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Abstract 
Climate change is having unprecedented impacts on human health, including increasing 

infectious disease risk. Despite this, health systems across the world are currently not 

prepared for novel disease scenarios anticipated with climate change. While the need for 

health systems to develop climate change adaptation strategies has been stressed in the 

past, there is no clear consensus on how this can be achieved, especially in rural areas 

in low- and middle-income countries that experience high disease burdens and climate 

change impacts simultaneously. Here, we highlight the need to put health systems in 

the context of climate change and demonstrate how this can be achieved by taking into 

account all aspects of infectious disease risk (i.e., pathogen hazards, and exposure and 

vulnerability to these pathogen hazards). The framework focuses on rural communities in 

East Africa since communities in this region experience climate change impacts, pres-

ent specific vulnerabilities and exposure to climate-related hazards, and have regular 
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exposure to a high burden of infectious diseases. Implementing the outlined approach can 

help make health systems climate adapted and avoid slowing momentum towards achiev-

ing global health grand challenge targets.

1. Introduction
Climate change (see Glossary of terms in S1 Text) is one of the greatest global health chal-
lenges of the twenty first century [1–3]. Hotter global temperatures, more severe storms, rising 
oceans, and extreme droughts are leading to population displacement, local and international 
conflict, food and water insecurity, disrupted global trade, rising household costs, and collapse 
of social infrastructure and stability [1,4]. While different regions of the world experience 
different types of climate change impacts and associated social, economic, and environmental 
consequences, all regions experience unprecedented climatic extremes, and all suffer direct or 
indirect adverse human health impacts [3].

Direct and indirect health impacts of climate change, include non-communicable diseases 
such as heat stress, cardiovascular diseases, nutritional deficiencies, mental and/or physical 
stress, and exposure to pollution [5]. These health impacts are a consequence of climate- 
related hazards (e.g., high temperatures, flooding) which can individually or combined 
(compounding or cascading) increase disease risk [1,6,7]. For example, extreme heat has been 
linked to 98 million more people globally reporting moderate to severe food insecurity in 2020 
than annually in 1980–2010 [4], reversing progress towards achieving Sustainable Develop-
ment Goals such as hunger eradication [1,4].

Infectious diseases are another important health risk linked to climate change [4,5,8], and 
the pathogens associated with these infectious diseases can be considered as hazards [9,10], 
which will now be referred to as pathogen hazards. Global changes in climate and weather 
conditions are causing a shift in vector (e.g., ticks and mosquitoes) and wildlife reservoir dis-
tributions, altering the distribution and evolution of known and novel pathogens [11], poten-
tially increasing spillover risk to humans [12]. Additionally, infectious diseases that are not 
directly impacted by climate change are increasingly recognized as being impacted indirectly, 
which is the case for several neglected tropical diseases (NTDs) in low- and middle-income 
countries (LMICs) (e.g., leptospirosis, echinococcosis) [13–16].

While pathogen hazards are of increasing concern with climate change, an increase in 
these health hazards alone does not necessarily equate to an increase in disease risk (like-
lihood of succumbing to disease) [9,10]; individual exposure and vulnerability also play a 
role [9,17,18]. Differences in exposure are linked to differences in human behavior such as 
socio-economic status or practices which can influence exposure to pathogen hazards. Vulner-
ability can be at the individual level, with variation in immunity and therefore susceptibility to 
infections, or at the population level, with differences in access to healthcare. People who are 
most vulnerable to pathogen hazards and have regular exposure to pathogen hazards have a 
higher disease risk [19].

Rural communities in LMICs are predicted to experience greater combined pathogen 
hazards, and exposure and vulnerability to these hazards [3,19,20] due to fragile health sys-
tems and extreme climate events (e.g., droughts, wildfires, flooding) [21,22]. Further, in these 
regions, climate change is expected to shift the distribution of disease vectors and the distribu-
tion of humans, domestic animals, and biodiverse wildlife communities [23,24] with potential 
consequences for local and global health security (e.g., higher risk of emerging infectious 
diseases (EIDs), greater potential for long-distance pathogen spread, limited ability to detect 
outbreaks early, and increased burdens of NTDs [25]).
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Overcoming these challenges will require understanding the extent to which pathogen 
hazards are impacted by climate change [26]. Given that impacts of climate change on 
human infectious disease risk are tightly linked to the impact on animal and environmen-
tal health [14], this will require a One Health approach [27]. Additionally, technological 
advances (e.g., remote sensing information, real-time data sharing platforms, field-based 
diagnostic testing and sequencing), disease forecasting, strengthening of health systems, 
and a wide range of adaptation mechanisms to climate change will be key to helping with 
strategic transitions. However, there currently is no clear consensus on how to put this 
into practice in rural LMICs despite the high local and global health threats [25,28]. Con-
sequently, there is a need for a road map on how such an approach can be realistically and 
sustainably implemented at varying scales.

In this article, we review the implications of climate change for infectious diseases among 
rural communities in LMICs with a focus on East Africa, a hotspot for climate-related 
hazards (e.g., relatively rapid warming, extreme and long-term drought) [14] and infectious 
diseases (in particular NTDs) [29,30]. Further, rural communities in this region tend to 
be especially vulnerable given their limited access to water, sanitation, and health services, 
dependence on climate for livelihoods, and often marginalization from government priori-
ties [31–33]. Thus, East Africa provides a good example to illustrate how climate change can 
impact human health and infectious disease risk, and how health systems could transition 
towards climate-adapted health systems. We describe this transition by presenting key steps 
that should be taken to better support health services and communities in rural areas in 
LMICs in the face of climate change. Importantly, the theorical framework put together in 
the context of East Africa can be applied to many LMICs but would need to be adapted to the 
local environmental, ecological, socio-economic, and cultural context, which can differ drasti-
cally across the world (e.g., the ecological and socio-economic context and infectious diseases 
present in East Africa as described in Sections 2 and 3 are different from countries in East Asia 
such as China; [34]).

2. Environmental, ecological, and socio-economic impacts of 
climate change on rural communities in East Africa
The impact of infectious diseases on the health of rural communities in LMICs is influenced 
by shifts in environmental, ecological, and socio-economic conditions happening locally, 
nationally, and globally.

2A. Environmental and ecological impacts
For East Africa, key environmental impacts of climate change include extreme and unpre-
dictable droughts in dryland areas [35,36], flooding in forest and coastal regions [37,38], and 
other climate hazards [39]. Additionally, drylands, which make up much of East Africa, have 
shifted from semi-arid to arid landscapes due to frequent droughts [37,40–44], such as in 
Kenya (Fig 1).

While the consequences of such ecological changes have barely been explored in East 
African landscapes, theoretical patterns at a global scale suggest that below and above ground 
microbial communities can be disrupted, along with animal communities such as mammal 
and bird diversity [1,45,46]. In fact, climate change is a major contributor to African biodiver-
sity loss [47–49], due to habitat change (i.e., loss, alteration, or degradation), wildlife commu-
nity imbalance, temperature extremes, as well as floods and drought [32,48,50]. Impacts on 
ecosystem services are also apparent (e.g., shrinkage of rangelands altering carbon sequestra-
tion [51], proliferation of invasive species [41,52,53]) with important consequences on human 
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and animal health and wellbeing (e.g., loss of food and water provision, productive land, 
ecotourism [32,47]).

2B. Socio-economic impacts
The effect of climate change on the environment and specific ecosystem services has subse-
quent socio-economic impacts on rural communities. Poor soil fertility, degraded land, lim-
ited freshwater availability, and increased presence of agricultural pests with climate extremes 
have direct effects on crop yield and livestock production [21,22,54]. These losses in agricul-
tural productivity cause food and water insecurity resulting in malnutrition and thus immu-
nocompromised people and animals [21,55–57]. Hampered livelihoods, reduced incomes, 
physical capital, and capacity to invest have direct social impacts on farming households, 
limiting their capacity to face other expenditures, such as health and education [58].

For pastoral communities, that contribute 15–60% of meat and milk production in East 
Africa [59–62], unpredictable precipitation and degraded pastures are affecting migration 
routes and distances, as well as overlap with wildlife and other herding communities [63–66]. 
Such environmental stressors push wildlife, domestic animals, and humans into the same or 
new habitats where there is fertile land and water, thus creating additional competition to 
already scarce resources, leading to enhanced human-wildlife conflicts and insecurity [67,68]. 
Such conditions can also lead residents to move away from uncertain climate-sensitive careers 
with potential consequences on national development priorities.

Climate change impacts on rural households and markets has cascading effects on national 
economies with disrupted food supply chains, lower quantity and quality of food types, 
and volatile prices [69–71]. Importantly, while the economic and social effects of climatic 
extremes, such as the inability to save and invest (e.g., in livestock production, health and 
wellbeing causing inequality (education, gender) [61]) are well known, feasible solutions to 
overcome these challenges remain scarce (but see [72,73] for recent innovative solutions to 
overcome economic impacts of climate change).

3. Impacts of climate change on human infectious disease risk in 
rural areas
To investigate the impacts of climate change on human infectious disease risk, we break down 
disease risk into 1) pathogen hazard; 2) exposure; and 3) vulnerability to pathogen hazards.

Fig 1. Shift in climate zones across Kenya for the years of 1980, 2000, and 2020 (from Lawrence et al. [40]).

https://doi.org/10.1371/journal.pgph.0003892.g001

https://doi.org/10.1371/journal.pgph.0003892.g001
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3A. Impacts on pathogen hazards—An ecological perspective
Impacts of climate change on the ecology of pathogens can occur both directly and indirectly 
across multiple spatial scales, filtering down to affect the suitability of ecological niches within 
which pathogens can survive and reproduce. However, impacts of climate change on patho-
gen transmission and maintenance will vary with pathogen transmission mode  
(e.g., environmentally-transmitted, vector-borne, directly-transmitted pathogens), host 
immunity, and co-infection dynamics. For instance, climate extremes observed in East Africa 
are having direct impacts on environmentally-transmitted pathogens (i.e., water-borne, food-
borne, and soil-transmitted parasites and pathogens) [74,75] (Table 1), with key examples 
being observed across many LMICs include Vibrio cholerae, Salmonella, Campylobacter, and 
Escherichia coli sp. [76,77].

Vector-borne pathogens are also of increasing concern in East Africa with warming trends. 
Micro-climatological factors (e.g., surface water temperatures, soil moisture) that favor rates 
of development and multiplication of arthropod vectors (either directly or through habitat 
suitability) can increase prevalence and spread of vector-borne diseases to new regions. For 
example, in East Africa, Rift Valley Fever virus is expected to become more widespread as its 
disease-competent vector increases its range under future climate scenarios [78]. Similarly, 
modelling of temperature-based-traits of mosquitoes and malaria parasites suggest an addi-
tional 75.9 million people are expected to be at risk of exposure to malaria by 2080 in East-
ern and Southern Africa alone [79]. Other notable examples of vector-borne pathogens that 
are expanding into new areas of East Africa and other LMICs under climate change include 
Dengue virus, Leishmania spp., West Nile virus, and Zika virus [76,77,80,81]. Thus, there is a 
pressing need to develop high resolution tools that can help health authorities know when and 
how to respond to climate change-driven disease threats.

Changes in the geographical range of wildlife hosts in response to climatic shifts will also 
lead to more opportunities for transmission of directly-transmitted pathogens, including 
transmission to humans. The magnitude of risk posed to human health by the ecological 
release of novel pathogens from wildlife populations will be informed by opportunities for 
transmission across interfaces between humans, domestic animals, and wildlife. This in itself 
is likely to be influenced by climate change. For instance, periods of food insecurity associated 
with drought can lead to increased bushmeat consumption [82]. Similarly, in dryland areas of 
sub-Saharan Africa where water is a focal resource that attracts wildlife, livestock and people, 

Table 1. Examples of how climate change can impact human, domestic animal, and/or wildlife health, with a focus on infectious diseases in rural areas in East 
Africa and under the hazard, exposure, vulnerability framework of infectious disease risk (with the hazard being the pathogen that causes harm to human health).

Pathogen hazard Climate change-related 
hazard(s)

Human exposure Human vulnerability Reference

Middle East respiratory 
syndrome coronavirus

aridification Greater exposure to camel-borne diseases with transition from 
 cattle-based to camel-based farming system (farmer exposure but 
also through the value chain with shifts in meat and milk demands)

Weak access to healthcare [100]

Schistosoma sp. Warm, stagnant waters Exposure to parasitic worms and snails due to more favorable water 
conditions for snail and parasite survival and reproduction

Low access to healthcare [101]

Plasmodium sp. Severe flooding in the 
Ugandan highlands

Novel human contacts with malaria mosquitoes Little protection or aware-
ness of new vector

[102]

Vibrio cholerae Extreme flooding Greater exposure to disease with stagnant contaminated water Limited access to healthcare 
and low surveillance

[75]

Bacillus anthracis Extended periods of 
drought and/or heavy 
rainfall

Greater spatial-temporal overlap with wildlife around scarce pas-
tures and water points

Little access to healthcare 
and low surveillance

[103,104]

https://doi.org/10.1371/journal.pgph.0003892.t001

https://doi.org/10.1371/journal.pgph.0003892.t001


PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0003892 January 30, 2025 6 / 19

PLOS GLObaL PubLic HeaLtH  

low rainfall can cause certain wildlife and livestock species to congregate more strongly at 
water sources, increasing the potential for cross-species transmission and novel pathogens to 
emerge [83].

Nutritional deficiency and stress may render individuals more susceptible to infections, 
possibly causing large outbreaks of known and novel infectious diseases. Additionally, the 
impact of nutritional deficiency and stress on host immune response with climate change 
are also likely to impact co-infection dynamics, with downstream consequences that include 
synzootics and syndemics in animal and human populations, respectively [84,85]. For 
example, periods of extreme drought followed by heavy rainfall in East Africa have brought 
about concomitant epidemics of canine distemper virus and tick-borne babesiosis, resulting 
in unprecedented mortality in wild carnivore populations [86]. Studies to further elucidate 
the mechanisms linking climate change, physiological stress, and co-infection dynamics are 
urgently needed.

3B. Impacts on human exposure to pathogen hazards
Climate change impacts on human exposure to pathogen hazards tend to occur primarily 
through shifts in human and animal (domestic and wildlife) movement, or through human 
response to climate change impacts such as agricultural production systems, and individual 
socio-economic status and activities [87]. For example, shifts in temperature and precipitation 
can alter the range of certain wildlife species and vectors, increasing human exposure to infec-
tious agents not typically present in a given region, as has been observed for both zoonotic 
diseases and vector-borne diseases in the case of rodent-borne diseases (e.g., Leptospira sp.) 
and zoonotic diseases in bushmeat hunters [88].

In East Africa, climate-related changes in transhumance and migration patterns among 
mobile populations will push these communities into new environments, where ecological 
and social conditions could lead to changes in contact with livestock and wildlife. Greater 
human—domestic animal—wildlife contact due to competition for scarce resources brings a 
high likelihood of novel pathogen transmission in disease-naive populations in settings where 
disease detection may be dramatically delayed, increasing the risk of disease outbreaks and 
amplification. At a larger scale, shifts in food supply chains to adapt to climate change impacts 
can also increase human exposure to certain pathogens. For example, enhancing plant irri-
gation systems to withstand challenges associated with droughts has the potential to increase 
exposure to vector-borne diseases [15]. Thus, human exposure to infectious disease hazards 
is complex and should be explored at different spatial scales while accounting for different 
ecological and socio-economic factors.

3C. Impacts on human vulnerability to pathogen hazards
Human vulnerability to climate change can be observed at the individual level with greater 
susceptibility to infection and at the population level with weakening of health systems. Climate 
change has the potential to increase individual susceptibility to infection through impacts that 
climate extremes have on other health aspects (e.g., nutrition, mental and physical health). 
Individuals faced with energetic and nutritional stress - through processes linked to hormone 
release, chronic inflammation and oxidative stress - can have weakened innate and adaptive 
immune responses, making them more susceptible to infection [89,90]. Such stressors can occur 
as a result of malnutrition and exposure to heat extremes - factors that humans, domestic ani-
mals, and wildlife are increasingly likely to encounter at a global scale [91–94].

Fragile health systems add to the vulnerability in East Africa. Besides new infections in 
immune naive populations, climate change-related health impacts could exacerbate existing 
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disease burdens in human and animal populations, stressing healthcare delivery. As such, 
health systems need to develop climate adaptation approaches to withstand climate change 
impacts, and national strategic plans for endemic diseases may need to be revised based on 
anticipated ecological and economic impacts of climate change.

Populations that already have limited access to healthcare, in particular transhumance 
populations and other marginalized communities [33,95,96] will likely be further marginal-
ized with climate change-disrupted healthcare systems. Immunization campaigns and already 
under resourced primary care services are likely to be disrupted, leading to gaps in coverage 
among some of the highest-risk communities. Increased human migration due to climate 
impacts and/or conflict means that overburdened health systems need to be further supported 
to cope with the influx of climate refugees [97]. Therefore, climate change creates new chal-
lenges for healthcare systems, humanitarian access, and supply chains where these logistics 
are already a major challenge due to factors including insecurity, inadequate resources, and 
inaccessible terrain [98]. Food insecurity and malnutrition are exacerbated in settings of pro-
tracted conflict, and will be compounded by the disruptions posed by climate change, leading 
to increased susceptibility of nutritionally-stressed populations [99].

4. Are current health systems prepared for climate change 
impacts on health?
Given current global climate change predictions, health systems need to be prepared for 
increasing burdens of infectious diseases, new infectious disease scenarios, with repercussions 
on other aspects of human and animal health (e.g., nutritional deficiency, mental and physical 
stress) and economies (e.g., shifts in food availability and prices, employment possibilities). 
Human infectious disease risk has the potential to increase in rural East Africa because of 
increased pathogen hazards, exposure, and vulnerability with climate extremes.

Current health systems use traditional disease surveillance and control approaches that are 
based on passive detection and response to disease outbreaks [105,106]. Such an approach can 
suffer from underreporting and a biased representation of diseases in the community, with 
often greater representation of urban than rural populations [107,108]. This is particularly 
concerning in rural East Africa where there tends to be a disconnect between health services 
and communities because of socio-economic, cultural, and awareness factors, and in some 
cases insecurity, lack of infrastructure and human resources. These gaps in public health 
security combined with minimal understanding of the ecological impacts of climate change in 
these landscapes may cause late detection of disease outbreaks as well as emergence of novel 
diseases.

Strengthened and proactive disease surveillance and control that uses high resolution 
tools and is based on inter-sectoral, One Health partnerships and predictive ecological and 
epidemiological modelling will allow for cost-effective, targeted interventions [26]. Training 
of health professionals (i.e., medical doctors, nurses, veterinarians, community health work-
ers) to monitor and treat infectious diseases in the context of a changing climate that impacts 
different aspects of infectious disease risk (i.e., pathogen hazard, exposure, and vulnerability) 
is also a fundamental step to take in the transition towards climate-adapted health systems. 
Health system preparedness and resilience to future climate change and associated health 
scenarios has been put into question globally [109,110], including in LMICs (e.g., Ghana, 
Kenya, Nigeria, South Africa, and Tanzania; [111–113]), suggesting that a framework on how 
health systems should transition towards climate change-resilient health systems is timely. In 
our proposed framework, we highlight the need for health systems to integrate climate change 
impacts by exploring the three compartments of infectious disease risk: pathogen hazard, 
exposure, and vulnerability.
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5. Steps to strengthen infectious disease prevention, control, and 
treatment in rural areas in LMICs in the face of climate change 
with a focus on East Africa
In this section, we present six steps that will allow health systems to transition from traditional 
approaches to ones that build climate adapted and resilient health systems (Fig 2).

Step 1—Strengthen stakeholder knowledge of climate change impacts on 
health
Stakeholders involved in the management of infectious diseases (i.e., human and animal 
health workers, veterinarians, community representatives, ecologists, epidemiologists, physi-
cians, health decision-makers, and intergovernmental and government officials) must under-
stand impacts of climate change at a regional scale, on the environment, economies, infectious 
diseases, and on health systems. The concept of infectious disease risk being a product of 
pathogen hazard, exposure, and vulnerability, as well as One Health and Planetary Health 
concepts must also be adopted. Most LMICs already have One Health workforces in place and 
empowering teams to incorporate a climate change angle to health will be an important next 
step.

Step 2—Support research to better understand human infectious disease 
risks in rural areas
After stakeholder trainings, with emphasis on strong interdisciplinary and multi-sectoral 
teams, climate change impacts on pathogen hazard, exposure, and vulnerability need to be 
quantified. Research that can help understand differences in pathogen hazards with climate 
change includes firstly to empirically investigate the occurrence, distribution, and likely shifts 
in climate-sensitive pathogens and vectors (i.e., food-, water-, and vector-borne diseases). This 

Fig 2. Conceptual diagram illustrating how the 6 steps fall into the pathogen hazard—exposure—vulnerability framework.

https://doi.org/10.1371/journal.pgph.0003892.g002

https://doi.org/10.1371/journal.pgph.0003892.g002
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can be done by combining national and departmental/county health data with climate data 
to understand how climate impacts affect disease outbreaks locally (while accounting for the 
time lag between climate impacts and disease outbreaks). Secondly, the impacts of climate 
change on non-climate sensitive zoonotic pathogens must be investigated, through shifts in 
host distributions (e.g., impact on migration routes for humans and livestock as well as wild-
life corridors).

Better understanding of human exposure to pathogen hazards can be achieved by firstly 
exploring dynamics of infectious diseases under different socio-economic and environ-
mental contexts. Combining satellite imagery, meteorological, and ecological and socio- 
economic models can help facilitate these efforts [114], leading to predictive models that 
can be turned into decision support tools. Additionally, the timing of interventions must be 
determined (e.g., annual timing of vaccination campaigns), which will first require under-
standing the distribution of humans, domestic animals, and wildlife in rural areas and 
variation with climate (e.g., obtain more robust estimates of the number and distribution of 
susceptible hosts in rural areas).

Secondly, differences in human and animal exposure to pathogen hazards should be 
explored at a broader scale, specifically in the context of other global climate change shifts. 
For example, global market shifts to mitigate climate change impacts, such as meat consump-
tion and production is influencing the distribution and trade network of livestock globally, 
possibly causing a reshuffling of epidemic risks in certain countries. Given that global food 
production is associated with greater zoonotic disease risk [115], and global livestock trade 
can increase the spread of infectious diseases (e.g., Rift Valley fever, African swine fever; 
[116,117]), understanding how climate mitigation strategies will influence these dynamics 
is an important area of research that requires further investigation. Hence, the need to make 
predictions of future health exposures under different scenarios must be considered based on 
local level climate conditions [3] but also large scale global shifts in trade and other economic 
decision-makings, and how individual exposure will vary [115].

For vulnerability, research priorities should focus on understanding how climate change 
will impact individual susceptibility to infection. This includes understanding how other 
climate change health hazards will occur and interact to influence susceptibility to pathogens. 
Likewise, co-infection dynamics will be essential, particularly with regards to understand-
ing how current infectious diseases in LMICs (e.g., NTD) will influence the distribution of 
 climate-related emerging diseases.

Subsequently, differences in disease risk can be explored based on differences in pathogen 
hazard, exposure, and vulnerability observed under different environmental, socio-economic, 
and health provision scenarios. Such analyses will involve developing accurate probabilistic 
forecasts of disease risk under different climate scenarios and contexts, and track climate- 
mediated infectious disease burdens so that surveillance, control, and treatment resources can 
be structured accordingly.

Step 3—Reduce health impacts from pathogen hazards through 
strengthened disease surveillance and control measures in human, 
domestic animal, and wildlife populations
Along with augmenting research and forecasting, detection and characterization of pathogens 
and associated diseases in human and animal populations must be reinforced in rural loca-
tions. An understanding of the ecology and epidemiology of local microbes, pathogens, and 
parasites can guide these efforts with targeted and cost-effective benefits (e.g., early detection 
of outbreaks and novel diseases). However, pathogens and associated disease burdens in rural 
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LMICs are often poorly understood because reliable, high-resolution information on the 
distribution of rural people and their animals remains scarce across much of the African con-
tinent. This, coupled with geographic remoteness, often leads to their omission from health 
surveillance systems.

Technology that improves the detection and reporting of infectious agents in rural com-
munities could help overcome barriers to their participation in such systems. Automated tools 
that use machine learning to generate near real-time reports of actively inhabited settlements 
could be used alongside conventional outreach to increase participation in disease surveillance 
activities and representation in response efforts to address climate-induced disease threats. 
Technology can also play an important role in positioning diagnostic testing capacity closer 
to the point of care, by providing more point-of-care diagnostics, and linking rural commu-
nities and associated livestock to centralized disease reporting [118,119]. This combined with 
remote sensing data, used to detect locations with most change would allow for changes in 
the occurrence and distribution of pathogen hazards with climate change to be monitored in 
near-real time. For example, integrating cell phone-based syndromic surveillance of humans 
and animals and field diagnostics into existing surveillance infrastructure would help generate 
accessible and timely data streams [120]. This will also improve representation of rural LMICs 
in national and international strategies, transitioning to incorporating climate change impacts 
on health, such as the World Health Organization (WHO’s) recent infectious disease surveil-
lance approach termed “climate-informed early warning systems” (CI-EWS) [121,122].

For national and international strategies like CI-EWS to be effective in predicting out-
breaks of disease under given climate anomalies, an appropriate resolution of data must be 
prospectively available and accessible, and collected in the same way over time. Such efforts 
should be accompanied by an open-source database (e.g., Pathogen Harmonized Observatory 
(PHAROS); [123]) allowing global sharing of climate-sensitive and zoonotic pathogens at the 
human, domestic animal, and wildlife interface.

Step 4—Reduce pathogen exposure by improving rural living and 
sustaining biodiverse rural landscapes
Once human exposure to pathogen hazards has been quantified (Step 2), interventions to 
reduce exposure should be explored. In the context of rural East Africa this would include 
developing means to better support communities in climate-impacted rural areas and mitigate 
disease exposure. Measures that can directly reduce human exposure to pathogen hazards 
should be made available in culturally acceptable ways for rural communities newly impacted 
by specific diseases (e.g., bed nets for emerging vector-borne pathogens). Indirect measures 
to reduce exposure include improving employment and education possibilities allowing rural 
communities to improve household infrastructure, and therefore reduce pathogen exposure 
(e.g., less exposure to water-borne pathogens, soil-transmitted helminths).

New climate scenarios may also increase human exposure to wildlife pathogens through 
greater spatial-temporal overlap of people and animals or human consumption of bushmeat. 
However, sustaining biodiverse landscapes can in some cases reduce human exposure to cer-
tain pathogens through the dilution effect [124]. Thus, understanding the human—domestic 
animal—wildlife interface, and the role of biodiversity in influencing pathogen hazards under 
different climate scenarios will be essential [125]. Leveraging global networks of digitally 
available data on biodiversity, such as those harbored in natural history museums [126] and 
publicly available through online aggregators such as the Global Biodiversity Information 
Facility (GBIF), can provide critical information to model and understand complex inter-
actions between biodiversity and human disease at multiple spatial scales [127,128]. Given 
that sustaining biodiversity has multiple health co-benefits (e.g., rangelands and forests act 
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as carbon sinks, biodiversity can reduce spread of animal and plant diseases and pests) [129], 
financial support for rural communities to restore and protect ecosystems (e.g., reforestation, 
land restoration, control of invasive species) is essential. Such investment will have other 
societal benefits such as increasing household income, female education, youth employment, 
ameliorate family planning, and increase access to basic services (e.g., healthcare) (15)—with 
lasting national economic benefits (e.g., international trade, tourism). This, combined with 
the deployment of smarter technologies to help support basic household and farming needs in 
rural areas is critical, as well as conducting awareness campaigns so that target populations are 
aware of the climate impacts and solutions.

Step 5—Reduce vulnerability by reducing susceptibility and addressing 
health system resilience
Vulnerability can be reduced by limiting susceptibility to infection at the individual level and 
making health systems more resilient at the population level. Susceptibility to infection can be 
reduced by improving nutritional health and through vaccine delivery for infectious diseases 
predicted to increase with climate change. Supporting rural farmers in accessing and using 
drought-resistant crops and animals, and genetically diverse agricultural systems (livestock 
and crops) can make agricultural production systems more resilient to extreme climate events 
and less prone to disease outbreaks.

Similarly, access to vaccines is essential and yet vaccine inequity and access to healthcare 
continue to be a global issue, with African countries, especially rural African communities, 
often most severely impacted [130]. WHO and the World Organization for Animal Health 
(WOAH) are increasingly facilitating provisions and coordinated responses for LMICs tran-
sitioning towards strengthened health systems (e.g., rabies and pest des petits ruminants), and 
identifying populations most vulnerable to infectious diseases with increasing climate change 
impacts is an important aspect to integrate into national strategic plans.

Vulnerability can be reduced at the population level by creating climate resilient health 
systems that can anticipate, respond, and adapt to stressors imposed by climate change 
[3,131,132]. Such approaches include tracking indicators of adaption, such as adaption of 
communities and health systems to extreme climate conditions and shifts in the burden of 
 climate-sensitive diseases. This will require conducting Monitoring and Evaluations (M&E) 
that are specifically directed towards assessing impacts of climate change. For example, com-
paring differences in patient outcome, quality of care, waiting time, vaccine and antibiotic 
availability between drought and none-drought periods [133,134].

Transformation of health systems to be climate resilient must include a restructuring of 
healthcare practices, with an emphasis on training health workers to have adaptable skills 
and to think more broadly about infectious diseases to adapt to different disease scenarios 
with climate change [25]. Currently, disease diagnosis and patient care typically focus on 
well-known diseases (e.g., fever-like syndromes diagnosed as malaria instead of exploration of 
potential novel zoonotic diseases [135]) which may lead to misdiagnosis if infectious diseases 
are reshuffling with climate change. Hence, health professionals require broader diagnostic 
thinking with climate change [136,137], which can be facilitated through trainings done by 
groups such as the Africa One Health University Network (AFROHUN).

Step 6—Establish climate and health intelligence teams to ensure regular 
updates in health and climate local and national guidelines
The final step that ties Steps 2–5 together by touching on all aspects of infectious disease 
risk (i.e., pathogen hazard, exposure, and vulnerability; Fig 2) is the need to establish climate 
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and health intelligence teams located at the county/departmental and national levels. The 
role of these teams is to regularly test different disease prevention, control, and treatment 
scenarios based on current and predicted future climatic shifts, and then inform local teams 
on how to adapt surveillance, control, and treatment measures. This will require effective 
communication and data sharing across sectors and spatial scales, including internationally to 
obtain global estimates of climate shifts. These teams would also be tasked to evaluate shifts 
in socio-economic factors at a national and global scale, which could have indirect effects on 
infectious diseases at different spatial scales, including in rural areas in LMICs. Such a climate 
and health intelligence system will help reduce pathogen hazards, exposure, and vulnerability, 
as well as move away from traditional ‘reactive’ responses to disease outbreaks and towards 
‘proactive’ responses.

6. Conclusions
Climate change impacts on human and animal health are increasingly apparent, and most 
countries have begun planning and implementing climate change adaptation strategies 
[14]. Alongside these climate actions, health systems need to transition to climate-resilient 
health systems so that disease surveillance, control, and patient care are not impacted by 
climate hazards. The COVID-19 pandemic has pushed health authorities across the world to 
strengthen disease surveillance and control. Such efforts must now be put in the context of a 
changing climate so that global health security is maintained and progress towards achieving 
Sustainable Development Goals is not impacted. Our framework provides guidance on how to 
successfully transition health systems towards climate adaptation by focusing on communities 
that are impacted by climate change and frequently marginalized from health systems—rural 
communities in LMICs. The framework is presented in the context of East Africa and can be 
adapted to other ecological, socio-economic, and cultures contexts.
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