

Aumentar a altura da copa das videiras como forma de compensar a remoção das folhas basais antes da floração

Thibaut Verdenal^{™1}, Vivian Zufferey¹, Àgnes Dienes-Nagy², Sandrine Belcher², Gilles Bourdin², Jean-Sébastien Reynard¹, Jean-Laurent Spring¹

- ¹ Agroscope, avenue Rochettaz 21, 1009 Pully, Switzerland
- ² Agroscope, route de Duillier 60, case postale 1012, 1260 Nyon 1,

A perda de rendimento após a remoção intensiva das folhas antes da floração (LR) pode chegar a 40-50 % do potencial inicial. Um estudo realizado pela Agroscope na videira branca Petite Arvine avaliou os efeitos de uma poda mais alta para compensar a área foliar removida na área do cacho, seja na fase pré-floração ou na fase de floração. A combinação de LR na floração e poda mais alta provou ser um bom equilíbrio, mitigando a perda de rendimento causada pela LR anterior e melhorando ligeiramente o amadurecimento das uvas, bem como aumentando a acumulação do precursor de aroma Cys-3MH no mosto e melhorando ligeiramente a composição do vinho em termos de teor de açúcar solúvel e ácido.

Benefícios e riscos da remoção de folhas Resultados e discussão antes da floração

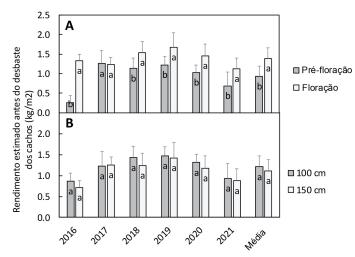
A LR precoce nas videiras, realizada antes da frutificação, é utilizada para regular o rendimento e melhorar a qualidade das uvas, limitando a frutificação e reduzindo o risco de doenças. O sucesso desta prática depende muito da variedade, do clima e da intensidade da LR1. A moderação da intensidade da remoção de folhas minimiza o risco de perda excessiva de rendimento². A remoção de folhas antes da floração melhora a composição da uva, especialmente em vinhos tintos, aumentando o teor de açúcar, polifenóis e intensidade da cor³; no entanto, pode reduzir a fertilidade dos botões e o vigor das videiras que são muito jovens ou pouco saudáveis4. Estudos na Suíça confirmaram a sua eficácia para variedades tintas, especialmente Pinot noir, enquanto os seus efeitos sobre os precursores do aroma das variedades brancas permanecem incertos⁵.

Material e métodos

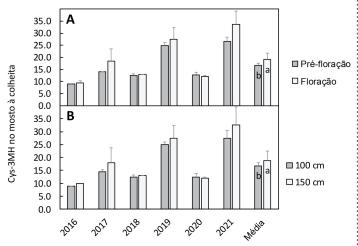
Os métodos completos do ensaio estão descritos no artigo original⁶. Um ensaio de campo de seis anos (2016-2021) foi realizado em Leytron, Suíça, para estudar os efeitos do momento da remoção das folhas (LR) e da altura da copa nas videiras Petite Arvine. O desenho experimental foi constituído por blocos aleatórios combinando dois períodos de remoção de folhas (pré-floração, BBCH 57, e floração, BBCH 65) e duas alturas da canópia (100 cm e 150 cm, através do corte da sebe). A vinha apresentava solo profundo e pedregoso, com pH elevado e rico em matéria orgânica.

As medições incluíram a fertilidade das videiras, estimativas de rendimento, teor mineral das folhas, índice de clorofila, área foliar exposta à luz e peso da poda de inverno. Foram realizadas análises do mosto e do vinho para determinar o teor de azoto (YAN), o precursor aromático cisteína-3-mercaptohexanol (cys-3MH) no mosto e o teor fenólico no vinho, tendo sido também realizada uma prova sensorial. Os dados foram analisados utilizando modelos ANOVA, tendo em conta o ano, o momento da LR, a altura da canópia e as réplicas. A análise sensorial foi realizada anualmente com painéis treinados

A Tabela 1 resume os resultados das medições na vinha, análises do mosto e provas de vinho em função do momento da LR ou da altura do corte.


Pré-floração LR

Quando comparada com a LR na fase de floração, a LR pré-floração reduziu o rendimento em 36 % em média e o trabalho de desbaste


TABELA 1. Medições da vinha, análises do mosto e degustação do vinho em função do momento da remoção das folhas e da altura da canópia. Dados médios para 2016-2021. Petite Arvine, Leytron, Suíça. ***p < 0.001; **p < 0.01; *p < 0.05; •p < 0.10; n.s., não significativo (teste de Tukey).

			Momento da remoção das folhas			Altura de poda			Interação
	Observações			Floração	Valor de p	100 cm	150 cm	Valor de p	Tempo LR × Poda
		Fertilidade dos botões (cachos por rebento)	1,7	1,8	*	1,7	1,7	n.s.	n.s.
		Azoto foliar (% massa seca)	2,6	2,5	n.s.	2,5	2,6	n.s.	n.s.
		Fósforo foliar (% massa seca)	0,2	0,2	n.s.	0,2	0,2	n.s.	n.s.
	_	Potássio nas folhas (% massa seca)	1,6	1,7	n.s.	1,7	1,6	n.s.	n.s.
	i	Cálcio nas folhas (% massa seca)	3,3	3,3	n.s.	3,3	3,3	n.s.	n.s.
	2	Magnésio nas folhas (% massa seca)	0,3	0,3	n.s.	0,3	0,3	n.s.	n.s.
	2	Índice de clorofila em meados de agosto	523	530		528	525	n.s.	n.s.
	įċ	Rendimento estimado inicial (kg/m²)	0,9	1,4	***	1,2	1,1		n.s.
	Medições na vinha	Desbaste de cachos (número removido por videira)	0,4	1,9	***	1,4	0,8	**	***
		Área foliar exposta à luz (m²/m² de solo)	1,2	1,2	n.s.	1,1	1,3	***	n.s.
		Peso do cacho na colheita (g)	139	170	***	167	141	***	n.s.
		Número de bagos por cacho	160	198	***	182	176	n.s.	n.s.
		Relação folha/fruto (m²/kg)	2,1	1,3	***	1,5	1,9		n.s.
	Análises obrigatórias	Açúcares solúveis totais (Brix)	23,6	23,6	n.s.	23,4	23,7	*	n.s.
		pH	3,01	3,01	n.s.	3,01	3,02	*	n.s.
		Acidez titulável (g tartarato/L)	11,1	10,8	***	11,0	11,0	n.s.	n.s.
	ģ	Ácido tartárico (g/L)	9,6	9,3	***	9,6	9,3	***	n.s.
	ses	Ácido málico (g/L)	4,0	3,8	**	3,9	4,0		n.s.
	E	Azoto assimilável pela levedura (mg N/L)	265	242	***	255	252	n.s.	**
	V	Cys-3MH (μg/L)	18	19	***	17	20	***	**
		Intensidade da cor	4,06	4,13	***	4,08	4,12	***	n.s.
		Sabor frutado	4,4	4,5	n.s.	4,4	4,5	n.s.	n.s.
90		Floral	2,8	2,7	n.s.	2,7	2,9		n.s.
.5	7	Herbáceo	1,7	1,6	n.s.	1,7	1,6	n.s.	n.s.
ą	8	Impressão global do nariz	4,3	4,4		4,3	4,4	n.s.	n.s.
Prova de vinhos	(citação 1-7)	Volume	4,5	4,6	*	4,5	4,6	*	n.s.
4	;	Acidez	4,5	4,5	n.s.	4,6	4,5	n.s.	n.s.
		Amargor	2,4	2,4	n.s.	2,5	2,3	n.s.	n.s.
		Impressão geral	4,2	4,3	*	4,1	4,3	**	n.s.

FIGURA 1. Rendimento estimado antes do desbaste dos cachos por ano, na fase de fecho dos cachos, em função do momento da remoção das folhas (A) e da altura da canópia (B). As barras de erro correspondem ao desvio padrão. Os números seguidos por letras diferentes dentro de um ano são significativamente diferentes (teste de Tukey, p < 0.05).

FIGURA 2. Concentração do precursor de aroma Cys-3MH no mosto à colheita por ano, em função do momento da remoção das folhas (A) e da altura da canópia (B). As barras de erro correspondem ao desvio padrão. Os números seguidos de letras diferentes são significativamente diferentes (teste de Tukey, $\rho < 0.05$).

dos cachos em 62 %, economizando custos de mão de obra (Figura 1A). Não houve efeito significativo na composição das uvas na colheita, embora a acidez titulável (+0,3 g de tartarato/L; +3 %) tenha aumentado ligeiramente, o que pode ser considerado benéfico no contexto das alterações climáticas, que podem reduzir a acidez, e também se observou um ligeiro aumento na concentração de YAN (+23 mg N/L; +9 %).

Riscos

As perdas de rendimento podem ser excessivas e nem sempre são compensadas pela melhoria da composição química dos frutos ou pela redução da podridão. O efeito da LR pré-floração dependia das condições meteorológicas anuais, com potencial para perdas drásticas de rendimento em condições desfavoráveis (por exemplo, tempo frio e nublado durante a floração em 2016). O LR pré-floração teve um impacto negativo na concentração de Cys-3MH no mosto (-6 %), o que pode ter reduzido a concentração de tiol do vinho, afetando os perfis de sabor. Os vinhos deste tratamento apresentaram menor teor de polifenóis (índice de Folin), menor intensidade de cor e menores classificações sensoriais (impressão geral).

Aumento da altura da canópia

Benefícios

O aumento da altura da canópia melhorou ligeiramente o amadurecimento das uvas, o que aumentou o TSS (teor de açúcar) e reduziu as concentrações de ácido tartárico e málico nas uvas. Também se verificou uma melhoria na concentração de Cys-3MH no

mosto das videiras desfolhadas (+18 %; p < 0,0001) e na sensação de boca do vinho e a impressão hedónica geral.

Desvantagens

O aumento da altura da canópia não compensou totalmente a perda de rendimento por LR, uma vez que o peso dos cachos tendeu a diminuir (–16 %; p < 0,10), provavelmente devido à competição entre o crescimento vegetativo e reprodutivo (Figura 1B). O aumento da área foliar (+15 %) não resultou em melhorias significativas na química da uva, além de um aumento modesto na concentração de açúcar (+0,3 Brix), e pode potencialmente limitar o efeito positivo da LR contra o ataque de fungos (sem resultado). As alterações na composição do mosto foram relativamente pequenas em comparação com os outros tratamentos com LR, mostrando benefícios limitados para a qualidade do vinho branco em termos de acidez e teor de açúcar.

Efeitos combinados de uma poda mais elevada na fase de floração

As condições climáticas antes da fase de floração da videira, particularmente a baixa temperatura e a pouca luz, afetaram negativamente a frutificação e exacerbaram os efeitos da LR precoce. A LR intensiva antes da floração parece ser um tratamento excessivo, pois não só pode levar a uma perda excessiva de rendimento, como também pode ter um efeito negativo na concentração de Cys-3MH no mosto. Em comparação com a LR antes da floração, a LR na fase de floração limitou a perda de rendimento e melhorou a composição das uvas Petite Arvine, reduzindo a acidez e minimizando qualquer diminuição na concentração de Cys-3MH, especialmente quando combinada com um corte mais alto da sebe.

Uma combinação de LR na fase de floração e um corte mais alto das sebes proporcionou uma abordagem equilibrada, reduzindo a perda de rendimento e melhorando ligeiramente a composição do vinho, particularmente através do aumento da acumulação de Cys-3MH no fruto, o que pode melhorar a qualidade aromática. Serão necessárias mais investigações para compreender a fisiologia envolvida na formação dos precursores aromáticos. ■

Extraído do artigo de investigação "Increasing grapevine canopy height to compensate for preflowering basal leaf removal" (OENO One, 2025).

- 1 VanderWeide, J., Gottschalk, C., Schultze, S. R., Nasrollahiazar, E., Poni, S., & Sabbatini, P. (2021). Impacts of pre-bloom leaf removal on wine grape production and quality parameters: A systematic review and meta-analysis. *Frontiers in Plant Science*, 11. https://doi.org/10.3389/fols.2020.621585
- **2** Verdenal, T., Zufferey, V., Dienes-Nagy, Á., Bieri, S., Bourdin, G., Reynard, J.-S., & Spring, J.-L. (2024). Exploring grapevine canopy management: effects of removing main leaves or lateral shoots before flowering. *Oeno One*, 58(4). https://doi.org/10.20870/oeno-one.2024.58.4.8175
- **3** Poni, S., Casalini, L., Bernizzoni, F., Civardi, S., & Intrieri, C. (2006). Effects of early defoliation on shoot photosynthesis, yield components, and grape composition. *American Journal of Enology and Viticulture*, 57(4), 397–407. https://doi.org/10.5344/ajev.2006.57.4.397
- **4** Noyce, P. W., Steel, C. C., Harper, J. D. I., & Wood, R. M. (2016). The basis of defoliation effects on reproductive parameters in Vitis vinifera L. cv. Chardonnay lies in the latent bud. *American Journal of Enology and Viticulture*, 67(2), 199–205. https://doi.org/10.5344/ajev.2015.14051
- **5** Verdenal, T., Zufferey, V., Dienes-Nagy, A., Bourdin, G., Gindro, K., Viret, O., & Spring, J.-L. (2019). Timing and intensity of grapevine defoliation: An extensive overview on five cultivars in Switzerland. *American Journal of Enology and Viticulture*, 70(4), 427–434. https://doi.org/10.5344/ajev.2019.19002
- **6** Verdenal, T., Zufferey, V., Dienes-Nagy, À., Belcher, S., Bourdin, G., Reynard, J.-S., & Spring, J.-L. (2025). Increasing grapevine canopy height to compensate for pre-flowering basal leaf removal. *Oeno One*, 59(2). https://doi.org/10.20870/oeno-one.2025.59.2.8451