habel et al., 2013; Wilson et al., 2012) 
and maintain important ecosystem functions and services (Bengtsson 
et al., 2019). These grasslands crucially provide forage and nesting sites 
to pollinators, driving their spillover across agricultural landscapes 
(Kennedy et al., 2013; Krimmer et al., 2019; Neumüller et al., 2020; 
Öckinger and Smith, 2007). Semi-natural grasslands have been shaped 
by centuries of agricultural practices, like low-intensity grazing and 
mowing (Hejcman et al., 2013), which are still crucial for their main-
tenance (Halada et al., 2011). In Europe, over the past century, shifts in 
farming intensity and land use, marked by management intensification 

or abandonment, have led to a substantial decline of semi-natural 
grasslands (Wesche et al., 2012), which are widely threatened 
(Tsiripidis et al., 2016) and exhibit one of the worst conservation states 
among terrestrial ecosystems (European Environment Agency, 2010). A 
severe decline has been documented in semi-natural grassland taxo-
nomic diversity (hereafter ‘TD’), affecting both species richness and 
abundance (Bonari et al., 2017; Dembicz et al., 2021; Gossner et al., 
2016; Török et al., 2016), with detrimental effects on functional di-
versity (hereafter ‘FD’) (Mouillot et al., 2013), and on multiple 
ecosystem services, including pollination (Allan et al., 2015; Bengtsson 
et al., 2019).

The FD is usually defined by the spectrum of functional traits within 
the community (Tilman, 2001) and is essential for ecosystem 
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functioning and services across multiple ecosystems (Cadotte et al., 
2011; Cardinale et al., 2012; Díaz and Cabido, 2001), including 
semi-natural grasslands (Johansen et al., 2019; Prangel et al., 2023). 
Additionally, the trait values of dominant species within plant com-
munities, as represented by the community-weighted mean (hereafter 
‘CWM’) significantly influence ecosystem functions, in line with the 
mass-ratio hypothesis (Cadotte, 2017; Grime, 1973). Both FD and CWM 
largely depend on the taxonomic composition of the community, as TD 
determines the pool of species and traits within the community 
assembly.

Over recent decades, trait-based ecology and studies on FD have 
gained increasing recognition (Green et al., 2022; Zakharova et al., 
2019), leading to the collection of a wealth of knowledge and data on 
plant traits (Kattge et al., 2020), also with special reference to European 
grasslands (Ladouceur et al., 2019). As a result, FD is increasingly 
considered a key parameter to inform conservation and restoration 
strategies aimed at sustaining or recovering ecosystem functioning. 
Although most efforts have focused on vegetative traits related to 
leaf-height-seed (LHS) strategy scheme (Westoby, 1998), there is a 
growing interest in flower traits and their role as determinants of com-
munity assembly (E-Vojtkó et al., 2020; Michelot-Antalik et al., 2025).

Flower traits, e.g., flower morphology, color, and phenology, act as 
effects traits (Lavorel and Garnier, 2002), because they influence the 
attractiveness of plant species to insect pollinators and shape the 
fundamental niche of flower visitors (Blüthgen and Klein, 2011; Howe 
and Westley, 1988). Indeed, most pollinators rely on visual cues to find 
flowers, which also signal potential rewards (Chittka and Raine, 2006; 
van der Kooi et al., 2023). It is widely acknowledged that plant com-
munities exhibiting diverse flower traits afford pollinators a broad 
fundamental niche, facilitating niche partitioning (i.e., complemen-
tarity) among consumers, thus reducing their interspecific competition. 
MacArthur’s (1955) competition theory established the framework, 
later expanded by Levine and HilleRisLambers (2009) who showed how 
niche differences stabilize coexistence. Empirical support comes from 
Junker et al. (2013), who linked floral trait diversity to pollinator 
specialization, and Cappellari et al. (2022), who demonstrated that 
floral diversity expands pollinator dietary niches, particularly reducing 
competition among generalist bees. Considering that approximately 
80 % of flowering plants depend on animals for reproduction (Rodger 
et al., 2021), floral diversity’s role in reducing pollinator competition 
through niche partitioning become critical, enhancing plant reproduc-
tive success and the efficiency of pollination service, also in agricultural 
systems (Brittain et al., 2013; Campbell et al., 2012; Fontaine et al., 
2006; Frund et al., 2013).

Flower traits also act as response traits (Lavorel and Garnier, 2002), 
which are strongly determined by the alterations of biotic and abiotic 
drivers. Grazing regimes largely shape the composition of plant com-
munities in semi-natural grasslands. It is largely recognised that mod-
erate grazing disturbance promotes species diversity by reducing 
interspecific competition (Connell, 1978; Grime, 1973; Kleijn et al., 
2011; Kleijn and Sutherland, 2003). Conversely, overgrazing generally 
favours species with traits related to grazing tolerance and avoidance, 
while undergrazing and abandonment enhance traits that increase the 
species competitive ability for light, nutrients, and/or space (Blasi et al., 
2009; Díaz et al., 2007; Komac et al., 2015; Peco et al., 2012). Different 
grazing systems influence plant communities by regulating the spatial 
and temporal distribution of livestock, which can also display different 
selectivity, grazing behaviour, and body size among different animal 
species and breeds, influencing plant community assembly (Pauler et al., 
2020, 2019; Perotti et al., 2018; Pittarello et al., 2019). Therefore, by 
altering species composition, grazing shapes the functional space of 
plant communities with cascading effects on the diversity and patterns 
of flower traits. Although the effects of grazing on vegetative traits have 
been largely addressed, few studies have investigated how different 
grazing regimes impact flower traits (Chen et al., 2022; Pellaton et al., 
2023; Rakosy et al., 2022). Indeed, most studies have focused on grazing 

as a driver of the abundance of floral resources (e. g., Cutter et al., 2022; 
Noreika et al., 2019; Tadey, 2015; Woodcock et al., 2014), while the 
effects on the diversity of flower traits have received far less attention, 
despite its ecological relevance for pollinator communities and 
ecosystem functioning. As a result, the influence of different grazing 
regimes on the FD and CWM of the insect-pollinated communities 
(hereafter ‘flowering species’) in semi-natural grasslands remains 
largely unexplored. Moreover, the potential role of TD as a key mediator 
in shaping the response of floral traits to grazing pressure has not been 
adequately addressed, despite its likely importance in linking changes in 
community composition to functional outcomes. This knowledge gap 
limits our understanding of how grazing management can be tailored to 
sustain key ecosystem services such as pollination, as advocated by 
European biodiversity and agricultural strategies (European Commis-
sion, 2012; European Commission 2021a, 2021b).

Here, we aim to fill this gap by providing a novel functional 
perspective on how grazing shapes the flower trait composition of plant 
communities. Our specific aims were to assess: 

i. the difference in the FD and CWM of flower traits between 
extensively grazed and abandoned semi-natural grasslands;

ii. the effects of grazing regimes on the TD of the whole plant 
community;

iii. the role of TD in mediating the influence of grazing regimes on 
the flower traits’ FD and CWM.

We hypothesized that grazing management largely shapes the flower 
traits of semi-natural grasslands. Specifically, we expected that: i) 
extensively grazed grasslands hosted higher FD and distinct CWM values 
of floral traits compared to abandoned ones, due to the filtering effect of 
grazing on dominant species and the associated increase in niche par-
titioning; ii) different grazing regimes influenced the TD of the whole 
plant community, with moderate grazing pressure and controlled graz-
ing techniques promoting higher species diversity by reducing 
competitive exclusion; iii) the effects of grazing regimes on the FD and 
CWM of flower traits was mediated by changes in TD, such that 
increased diversity would lead to a broader functional space and shifts in 
dominant floral trait values.

2. Materials and methods

2.1. Study area

This study was conducted within dry calcareous grasslands of the 
Festuco-Brometea (hereafter ‘semi-natural grasslands’), recognized as 
Habitat 6210(*) “Semi-natural dry grasslands and scrubland facies on 
calcareous substrates (Festuco-Brometalia) (*important orchid sites)“ 
under the EU Habitats Directive 94/93/ECC (asterisk in parentheses 
indicates that the habitat may be considered of priority interest if it 
qualifies as an important orchid site) and the Habitat 4.2.2/4.2.4 in the 
Swiss habitat inventory. These habitats are among the most widespread 
grasslands in Europe (Blasi et al., 2012; Preislerová et al., 2022; Squires 
et al., 2018) occurring on well-drained, low-nutrient calcareous to 
neutro-alkaline soils. They hold world records for plant species richness 
at fine spatial grains (Wilson et al., 2012). However, they are facing 
conservation threats, especially due to the abandonment of traditional 
management practices in mountain areas (European Environment 
Agency, 2016), where the vegetational succession to fringe communities 
and the encroachment of woody species has been increasing in recent 
decades (De Toma et al., 2024, 2022; Gómez-García et al., 2023; Orlandi 
et al., 2016).

We selected 11 sites spanning six administrative regions in Italy and 
Switzerland (Fig. 1), focusing exclusively on grazed pastures to avoid 
confounding factors like mowing or prescribed burning. A total of 22 
farms with stable management practices over the previous decade were 
chosen (Table 1), representing diverse grazing regimes within the same 
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habitat with relatively homogeneous ecological conditions (Fig. S1). A 
consistent number of plots per farm (typically 4–6) was maintained, 
although in some cases logistical constraints, such as limited accessi-
bility imposed a slightly lower number of plots (3). Plots were randomly 
distributed within each farm, maintaining a minimum 500-meter plot- 
to-plot distance and checking for topographic and structural homoge-
neity and representativeness. A total of 96 square plots (16 m2, optimal 
size for grassland sampling following Chytrý and Otýpková, 2003) were 
sampled for local grazing pressure proxies (2.2), species cover and floral 
traits (2.3). A KML file with the geographical location of all plots is 
provided as supplementary material. Data were collected in 
spring-summer 2018, 2019, and 2022 during the flowering peak of the 
dominant species, and before the grazing period for seasonally-grazed 
sites. For seven out of eleven sites, we sampled 20 plots in areas previ-
ously grazed and abandoned for approximately thirty years. These areas, 
designated as control plots, were grasslands originally belonging to the 
same habitat type, but showed clear signs of secondary succession, with 
a notable encroachment of shrub species covering more than 30 % of the 
plot surface. Despite this woody expansion, these plots were still 
recognizable as grasslands and not fully afforested.

2.2. Grazing regimes and local grazing pressure

Information on grazing regimes was obtained through direct in-
terviews with farmers, local authorities, and agricultural advisors. For 
each farm, the number of animals of different species (i.e. cattle, sheep, 
horses) was converted into livestock units (LU: Livestock Units) using 
species- and age-specific coefficients established by the Commission 

Implementing Regulation (EU) No 808/2014. Based on this, the 
‘stocking rate’ - a key parameter for quantifying grazing intensity - was 
calculated as: 

Stocking rate = LU / A × m / 12                                                         

where LU is the number of livestock units, A is the grazed area in 
hectares, and m is the duration of the grazing period expressed in 
months.

We focused on abandoned and extensively grazed grasslands, with 
very low (0.08 LU⋅ha-1⋅year-1) to moderate (0.5 LU⋅ha-1⋅year-1) 
stocking rates. We excluded intensively grazed areas because they were 
not representative of the target habitat.

The percentage of LU managed through controlled grazing tech-
niques (i.e., rotational grazing and/or shepherding, as opposed to 
continuous grazing) was used to characterize the grazing system at the 
farm level (‘Controlled grazing’). The cattle percentage of total LU was 
used to quantify the relative abundance of cattle compared to other 
grazing animals (‘Cattle dominance’).

Given that grazing intensity is spatially heterogeneous within farms 
and the wide extent of the study area precluded the use of GPS collars to 
track livestock movements in every farm, local grazing pressure was 
assessed using several well-established, plot-scale proxies commonly 
adopted in the literature. In particular, we counted the number of not 
fully decomposed dung from different livestock species deposited since 
the previous year, an indicator known to be strongly associated with 
animal presence and activity (Turner, 1998; Stumpp et al., 2005; Man-
they and Peper, 2010). This approach assumes consistent patterns of 

Fig. 1. (A) Location of the study sites distributed in Italy and Switzerland (coordinate system: WGS84 datum). (B) An example of the distribution of farms, grazed 
plots (circles) and abandoned plots (triangles) within a site. Site acronyms and characteristics are reported in Table 1. (C) Dry calcareous grasslands typical of Central 
Apennines. Photo credit: F. Napoleone, Mt. Simbruini, Italy.
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excretion over time (Schnyder et al., 2010) and comparable dung 
decomposition rates across sites due to similar habitat conditions - 
specifically, a dry and temperate climate. We also recorded the per-
centage of trampled surface, defined as compacted and/or eroded soil 
caused by livestock movement and resting, which is linked to increased 
grazing pressure through its effects on vegetation cover and soil integ-
rity (Lai and Kumar, 2020; Teague and Kreuter, 2020). Litter height 
(average of five random points per plot) and litter cover (visual estimate 
of surface covered by litter) were also recorded as indicators of biomass 
removal by grazing (Mapfumo et al., 2002; Elias et al., 2018), since no 
other disturbance drivers (e.g., mowing or fire) were present in the study 
system. In areas subjected to year-round grazing, additional indicators 
of recent livestock activity were measured, including the number of 
fresh dung pats and the percentage of surface affected by recent tram-
pling or bites. Biting intensity was scored on an ordinal scale from 0 to 3 
based on the frequency and extent of visible grazing marks on the 
vegetation (Orlandi et al., 2016). These variables were subsequently 
summarized using Principal Component Analysis (PCA), with the first 
principal component (PC1) representing a synthetic gradient of local 
grazing pressure for each plot (see ‘2.5 Statistical analyses’).

2.3. Species composition and flower traits

Vascular plant species cover values were estimated through visual 
assessment of each species vertical ground projection using an ordinal 
percentage scale. For flowering species with conspicuous flowers, a set 
of flower traits, i.e., morphological, phenological and reflectance traits, 
was selected based on their documented importance for plant-pollinator 
interactions across a wide variety of pollinator guilds (Junker et al., 
2013) (Table 2). Although flower reward traits (e.g., nectar amount, 
sugar and amino acid content) are important for pollinator insects, we 
did not include them in the study due to their measurement complexity, 
and to minimize the number of values retrieved from the literature or 
missing. Floral trait measurements were conducted during the spring 
and summer, specifically during the species flowering peak. All flow-
ering species were measured, with approximately ten individuals 
assessed for each species. Flower measures were performed on flower 
unit, i.e., an aggregation of flowers through which a pollinator can move 
without flying, which may coincide with individual flowers or aggre-
gation of flowers (e.g., Asteraceae, Apiaceae). Flower height was 
measured as the vertical distance between the upper part of the flower 
and the ground (Chapurlat et al., 2015; Sletvold et al., 2016). The flower 
area was calculated as A = 1

4 π d2 for round flowers and A = length ×

width for non-rounded flowers (Chapurlat et al., 2015; Fornoff et al., 
2017; Lavi and Sapir, 2015). Flower symmetry was classified into radial 
or bilateral. According to the protocol of Napoleone et al. (2022b), 
UV-reflectance was measured using digital photography. Since many 
flowers exhibit a ’bull’s-eye’ pattern in UV light to enhance insect 
recognition (Silberglied, 1979), the outer region of the flower emerged 
as the most informative area for evaluating variations in UV reflectance 
among different species, and thus, the maximum reflectance of the pe-
riphery of the petals was measured. Color was expressed as the mean 
value of the light reflectance spectrum (Pellaton et al., 2023; Szitár et al., 
2022). Data on color and phenology derived from the BiolFlor database 
(Kühn et al., 2004) and plant species identification manuals 
(Aeschimann et al., 2004; Pignatti et al., 2017). The same sources were 
used to retrieve trait values for species for which direct measurement 
was not possible. For the missing values of the UV reflectance trait, the 
average percentage reflectance of the species within the 350–380 nm 
wavelength range was also calculated using the FReD database (Arnold 
et al., 2010).

Missing trait values (5 % of the total data) were imputed using the 
‘mice’ package (v 3.16.0, van Buuren and Groothuis-Oudshoorn, 2011). 
Imputation was performed based on the mean trait values per genus or, 
when this information was unavailable, per family. Trait values were Ta
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log- or sqrt-transformed (Májeková et al., 2016).

2.4. Diversity measures

All diversity measures were calculated and statistical analyses were 
performed using (R Core Team, 2023). The TD was assessed for the 
entire community of vascular plant species (‘vegan’ R package, 
v3.1.163). Species richness was measured as the number of species per 
plot. Shannon index gives insights on both species richness and on the 
evenness of species in the community and was calculated as: 

Shannon = −
∑

piln(pi)

where pi is the proportional cover of species i.
As compared to the Shannon index, the Simpson’s index places 

greater emphasis on the species with the highest cover and is less sen-
sitive to species with minor cover values. It was measured as: 

Simpson = 1 −
∑

p2
i 

In line with findings in the literature (Fornoff et al., 2017), which 
indicated that the overall FD of plant communities did not influence 
pollinator species richness, we decided to overlook this component of 
diversity. Instead, we chose to focus on individual flower traits. The FD 
for each trait was calculated solely across the insect-pollinated species (i. 
e., ‘flowering species’) within the community. It was based on the 
quadratic entropy (Rao, 1982), calculated as: 

FD =
∑S− 1

i=1

∑S

j=i+1
dijpipj 

where dij is the difference between the ith and jth species and pi is the 
proportion of the species i of the total community.

Furthermore, the average value of each trait calculated considering 
the cover of species, i.e., the community-weighted means (CWM) 
(Garnier et al., 2004), was assessed as: 

CWM =
∑n

i=1
pi × trait 

where n is the number of species, pi is the relative cover of species i in the 
community, and trait is the trait value of the species i.

For binary and categorical traits (i.e., symmetry and color, respec-
tively), CWM was calculated by considering the dominant level (setting 
CWM.type = "dom") and by transforming traits into dummy variables, 
subsequently assessing the abundance of each level (setting CWM.type =
"all").

Both FD and CWM were assessed using the ‘FD’ package (v1.0–12.3, 
Laliberté et al., 2014).

2.5. Statistical analysis

A principal component analysis (PCA; prcomp function, stats pack-
age v3.6.2) was performed using the five proxies of local grazing pres-
sure: dung counts, bite marks, trampling intensity, litter height, and 
litter cover (see ‘2.2 Grazing regimes’). The first principal component 
(PC1, 47.99 % of variance) was interpreted as a ’local grazing pressure’ 
gradient and each plot was associated with its score on this axis (Fig. S2, 
Table S1).

The statistical analysis consisted of two main parts. First, grazed 
areas were compared with abandoned areas in terms of FD and CWM. 
For this purpose, we implemented linear mixed-effects models using the 
‘lme4’ package (version 1.1.32). For the CWM of symmetry, we utilized 
a generalized linear model to account for the binary nature of the 
response variable, while for CWM of color, we applied mixed-effects 
multinomial logistic regression to appropriately model the multiple 
categories of the response variable (‘mclogit’ package, v0.9.6). Site was 
included as a random factor in all models to account for unobserved 
biogeographical and environmental differences across sites. The FD of 
height, area, and initiation were log-transformed, while FD of symmetry 
and color underwent quadratic transformation to ensure normality and 
homoscedasticity of the residuals.

In the second part of the analysis, we focused exclusively on grazed 
plots to investigate the direct and indirect effects of grazing regimes on 
the FD and CWM of the flowering communities. To this end, we 
employed two piecewise structural equation models (SEM, ‘piece-
wiseSEM’ package v2.3.0, Lefcheck, 2016), a statistical framework that 
allows for the simultaneous testing of multiple hypotheses and the 
quantification of both direct and indirect effects among variables. This 
approach expands traditional SEM models by allowing the inclusion of 
random effects and different types of response distributions, making it 
especially well-suited for ecological data and relatively small sample 
sizes. Relationships among variables were expressed in a causal network 
based on prior knowledge and scientific literature (Fig. S3a–b) and then 
translated into a set of individual equations, one for each relationship, 
which were evaluated separately and subsequently combined to assess 
the overall structure of the system. The SEMs included four grazing 
regime variables - cattle dominance, controlled grazing, stocking rate, 
and local grazing pressure - as potential drivers of plant diversity. The 
TD was represented by species richness, Shannon, and Simpson indices 
of the whole plant community, while FD and CWM were calculated for 
the flowering species, based on the floral traits reported in Table 2. Each 
component of the SEM was fitted using linear mixed-effect models 
(‘nlme’ package v3.1.160, Pinheiro et al., 2022) with site as random 
factor, to account for site-specific variability and control for potential 
biases arising from the unequal number of plots across farms. A gener-
alised linear mixed-effect model (‘lme4’ package v1.1.32, Bates et al., 

Table 2 
Flower traits used to calculate FDs and CWMs.

Trait Category Unit Levels/range Data 
structure

Ecological importance Source

Height Morphology cm 2.97 – 1250 continuous flower recognition direct measurement; Aeschimann et al., 
(2004); Pignatti et al., (2017)

Area Morphology cm2 0.02–51.16 continuous flower recognition direct measurement; Aeschimann et al., 
(2004); Pignatti et al., (2017)

Symmetry Morphology 1/0 radial/bilateral binary hosting insects with different 
foraging adaptations

direct measurement; Aeschimann et al., 
(2004); Pignatti et al., (2017)

UV reflectance Reflectance % 0.24–82.43 continuous flower recognition direct measurement; FReD database; 
BiolFlor database

Color Reflectance - violet (400 nm); 
blue (450 nm); white (550 nm); 
yellow (580 nm); pink (650 nm)

categorical flower recognition BiolFlor database; Aeschimann et al., 
(2004); Pignatti et al., (2017)

Flowering 
initiation

Phenology Month 1 – 12 integer onset of resource availability Aeschimann et al., (2004); Pignatti et al., 
(2017)

Flowering 
duration

Phenology Month 1 – 12 integer duration of resource 
availability

Aeschimann et al., (2004); Pignatti et al., 
(2017)
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2015) was used for species richness count data, and after exploring 
overdispersion in model residuals, a Poisson error distribution was used. 
To ensure that all variables contributed comparably to the models, 
grazing management variables were standardized. For the CWM of bi-
nary and categorical traits, the abundance of each level was used. In 
order to respect assumptions of normality and homoscedasticity of the 
model residuals, fine-scale grazing intensity, FD of flower height, flower 
area, flower UV reflectance, flowering initiation and duration and CWM 
of white color were log-transformed; the FD of flower color was 
squared-, and CWM of pink color was sqrt-transformed. Since CWM of 
blue and purple colors had very low values, indicating their limited 
presence in the communities, they were aggregated (hereafter ‘blue’) 
and log-transformed. Model fit was assessed using Shipley’s d-separa-
tion test and the Akaike information criterion corrected for small sample 
size (AICc). The final optimized model was selected because it had the 
lowest AICc, included the most variables, and showed a statistically 
non-significant Fisher’s C statistic (p > 0.05), indicating that the model 
adequately captured the hypothesized causal structure (Grace et al., 
2010).

Before running SEMs, all variables were investigated for collinearity 
and those with Spearman’s rank correlation coefficient > 0.6 were 
excluded from the models, according to Dormann et al. (2013) (Fig. S4
a-b).

3. Results

3.1. Grazed vs. abandoned

A total of 509 vascular plant species were recorded, including 411 
flowering species (tab. S2). The FD for the latter did not significantly 
differ between grazed and abandoned grasslands, except for the di-
versity of flower UV reflectance, which was higher in grazed areas 
(Fig. 2a). The CWM traits exhibited significant differences between 
grazed and abandoned grasslands (Fig. 2b; Tab. S3–4). Grazing signifi-
cantly increased flower area, UV reflectance, flowering initiation time, 
duration, and pink flowers’ cover while decreasing plant height (Fig. 3). 
The CWM for symmetry, instead, did not vary significantly between the 
two groups (tab. S5).

3.2. Taxonomic diversity response to grazing regimes

Local grazing pressure significantly influenced TD, having a positive 
effect on the Simpson index, which in turn was positively related to the 
Shannon index (Fig. 4a-b). In contrast, grazing regimes measured at the 
farm scale - including stocking rate, controlled grazing, and cattle 
dominance - did not show any significant effect on TD.

3.3. Taxonomic diversity mediates flower functional response to grazing 
regimes

Local grazing pressure influenced the FD and CWM of several traits 
indirectly, through its effect on the Simpson index. Higher Simpson 
index values were associated with a lower FD of flower symmetry and 
UV-reflectance and a greater dominance of radially symmetrical and 
yellow flowers. In contrast, the Shannon index was positively related to 
the FD of flower symmetry, flowering initiation and UV reflectance, as 
well as to a greater representation of zygomorphic and non-yellow 
flowers.

4. Discussion

4.1. Extensive grazing influences community-weighted means more than 
functional diversity

Biodiversity in semi-natural grasslands largely depends on the 
maintenance of extensive grazing practices. According to the 

’intermediate disturbance hypothesis’ (Connell, 1978; Grime, 1973) and 
the ’land use-moderated conservation effectiveness hypothesis’ (Kleijn 
et al., 2011; Kleijn and Sutherland, 2003), moderate grazing disturbance 
reduces competitive exclusion, thereby facilitating niche partitioning 
and promoting species coexistence. However, contrary to our expecta-
tions, extensive grazing was not associated with an increase in the flower 
FD, except for UV reflectance. This could be explained by several 
mechanisms. On the one hand, many of the species colonizing aban-
doned grasslands contribute to an increase in flower functional diversity 
(e.g., Rosa spp., Rubus spp., Crataegus monogyna, Spartium junceum). On 
the other hand, species adapted to grazing may persist for decades after 
abandonment, thereby contributing to high levels of flower traits’ di-
versity (Johansen et al., 2016). Finally, while wild ungulates alone are 
not sufficient to preserve the botanical composition of semi-natural 
grasslands across wide extents, they can contribute to its maintenance 
(Rupprecht et al., 2022). Overall, our results are consistent with other 
studies which, although not focused on flower traits, have demonstrated 
that the abandonment of grazing does not reduce the availability of 
flower resources for pollinators (Ford et al., 2012; Johansen et al., 
2019). Conversely, extensive grazing drove the community-weighted 
means of the flower traits. A lower flower height in grazed grasslands 
reflected plants’ adaptive strategy to mitigate the effects of livestock 
disturbance, since growing close to the ground represents a morpho-
logical avoidance trait that enhances plant species fitness in grazed areas 
(Briske, 1996). The higher flower size in grazed areas could be attributed 
to the fact that many species with large flowers also exhibit mechanical 
avoidance traits reducing flowers’ accessibility to livestock, such as 
spinescence (e.g., Carlina acanthifolia and Cirsium eriophorum). Species 
with longer flowering periods were more abundant under extensive 
grazing, likely because flowering across long periods may enhance the 
reproductive success rate, especially during periods of reduced grazing 
pressure. Our findings suggest that grazing further favors late-flowering 
species, possibly because traits such as spines (e.g., Euphorbia spinosa), 
chemical defenses (e.g., Artemisia absinthium), or a prostrate growth 
form (e.g., Seseli montanum) reduce herbivory, allowing these species to 
persist and reproduce even during and after the grazing season. Finally, 
we observed an increase in the UV reflectance of the flower community 
and an increased prevalence of pink flowers, likely in relation to the 
abundance of pasture-associated species such as Centaurea nigrescens and 
Onobrychis viciifolia, which reflect strongly in these spectral ranges.

Overall, our results demonstrate that, although not determining an 
increase in flower traits’ diversity, extensive grazing favoured several 
functional traits that are beneficial to insect pollinators. Larger flowers 
tend to be more attractive because they are more visible (Ohashi and 
Yahara, 2001) and they signal a greater potential reward (Makino and 
Sakai, 2007; Ortiz et al., 2021; Tavares et al., 2016) resulting in higher 
visitation rates and pollinator species richness (Delgado et al., 2023; 
Junker et al., 2013; Lázaro et al., 2020). The higher UV reflectance 
observed in grazed areas is crucial for many pollinators for dis-
tinguishing flowers (Fornoff et al., 2017; Rae and Vamosi, 2013). Insects 
detect UV-reflecting flowers with specific patterns that contrast with 
UV-absorbing backgrounds, such as leaves and soil, including the 
‘bull’s-eyes’ of Asteraceae which enhance long-distance recognition 
(Bukovac et al., 2017; Chittka et al., 1994; Koski and Ashman, 2014; 
Silberglied, 1979). The longer flowering duration observed under 
extensive grazing also supports pollination to a greater extent than the 
one observed in abandoned areas by enhancing floral resource avail-
ability during months with limited resources, when social bees and 
many other pollinators remain largely active (Blüthgen and Klein, 2011; 
Olesen et al., 2008; Scheper et al., 2014; Sutter et al., 2017).

Extensive grazing also increases the abundance of species with pink 
flowers. This may be advantageous for butterflies, which often prefer 
pink flowers due to their red-sensitive photoreceptors (Reverté et al., 
2016; Simms, 2013; Yurtsever et al., 2010), despite the widely varying 
color preferences across families and species (e.g., Pohl et al., 2011; 
Neumayer and Spaethe, 2007; Osorio and Vorobyev, 2008). Notably, 
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Fig. 2. Flower trait FD (a) and CWM (b) distribution and results of linear mixed models comparing abandoned and grazed areas. The R2 values indicate the pro-
portion of variance explained by the model. Green dots represent significant relationships, while grey dots indicate non-significant effects. Significance levels are 
shown as ***p ≤ 0.001, **p ≤ 0.01, p* ≤ 0.05. Trait values used to assess FD and CWM were log- or sqrt-transformed.
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species like Onobrychis viciifolia and Centaurea nigrescens are especially 
significant for Polyommatus butterflies, a genus within the Lycaenidae 
family (Parile et al., 2021; ̌Slancarová et al., 2012), and for different bee 
species (Hayot Carbonero et al., 2011; Kells, 2001; Londei and Marzi, 
2024). This is particularly significant given the host-plant specificity of 
butterflies and the close dependence of several butterfly and bee species 
on extensive agricultural systems, with both groups experiencing severe 
declines in Europe also due to habitat loss (Ekroos et al., 2020; Guar-
iento et al., 2023; Schwarz and Fartmann, 2021; Warren et al., 2021).

4.2. Local grazing pressure plays a key role in shaping taxonomic 
diversity

Local grazing pressure emerged as a critical factor influencing the TD 
of the whole community, with special reference to the diversity of 
dominant species (Simpson index). Sustaining a sufficiently intense and 
evenly distributed local grazing pressure within grasslands may help 
ensure sustainable forage consumption, balanced nutrient provision, 
and avoid the strong dominance of few species (Napoleone et al., 
2022a). Indeed, moderate grazing intensity is widely recognised as a key 
factor in maintaining species diversity in semi-natural grasslands 
(Bengtsson et al., 2019; Johansen et al., 2019; Schils et al., 2022). 
Undergrazing can lead to the spread of competitive species, resulting in 
reduced diversity (Cislaghi et al., 2019; Zou et al., 2016), while over-
grazing may cause dominance by few species with grazing tolerance 
strategies (Chillo et al., 2017; Díaz et al., 2007; Mysterud, 2006). Both 
processes are detrimental to forage quality and species diversity con-
servation, harming ecosystem conservation and services.

The dry calcareous grasslands here investigated are characterized by 
low grazing carrying capacity and very low to moderate stocking rates. 
Within this context, grazing regimes defined at the farm level - such as 
stocking rate, grazing system, and livestock species - did not signifi-
cantly influence TD. The stocking rate, recorded at the farm scale, failed 
to explain TD patterns, likely because its spatial resolution does not 
reflect the fine-scale heterogeneity in species composition that we 
observed within farms (Napoleone et al., 2022a). Similarly, grazing re-
gimes often associated with higher biodiversity, such as rotational 
grazing and/or shepherding (Perotti et al., 2018; Ravetto Enri et al., 
2017), exhibited no effect on TD in our case. In contrast with previous 
studies that found cattle to be associated with higher species richness 

and abundance of flowering species as compared to sheep (Carvell, 
2002; Cutter et al., 2022; Ravetto Enri et al., 2017; Tóth et al., 2018), we 
found no significant influence of livestock species on TD.

These findings highlight that, in extensively managed dry calcareous 
grasslands, the impact of grazing on biodiversity is not adequately 
captured by farm-level grazing regimes. Instead, it is the actual local 
grazing pressure that drives the fine-scale patterns of vascular plant 
diversity. This emphasizes the importance of accounting for within-farm 
heterogeneity when assessing the ecological outcomes of extensive 
grazing management.

4.3. Flower traits’ patterns strongly rely on species evenness

Local grazing pressure influenced the TD of the whole plant com-
munity and, indirectly, the FD and CWM of flowering species. Moderate 
grazing increased the diversity of dominant species, as indicated by a 
higher Simpson index, which emphasizes abundant taxa. However, this 
did not necessarily lead to greater FD of floral traits, as many pasture- 
related dominant species - such as Carlina corymbosa, Pilosella officina-
rum, Leontodon hispidus - share similar floral characteristics (e.g. acti-
nomorphic, yellow flowers). In contrast, when high Simpson diversity 
coincided with a high Shannon index - reflecting a more even distribu-
tion of rare species i.e., those with low abundance values in our sampling 
- FD increased, with greater representation of bilaterally symmetrical 
and non-yellow flowers. Functionally distinct but less dominant species, 
such as Thymus longicaulis, Teucrium chamaedrys, and Ononis spinosa, 
contributed to this pattern. These results suggest that FD of floral traits is 
enhanced not by dominance-driven diversity, but by a balanced com-
munity composition encompassing both dominant and rare species.

The diversity of flower symmetry supports a wide range of pollina-
tors since zygomorphic flowers are often visited by specialized pollina-
tors (Fenster et al., 2004; Keasar, 2020; Poisot et al., 2011; Yoder et al., 
2020). Indeed, their evolution from ancestral actinomorphic flowers, 
around 50 million years after the emergence of angiosperms, coincides 
with the diversification of specialized pollinators (Citerne et al., 2010; 
Hileman, 2014; Reyes et al., 2016), as these morphologically complex 
flowers restrict nectar access and favor specific pollinator groups with 
appropriate morphologies, such as bees with specialized mouthparts 
(Jirgal and Ohashi, 2023; Krishna and Keasar, 2018; Lázaro and Totland, 
2014; Zhao et al., 2016). Notably, bilateral symmetry frequently 

Fig. 3. CWM of symmetry and color in grazed and abandoned plots. Symmetry distribution (left) shows the percentage of bilateral versus radial flower types; color 
spectrum (right) displays the percentage of dominant reflectance wavelengths.
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coincides with tubular corollas, accessible only to long-tongued polli-
nators (Amorim et al., 2014; Johnson et al., 2017; Nilsson, 1988; Was-
serthal, 1997).

Also, the diversity of floral reflectance spectrum, positively corre-
lated with FD of flower symmetry, facilitates the presence of different 
insect pollinators, owing to the variation in their visual systems and 
color perception abilities (Harder and Barrett, 2006; van Der Kooi et al., 
2021). Many insects are attracted to yellow flowers as this color en-
hances signals from green receptors and blue and/or UV receptors 
(Prokopy and Owens, 1983). Nevertheless, abundant blue and violet 
flowers support a wide range of insects with trichromatic vision and/or 
blue-sensitive photoreceptors, such as bees and butterflies (Giurfa et al., 

1995; Lunau and Maier, 1995; van der Kooi et al., 2023; van Der Kooi 
et al., 2021). However, information on the vision of many solitary and 
wild bees is lacking and other factors such as background vegetation 
color could also influence insects’ ability to identify different flower 
colors (van Der Kooi et al., 2021).

In conclusion, these insights provide further understanding of how 
extensive grazing can influence biodiversity patterns in semi-natural 
grasslands. Our findings suggest that moderate local grazing pressure 
effectively sustains flower diversity in dry semi-natural grasslands as it 
ensures an even species abundance, including both dominant and rare 
species. This potentially supports a broad range of pollinators, including 
specialist insect groups that are declining due to habitat degradation 

Fig. 4. Structural equation models (SEM) with grazing regimes and taxonomic diversity (TD) as predictors of (a) functional diversity (FD) and (b) community- 
weighted mean (CWM) of flower traits. Solid and dashed arrows represent, respectively, significant s (p < 0.05) and non-significant (p > 0.05) links; green and 
red arrows indicate, respectively, positive and negative links. Path coefficients are standardized. Fisher’s C statistic, its significance (P), and corrected AIC (AICc) are 
reported at the bottom.
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(Brodie et al., 2014; Fortuna and Bascompte, 2006).

5. Study limitations and opportunities

We examined the links between extensive grazing and flower func-
tional diversity and traits’ composition in semi-natural dry grasslands 
exploring the role of taxonomic diversity in mediating these links.

Our findings indicate a possible pathway towards conserving the role 
of dry calcareous grasslands in pollination services through extensive 
grazing, which favours flower traits beneficial to insect pollinators. It is 
important to mention that the distribution of grazing pressure within 
farms significantly affects flower diversity. Therefore, regulating grazing 
as locally as possible may sustain diverse pollinator communities by 
maintaining a range of floral traits aligned with their foraging and 
sensory preferences. This implies that defining grazing regimes at the 
farm scale is not sufficient: such regimes must be implemented and 
adjusted at finer spatial scales, taking into account the ecological het-
erogeneity, e.g., microtopography, typical of semi-natural grasslands, 
especially in mountainous regions where it substantially influences 
livestock movements. Local regulation of grazing parameters - including 
stocking rate, grazing technique, and livestock type - should aim to 
ensure adequate grazing pressure, also depending on the fine-scale 
mosaic of vegetation, and avoid, for instance, excessive litter accumu-
lation in some areas and soil erosion in others. This approach is not only 
relevant to the functional diversity of insect-pollinated species, but also 
to the conservation status of the habitat and the maintenance of forage 
yield and quality, as previously demonstrated (Napoleone et al., 2022a).

In this regard, we quantified local grazing pressure as a combined 
gradient based on several well-established field proxies. While this 
approach allows for a standardized estimation across sampling units, 
further studies supported by direct data on livestock movement (e.g., 
from GPS collars) could contribute to further improving the precision of 
these estimates. At a broader scale, meta-analyses and reviews will be 
essential to upscale these relationships across different environmental 
and management contexts.

Noteworthy, our study did not include empirical data on insect 
community composition, thus predicting which pollinator insects would 
occur under different management practices remains beyond the scope 
of this study. We acknowledge the need for caution when employing 
flower traits to infer plant-insect interactions, as this approach may 
oversimplify the complexity of natural dynamics, particularly when 
observational data on pollinators is missing (Dellinger, 2020; Ollerton 
et al., 2009; Rosas-Guerrero et al., 2014; but see Ashworth et al., 2015). 
Flowers attract a broader range of visitors than what is expected solely 
from flower traits and secondary/less efficient pollinators may also in-
fluence flower traits. A future opportunity lies in sampling richness and 
visitation frequency of insect pollinators to profoundly enhance our 
understanding of how grazing management influences the precise 
composition of pollinators via flower traits.

While our study directly addresses the ecological consequences of 
grazing abandonment - a major driver of land-use changes in mountain 
grasslands - it does not consider the potential interacting effects of 
climate change. Future research should therefore investigate how 
grazing practices and climate-related stressors jointly shape 
plant–pollinator interactions and grassland functioning over time.
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Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., Mcclean, C., Osborne, P.E., 
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Linking species-level network metrics to flower traits and plant fitness. J. Ecol. 108, 
1287–1298. https://doi.org/10.1111/1365-2745.13334.

Lefcheck, J.S., 2016. piecewiseSEM: piecewise structural equation modelling in r for 
ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579. https://doi. 
org/10.1111/2041-210X.12512.

Levine, J.M., HilleRisLambers, J., 2009. The importance of niches for the maintenance of 
species diversity. Nature 461, 254–257. https://doi.org/10.1038/nature08251.

Londei, T., Marzi, G., 2024. Honey bees collecting pollen from the body surface of 
foraging bumble bees: a recurring behaviour. Apidologie 55, 4. https://doi.org/ 
10.1007/s13592-023-01049-1.

Lunau, K., Maier, E.J., 1995. Innate colour preferences of flower visitors. J. Comp. 
Physiol. A 177, 1–19. https://doi.org/10.1007/BF00243394.

MacArthur, R., 1955. Fluctuations of Animal Populations and a Measure of Community 
Stability. Ecology 36, 533–536. https://doi.org/10.2307/1929601.
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