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A B S T R A C T

Digital soil mapping (DSM) relies on a broad pool of statistical methods, yet determining the optimal method for 
a given context remains challenging and contentious. Benchmarking studies on multiple datasets are needed to 
reveal strengths and limitations of commonly used methods. Existing DSM studies usually rely on a single dataset 
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with restricted access, leading to incomplete and potentially misleading conclusions. To address these issues, we 
introduce an open-access dataset collection called Precision Liming Soil Datasets (LimeSoDa). LimeSoDa consists 
of 31 field- and farm-scale datasets from various countries. Each dataset has three target soil properties: (1) soil 
organic matter or soil organic carbon, (2) clay content and (3) pH, alongside a set of features. Features are 
dataset-specific and were obtained by optical spectroscopy, proximal- and remote soil sensing. All datasets were 
aligned to a tabular format and are ready-to-use for modeling. We demonstrated the use of LimeSoDa for 
benchmarking by comparing the predictive performance of four learning algorithms across all datasets. This 
comparison included multiple linear regression (MLR), support vector regression (SVR), categorical boosting 
(CatBoost) and random forest (RF). The results showed that although no single algorithm was universally su-
perior, certain algorithms performed better in specific contexts. MLR and SVR performed better on high- 
dimensional spectral datasets, likely due to better compatibility with principal components. In contrast, Cat-
Boost and RF exhibited considerably better performances when applied to datasets with a moderate number 
(<20) of features. These benchmarking results illustrate that the performance of statistical methods can be highly 
context-dependent. LimeSoDa therefore provides an important resource for improving the development and 
evaluation of statistical methods in DSM.

1. Introduction

In digital soil mapping (DSM), statistical modeling of the relation-
ships between laboratory measured soil properties and secondary fea-
tures is used to create soil maps for environmental and agricultural 
applications. A key goal of DSM research is to continuously improve the 
accuracy of soil maps (Minasny and McBratney, 2016). Given the sta-
tistical and computational nature of the task, most of the recent research 
has focused on improving accuracy by implementing more sophisticated 
modeling approaches—especially, since the adoption of machine 
learning (ML) and deep learning algorithms has increased predictive 
capabilities (Heuvelink and Webster, 2022). However, modeling pipe-
lines in DSM are usually not straightforward because several statistical 
challenges have to be addressed such as high-dimensional, noisy and 
intercorrelated features (Shi et al., 2023); the incorporation of spatial 
and sometimes temporal components (Heuvelink and Webster, 2022); or 
very scarce training data (Schmidinger et al., 2024b). Various statistical 
methods have been suggested and developed in response. These range 
from different ML algorithms (Wadoux et al., 2020), pre-processing 
techniques (Shi et al., 2023) and data fusion approaches (Wang et al., 
2022) to the development of new sampling designs (Brus, 2019). While 
each of the suggested methods may serve a specific purpose, it is difficult 
to keep track of the broad and ever-evolving pool of available tools. In 
addition, different studies often show contradictory conclusions about 
the effectiveness of commonly used methods, as discussed by Žížala 
et al. (2024) for sampling designs, Shi et al. (2023) for pre-processing 
techniques, or Heung et al. (2016) for learning algorithms. As a result, 
it often remains unclear how robust each of these methods is and for 
which context they are most suitable. Trustworthy and informative 
benchmarking studies are needed to fully understand their capabilities 
and strengths.

Benchmarking refers to the methodological comparison of 
competing statistical methods to assess and rank their capabilities (Nießl 
et al., 2022). Essentially, in a benchmarking study, the performance of 
two or more methods (e.g., learning algorithms) are compared based on 
evaluation metrics (e.g., R2). Such studies are already common in DSM, 
as shown by our supporting literature review on benchmarking studies 
in 2023, provided in Appendix A. However, the informative value of 
them is often limited because the underlying study designs do not sup-
port comprehensive and generalizable conclusions. In the following, we 
will refer to the main findings from the literature review on DSM 
benchmarking (Appendix A) to highlight currently present shortcomings 
according to several guidelines on benchmarking (e.g., Boulesteix et al., 
2017; Nießl et al., 2022; Weber et al., 2019).

We observed that over 95 % of DSM studies relied on a single dataset 
for their benchmarking (see Appendix A, Fig. A2). These single datasets 
were either study-specific proprietary datasets or one of the few avail-
able open-access options, such as the Land Use and Coverage Area Frame 
Survey (LUCAS) (Orgiazzi et al., 2018). However, given that the 

performance of methods strongly depend on the context and inherent 
patterns within datasets, benchmarking should include a substantially 
larger number of datasets (Boulesteix et al., 2015; Strobl and Leisch, 
2024). The largest number of datasets used for DSM benchmarking in 
2023 was three (Appendix A, Fig. A2). In contrast, classical ML studies 
may feature tens to over a hundred datasets for their benchmarking 
(Shmuel et al., 2024). Including a larger number of datasets ensures a 
more robust analysis, as results will be less influenced by individual 
dataset-specific patterns. Moreover, it allows the evaluation of methods 
under varying conditions, which helps to uncover their context-specific 
strengths and limitations (Grinsztajn et al., 2022; Shmuel et al., 2024).

Another critical aspect of robust benchmarking is the open accessi-
bility of both code and data. Fewer than 10 % of DSM benchmarking 
studies provided open datasets and even less than 5 % shared their code 
(see Appendix A, Fig. A1), which is marginal compared to other 
computational scientific fields (Laurinavichyute et al., 2022; Pineau 
et al., 2021). While many studies (48 %) included a statement that 
indicated a willingness ‘to share data upon request’, prior studies on 
reproducibility have demonstrated that only a minority of researchers 
eventually comply with this commitment (Kratz and Strasser, 2014; 
Laurinavichyute et al., 2022). Therefore, most DSM benchmark studies 
must be deemed irreproducible. Reproducibility in the context of 
modeling is crucial not only for identifying potential errors through code 
review (Greene et al., 2017) but also because it allows researchers to 
build upon existing work for cumulative scientific progress (Kapoor and 
Narayanan, 2022). Yet, reproducibility becomes even more critical in 
the context of benchmarking. Benchmarking is often conducted along-
side the introduction of new methods to prove their merits. It has been 
argued that this can make the benchmarking inherently biased towards 
the newly proposed method (Nießl et al., 2022; Weber et al., 2019). This 
is because authors can have a competitive driven interest in publishing 
results that show their novel method as superior to common competitors 
(Brown et al., 2017). Such superiority may be achieved through unfair 
study design choices, although often unintentionally (Nießl et al., 2022). 
In contrast, reproducible research with shared code and shared data 
encourages more rigorous and less biased study designs.

We attribute the two aforementioned shortcomings (i.e., the reliance 
on too few datasets in benchmarking and the lack of reproducibility), in 
particular to the lack of open datasets for DSM purposes. This issue has 
been addressed in other academic fields with the establishment of 
benchmark dataset collections (e.g., Morris et al., 2020; Romano et al., 
2022). However, a comparable collection does not yet exist for DSM. 
While progress has been made to improve the data-availability as indi-
cated by the open soil spectroscopy library (OSSL) by Safanelli et al. 
(2025) and other soil-databases (Gobezie et al., 2024), the few existing 
open soil datasets are primarily focused on large-scale laboratory-based 
soil spectroscopy or include only the target soil properties without 
accompanying predictor features. Furthermore, some open datasets (e. 
g., LUCAS) were published under restrictive licenses, which prohibits 

J. Schmidinger et al.                                                                                                                                                                                                                            Geoderma 459 (2025) 117337 

2 



sharing of the dataset within a code repository. On the other hand, open 
datasets from a field- and farm-scale for high-resolution precision agri-
culture are almost completely missing, despite the fact that precision 
agriculture with proximal soil sensors is an important application of 
DSM (Gebbers and Adamchuk, 2010). Field-scale DSM with proximal 
soil sensors has its own distinctive challenges such as training data 
scarcity (Schmidinger et al., 2024b) next to high-dimensional data 
fusion (Schmidinger et al., 2024a; Wang et al., 2022). To address these 
issues, we introduce Precision Liming Soil Datasets (LimeSoDa). LimeSoDa 
is an open dataset collection with small-scale datasets, that are ready-to- 
use for modeling. This expands the possibility of DSM practitioners to 
benchmark statistical methods across a variety of soil mapping contexts. 
In Section 2, we provide an overview of the datasets included in 
LimeSoDa. Additionally, we present an example benchmark study in 
which we compared four learning algorithms (Section 3), to demon-
strate how LimeSoDa can lead to more comprehensive and nuanced 
conclusions. Lastly, Section 4 offers an outlook on the potential appli-
cations of LimeSoDa beyond the present study.

2. LimeSoDa

2.1. Overview

LimeSoDa contains 31 datasets at field- to farm-scale. Datasets are 
ready-to-use for modeling, which means that they contain continuous 

target soil properties and features in a tabular format, usable for 
regression tasks. Three target soil properties are included in all datasets: 
soil organic matter (SOM) or soil organic carbon (SOC), pH and clay. 
Since SOC and SOM are directly related, we treated them interchange-
ably as a single soil property. These three soil properties are among the 
most commonly evaluated soil properties in DSM (Chen et al., 2022) and 
are crucial parameters for assessing soil quality. We refer to this 
benchmarking collection as “LimeSoDa” because these three target soil 
properties are not exclusively but especially relevant for lime require-
ment calculations, according to best management practices in the UK 
and Germany (Agriculture Horticulture Development Board, 2023; 
Bönecke et al., 2021). Features for modeling are dataset-specific and 
originate from laboratory-based spectroscopy, in-situ proximal soil 
sensing, and remote sensing. Datasets are released under a permissive 
open-access license, allowing implementation in a code-repository to 
increase the possibility of code sharing. Additionally, pre-determined 
folds for cross validation (CV) are provided for each dataset, to enable 
comparability with our benchmarking and future benchmarking results. 
In total, the combined datasets include 3,174 soil samples but sample 
sizes of individual datasets range from 30 to 460 samples.

Pre-processing is not mandatory when working with LimeSoDa 
datasets. However, for datasets with high-dimensional spectral data, 
feature dimensionality reduction is strongly encouraged. Nevertheless, 
further pre-processing may improve modeling performances, an aspect 
that should itself be benchmarked using this dataset collection.

Table 1 
List of datasets included in LimeSoDa.

Dataset ID Location Study Area 
(ha)

Number of 
Samples

Number of 
Features

Sensor Data* Previous Usage**

SSP.460 State of Sao Paulo, Brazil 473 460 830 vis-NIR Ramirez-Lopez et al. (2019)
BB.250 Brandenburg, Germany 52 250 17 DEM, ERa, Gamma, pH-ISE, 

RSS, VI
Schmidinger et al. (2024b)

SP.231 Saitama Prefecture, Japan 3.1 231 272 vis-NIR Kodaira and Shibusawa (2020)
B.204 Bahia, Brazil 204 204 16 DEM, RSS, VI Pereira et al. (2022)
G.150 Goias, Brazil 79 150 17 DEM, ERa, RSS, VI Valente et al. (2024)
H.138 Hubei, China 420 138 2,489 MIR Wadoux et al. (2025)
SL.125 Skåne Län, Sweden 78 125 2,082 ERa, vis-NIR Wetterlind et al. (2010)
UL.120 Uppsala Län, Sweden 97 120 2,082 ERa, vis-NIR Wetterlind et al. (2010)
NRW.115 North Rhine-Westphalia, Germany 17 115 1,686 MIR Leenen et al. (2022)
MG.112 Mato Grosso, Brazil 111 112 17 DEM, ERa, RSS, VI Valente et al. (2024)
SA.112 Saxony-Anhalt, Germany 27 112 1,412 DEM, ERa, Gamma, NIR, pH- 

ISE, VI
−

G.104 Goias, Brazil 95 104 16 DEM, RSS, VI −

MGS.101 Mato Grosso do Sul, Brazil 95 101 16 DEM, RSS, VI −

CV.98 Canton of Vaud, Switzerland 28 98 2,151 vis-NIR Metzger et al. (2024)
SC.93 Santa CatariMG-na, Brazil 108 93 2,146 vis-NIR Horst et al. (2018)
BB.72 Brandenburg, Germany 3.4 72 17 DEM, ERa, Gamma, pH-ISE, 

RSS, VI
−

NRW.62 North Rhine-Westphalia, Germany 0.6 62 1,686 MIR Leenen et al. (2019)
RP.62 Rhineland-Palatinate, Germany 3.3 62 1,410 ERa, Gamma, NIR, pH-ISE, VI Tavakoli et al. (2022)
SSP.58 State of Sao Paulo, Brazil 0.7 58 351 vis-NIR Tavares et al. (2020)
NSW.52 New South Wales, Australia 1,158 52 5 DEM, RSS Filippi et al. (2019)Jones et al. 

(2021)
BB.51 Brandenburg, Germany 40 51 4 DEM, ERa, pH-ISE −

SC.50 Santa Catarina, Brazil 13 50 3 DEM, ERa Bottega et al. (2022)
W.50 Wisconsin, USA 80 50 15 DEM, ERa, VI, XRF Chatterjee et al. (2021)
PC.45 Pest County, Hungary 4.5 45 4 CSMoisture, ERa Ristolainen et al. (2006)
MG.44 Mato Grosso, Brazil 13 44 351 vis-NIR Tavares et al. (2020)
NRW.42 North Rhine-Westphalia, Germany 1.5 42 1,686 MIR Leenen et al. (2019)
SM.40 South Moravia, Czechia 53 40 3 DEM, ERa Lukas et al. (2009)
MWP.36 Mecklenburg-Western Pomerania, 

Germany
18 36 5 DEM, RSS Steiger et al. (2025)

O.32 Occitania, France 1.5 32 1,637 MIR Wehrle et al. (2022)
BB.30_1 Brandenburg, Germany 19 30 8 DEM, ERa, pH-ISE, VI −

BB.30_2 Brandenburg, Germany 1.4 30 13 DEM, ERa, Gamma, RSS, VI −

*Abbreviations: Capacitive soil moisture (CSMoisture), Digital elevation model and terrain parameters (DEM); Apparent electrical resistivity (ERa); Gamma-ray ac-
tivity (Gamma); Mid infrared spectroscopy (MIR); Near infrared spectroscopy (NIR); Ion selective electrodes for pH determination (pH-ISE); Remote sensing derived 
spectral data (RSS), X-ray fluorescence derived elemental concentrations (XRF), Vegetation indices (VI), Visible- and near infrared spectroscopy (vis-NIR).
** The datasets used in the referenced studies does not always completely align with the datasets of LimeSoDa, because only a subset or additional data may have been 
used.
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All datasets were collected in the context of previous studies or 
research projects. The vast majority of these datasets had not been 
publicly available prior to this effort. Hence, LimeSoDa is built upon 
voluntarily submissions from researchers and research institutes. An 
overview of each dataset is provided in Table 1. Datasets were included 
based on the following four criteria:

Precision liming context: A dataset had to contain SOM/SOC, pH, 
and clay as topsoil (<30 cm) target properties at field- and farm-scale 
(<2,000 ha).

Wet chemistry: Target soil properties had to be determined through 
wet chemistry techniques instead of being inferred from spectral models.

Predictive performance: Target soil properties had to be predict-
able with the given dataset-specific set of features. We excluded datasets 
where no learning algorithm outperformed the null model (i.e., with an 
R2 < 0) for any of the three target soil properties given the modeling 
pipeline in Section 3.1.

Sample size: A dataset had to contain a minimum size of at least 30 
soil samples for all three soil properties at the same distinct sampling 
locations.

Datasets were not excluded because of their sampling design. For 
example, some datasets were based on a targeted sampling design (see 
Appendix B, Table B1), which refers to sampling focused on specific 
areas or features of interest rather than random or systematic sampling. 
The validation of soil maps generated from targeted- or spatially clus-
tered sampling without an additional independent testing sample set is 
controversial because the absolute performance may not be reliably 
estimated through CV or data splitting (Piikki et al., 2021). However, we 
argue that for the purpose of benchmarking, the relative performance 
differences remain informative. Nonetheless, users of LimeSoDa can 
decide if they prefer other validation strategies that take into account 
the spatial dependency or pattern of a dataset.

Spatial coordinates are available for more than half of the datasets 
(see Appendix B, Fig. B1). In other cases, coordinates had to be excluded 
or anonymized mostly because of privacy concerns.

2.2. Processing of datasets

Only a minimal amount of processing was conducted for datasets of 
LimeSoDa to ensure that the data was as close to the original form as 
possible while still enabling effective benchmarking. This gives users of 
LimeSoDa the flexibility to apply their own pre-processing on the 
datasets. Ordinary kriging was employed for datasets collected with on- 
the-go proximal soil sensors to match sensing locations with soil sam-
pling locations. For features available in raster format (DEM, RSS and 
VI), feature values were extracted at the soil sampling locations. Some 
sensors had an underlying data-processing step within their internal 
software. This led to some optical spectroscopy data being resampled to 
different wavebands and spectral resolutions compared to the measured 
raw data. For datasets with limited training samples (< 60 samples), we 
included fewer remote sensing-based features to maintain a favorable 
sample-to-feature ratio. Processing steps are documented in more detail 
in the metadata of the datasets. Samples with missing values in either 
the feature or target soil property matrix were always discarded. Two 
spectroscopy datasets (H.138 and NRW.115) had a few samples with 
reflectance values above 100 % for certain bands (see Appendix B, 
Fig. B2). Whether these anomalies are due to noise or instrumental 
calibration is unclear. Nevertheless, we did not discard these samples or 
bands from the dataset.

It is important to note that datasets across LimeSoDa were deliber-
ately not harmonized. While this reduces the possibility of cross-dataset 
learning, it increased the flexibility of including datasets from various 
contexts and domains without relying on many assumptions necessary 
for data harmonization. The aim of LimeSoDa is not to build a unified 
database but to provide multiple smaller datasets that are independent 
entries for a benchmarking study. As a consequence, target soil prop-
erties are sometimes expressed in different units depending on the 

measurement method (see Appendix B, Fig. B2). This distinguishes 
LimeSoDa from spectral libraries, that rely on harmonization of spectral 
features and soil properties (Safanelli et al., 2025). Nonetheless, for 
coherence within LimeSoDa, we transformed the apparent electrical 
conductivity to ERa and spectral measurements are expressed as 
reflectance.

2.3. Accessibility

LimeSoDa is closely aligned to the FAIR-principles (Wilkinson et al., 
2016). It is freely accessible through Zenodo (https://doi.org/10.5 
281/zenodo.14932573), is licensed under CC BY-SA 4.0 and contains 
extensive documentation in the form of dataset-specific metadata. 
Additionally, an R- and Python dataset package, called likewise Lime-
SoDa downloadable from GitHub, was created. It can be accessed 
through github.com/JonasSchmidinger/LimeSoDa for R and https:// 
github.com/a11to1n3/LimeSoDa for Python.

3. Demonstrative benchmark study

3.1. Methodology

A benchmarking study was conducted to demonstrate the use of 
LimeSoDa. Four learning algorithms were compared based on their 
predictive performance. These included random forest (RF) (Breiman, 
2001) and support vector regression (SVR) due to their widespread use 
in DSM (Khaledian and Miller, 2020), categorical boosting (CatBoost) 
(Prokhorenkova et al., 2018) because of its strong performances in 
recent ML benchmarking studies on tabular datasets (McElfresh et al., 
2023; Shmuel et al., 2024) and multiple linear regression (MLR) to 
include a simple baseline model. We trained and evaluated each algo-
rithm independently on SOC/SOM, pH and clay for each of the 31 
datasets of LimeSoDa. Consequently, a total of 93 prediction tasks (31 
datasets × 3 target soil properties) were utilized in the benchmarking. 
Across these 93 prediction tasks, algorithms were compared on the R2 

and the ordinally ranked root mean square error (RMSE) (see Appendix 
C.1). Additionally, the Wilcoxon Signed-Rank Test was used to deter-
mine whether the mean ordinal ranks based on the RMSE significantly 
differed (α = 0.1) among the learning algorithms.

The learning algorithms were evaluated and hyperparameters tuned, 
using a nested K-fold cross validation (CV), with the outer loop (K = 10) 
used for model testing and the inner loop (K’ = 5) for hyperparameter 
selection. The optimal hyperparameter combinations for SVR, CatBoost 
and RF were selected through a random search with 400 iterations based 
on the lowest aggregated RMSE of the inner loop. The hyperparameter 
search-space is given in Table 2.

For datasets with high-dimensional optical spectroscopy data (vis- 
NIR, NIR or MIR), modeling with the raw data is strongly limited due to 
the unfavorable sample to feature ratio. Hence, we duplicated the 
hyperparameter search space to 800 iterations and added two unsu-
pervised but computationally efficient methods for dimensionality 
reduction as additional hyperparameter branch: principal component 
analysis (PCA) and a correlation matrix filter (CMF) (Perez-Riverol et al., 
2017). CMF and PCA were applied only to the vis-NIR, NIR, or MIR 
features after the separation of training and testing or validation folds. 
With CMF, spectral features were discarded when the absolute pairwise 
Pearson correlation coefficient exceeded a defined cutoff, following the 
findCorrelation algorithm of the R-package caret (Kuhn, 2008). The 
cutoff for CMF ranged from 0.7 to 1, where CMF = 1 refers to no 
dimensionality reduction, and the number of searched principal com-
ponents for PCA from 5 to 20. Algorithm 1 presents the modeling 
pipeline as pseudocode. The actual R-code is available on github.com 
/JonasSchmidinger/LimeSoDa_benchmarking.
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3.2. Results & Discussion

The R2 distribution obtained from all prediction tasks with the four 
different learning algorithms is shown in Fig. 1a. Overall, there appear 

to be small differences in the performance distribution. Although SVR 
and CatBoost achieved the best average R2 of 0.44 across all prediction 
tasks, they were only moderately better than MLR, which had the lowest 
average R2 of 0.40. Similarly, this is also reflected by the ordinally 
ranked RMSE in Fig. 2a. It illustrates how frequently a prediction al-
gorithm achieved each rank compared to others, based on the ascending 
RMSE. For example, MLR had the lowest (i.e., the best) RMSE for 27 % of 
the prediction tasks, receiving the first rank. Simultaneously, it had the 
highest (i.e., the worst) RMSE for 30 % of prediction tasks, placing it in 
the fourth rank. Overall, Fig. 2a resembles a uniform-like distribution. 
This means that each learning algorithm had roughly the same number 
of prediction tasks in which they ranked best to worst. The Wilcoxon 
Signed-Rank Test further confirmed that differences among the learning 
algorithms were not statistically significant (Fig. 2a). This might be 
surprising to some DSM practitioners, because more sophisticated 
methods are often expected to significantly outperform a simple model 
like MLR (Padarian et al., 2020). However, different learning algo-
rithms, including simplistic models like MLR, have advantages under 
certain conditions, as illustrated in the next paragraphs.

Grouping the prediction tasks based on the presence or absence of 
vis-NIR, NIR or MIR features reveals a significant shift in the perfor-
mance distribution among the learning algorithms (Fig. 1b-c & Fig. 2b- 
c). The grouping is made because datasets with vis-NIR, NIR and MIR are 
characterized by a highly inflated feature to training sample ratio, so 
that dimensionality reduction is usually necessary prior to the modeling. 
On datasets without vis-NIR, NIR and MIR, tree-based learning 

Table 2 
Hyperparameter search-space for SVR, CatBoost and RF, where a random 
instance is drawn from the given distribution. Names of the hyperparameters 
refer to the ranger R-package (Wright and Ziegler, 2017) for RF, catboost R- 
package for CatBoost (Dmitriev et al., 2024) and e1071 R-package (Meyer et al., 
2024) for SVR.

Learning Algorithm Hyperparameter Search Space Distribution

CatBoost depth [1, 10] Discrete Uniform
learning_rate [0.005, 0.5] Log-Uniform
iterations [50, 2000] Discrete Uniform
l2_leaf_reg [0, 10] Uniform
rsm [0.6, 1] Uniform
subsample [0.6, 1] Uniform
random_strength [0.001, 10] Log-Uniform

RF num.trees = 2 000 −

mtry [0.1, 1]* Uniform
min.node.size [1, 12] Discrete Uniform
max.depth [1, 10] Discrete Uniform
sample.fraction [0.6, 1] Uniform

SVR cost [0.01, 1000] Log-Uniform
gamma [0.001, 10] Log-Uniform
kernel [linear, radial] Discrete Uniform

* Given as fraction instead of absolute value input for R-function.
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algorithms (i.e., RF and CatBoost) considerably outperformed SVR and 
MLR (Fig. 1b). This is further highlighted by the fact that in 63 % of the 
prediction tasks in these datasets, RF or CatBoost had the best perfor-
mance (Fig. 2b). Meanwhile, MLR or SVR had the worst performance in 
72.5 % of the cases. The advantages of tree-based learning algorithms 
for regular tabular datasets have been highlighted in numerous bench-
marking studies (Grinsztajn et al., 2022; Shmuel et al., 2024; Shwartz- 
Ziv and Armon, 2022). Their particular strengths include effective reg-
ularization when dealing with multicollinearity and irrelevant features, 
along with the ability to learn irregular functions or interactions. For this 
reason, tree-based algorithms, most notably RF, have become the most 
widely used learning algorithms in DSM (Khaledian and Miller, 2020).

Opposite results are evident for datasets with vis-NIR, NIR and MIR. 
Here, SVR and MLR had on average an R2 considerably larger than that 
of CatBoost and RF (Fig. 1c). Additionally, they ranked first in 69 % of 
the prediction tasks (Fig. 2c), whereas RF or CatBoost had the worst 
performances in 73.8 % of the cases. The very high dimensionality and 
inherent multicollinearity in spectral data, where adjacent bands are 
often highly correlated, made feature dimensionality reduction tech-
niques, such as PCA and CMF, essential. For example, the dataset O.32 
had up to 1,637 features but only 32 soil samples available for training 
(Table 1). Learning algorithms would severely overfit on this inflated 
feature to training sample ratio. However, CMF and especially PCA 
facilitated proper modeling, as shown by the best selected 

Fig. 1. Violin plot showing the distribution of R2 values grouped by learning algorithms for prediction tasks from (a) all datasets, (b) datasets without vis-NIR, NIR, 
or MIR, and (c) datasets with vis-NIR, NIR, or MIR. Horizontal lines with labels represent the mean R2 value.

Fig. 2. Bar plot showing the relative frequency distribution of ordinal ranks based on the lowest RMSE (i.e., lower rank number indicates better performance) for the 
four learning algorithms for predictions tasks from (a) all datasets, (b) datasets without vis-NIR, NIR, or MIR, and (c) datasets with vis-NIR, NIR, or MIR. Mean ranks 
of the ordinally ranked RMSE for the learning algorithms are shown, including significance letters from the Wilcoxon Signed-Rank Test (α = 0.1) to indicate whether 
the performance differences between the learning algorithms were statistically significant.
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hyperparameters (see Appendix C.2, Fig. 1C). This posed a disadvantage 
to the tree-based algorithms because PCA has been reported to perform 
weaker when combined with tree-based algorithms (Howley et al., 
2005). PCA creates new uncorrelated features that are linear combina-
tions of the original features but tree-based models are inflexible to 
adapt to rotated or transformed data that do not represent the original 
feature composition (Grinsztajn et al., 2022). Consequently, MLR and 
SVR outperformed CatBoost and RF due to their better compatibility 
with PCA. Previous benchmarking studies in soil spectroscopy, as 
reviewed by Padarian et al. (2020), have reported different outcomes 
favoring more sophisticated methods. One possible explanation for this 
discrepancy is that these earlier studies relied on a single dataset, which 
may inadvertently lead to overinterpretation of incidental results. 
Alternatively, an unintended publication bias favoring novel methods 
over simpler ones, as observed in other computational fields (Buchka 
et al., 2021), could have contributed to the differing outcomes. None-
theless, we acknowledge that tree-based models possibly perform better 
on full spectral data when very large training sets are available 
(Clingensmith and Grunwald, 2022) or with effective feature selection 
(Canero et al., 2024). Such an extended analysis was not within the 
scope of this study.

Lastly, we found a relationship between the mean ordinal rank of a 
learning algorithm and the sample size available for a prediction task 
(Fig. 3). Most notably, MLR showed sensitivity to the number of avail-
able samples, as its mean rank worsened for datasets with more than 100 
samples. This aligns with previous results, which similarly indicated that 
MLR can have advantages for small sized datasets but may not be ideal if 
enough training data is available (Schmidinger et al., 2024b). The 
opposite behavior was observed for SVR, which considerably improved 
its rank for datasets with more than 100 samples. For RF and CatBoost, 
the effect of the sample size was not as pronounced. CatBoost was 
slightly better with more training data, whereas RF was more effective 
for smaller datasets.

Despite the advantages that certain learning algorithms have, their 
superiority is not deterministic. Their performances can vary based on 
numerous factors and may not be optimal in every case. For example, RF 
was generally the worst performing learning algorithm for datasets with 
vis-NIR, NIR and MIR (Fig. 1b), yet it still turned out to be best in 10 % of 
the prediction tasks (Fig. 2b). Therefore, relying on a single dataset is 
insufficient to establish the superiority of one method and may foster 
misleading conclusions based on non-generalizable results.

4. Further applications

For demonstrative purposes, we restricted the benchmarking to four 
learning algorithms, although many other relevant methods remain to 
be explored. The benchmarking study of Section 3.2 is fully reproduc-
ible, as the code and datasets have been published. Therefore, additional 
learning algorithms or different feature selection strategies can readily 
be integrated into the pipeline of Section 3.1 to further extend the 
analysis. While neural networks were not included in this initial 
benchmarking due to their relatively poor performances in larger 
tabular benchmarking studies (Shmuel et al., 2024), recent advance-
ments in neural networks designed for tabular data such as TabPFN 
(Hollmann et al., 2025) have demonstrated promising results. First 
successful applications of TabPFN in DSM can be found by Barkov et al. 
(2024) but its application has to be further evaluated. Lastly, we 
encourage extending the benchmarking with more open datasets, such 
as those available from OSSL, in addition to LimeSoDa.

Within the scope of this study, we focused entirely on the need of 
open datasets for benchmarking purposes to address currently present 
shortcomings. Nonetheless, the usage of LimeSoDa should not be 
restricted to statistical benchmarking or method development. Open 
datasets from various geographical context with different sensing tech-
niques may enhance our general understanding of pedological pro-
cesses. It allows for the critical evaluation of soil mapping in 
agronomical decision making and asses the robustness of various soil 
sensing techniques. Especially the liming context of the dataset can be 
useful for studies in the field of precision agriculture. Consequently, 
LimeSoDa is a valuable tool for addressing key challenges of pedo-
metrics outside of DSM benchmarking (Wadoux et al., 2021). In other 
academic fields, secondary data analysis has already answered various 
research questions unrelated to the original research purpose of the 
dataset (Greene et al., 2017). Lastly, spectroscopy data from LimeSoDa 
can be harmonized and added to other spectral libraries as additional 
training data to improve global modeling.

5. Conclusion

Current benchmarking practices in DSM suffer from data limitations 
that lead to incomplete or potentially biased conclusions. There is a lack 
of open datasets from various domains, spatial dimensions and types of 
sensors. To address this problem, we introduced an open-access data 
collection called LimeSoDa, which currently consists of 31 field- and 
farm-scale datasets. LimeSoDa offers datasets that are ready-to-use for 
modeling and covers various types of features from different sensing 

Fig. 3. Line plot showing the mean ordinal rank based on the lowest RMSE (i.e., lower rank number indicates better performance) in dependence to the sample size. 
Lines are differentiated by the four learning algorithms and the type of features present in the dataset of the prediction task.
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techniques. This enables those who are working in the field of DSM to 
benchmark statistical methods on a diverse range of soil datasets. 
Further, the open license is intended to improve the reproducibility.

The utility of LimeSoDa was demonstrated through a benchmarking 
study with four learning algorithms. The results showed that no algo-
rithm significantly exceeded the others across all datasets. Instead, 
different learning algorithms had advantages depending on the type of 
features and sample size of a dataset. On average, tree-based algorithms, 
i.e., CatBoost and RF, performed better on datasets without vis-NIR, NIR 
and MIR features, proving their suitability for conventional tabular 
datasets. In contrast, SVR and MLR outperformed CatBoost and RF for 
datasets with vis-NIR, NIR and MIR due to their better compatibility 
with PCA-transformed data. Additionally, the training sample size 
influenced the ranking of a learning algorithm. The relative performance 
most notably decreased for MLR and increased for SVR with more 
training samples.

A benchmarking study based on a single dataset could not have 
revealed such context-dependent performance of learning algorithms. 
More so, relying on singular datasets risks overinterpreting incidental 
outcomes and a potential publication bias favoring newer methods 
cannot be ruled out. In contrast, LimeSoDa facilitates more in-depth 
analyses and enables comprehensive conclusions. Additionally, the 
benchmarking can readily be extended with further learning algorithms 
or pre-processing techniques because datasets and code are openly 
available.

Beyond benchmarking, there are further applications and challenges 
in pedometrics that benefit from open datasets. LimeSoDa can be used to 

investigate pedological processes across diverse geographical contexts 
or the spectral data can be integrated into other spectroscopy libraries to 
improve global modeling. In summary, by providing a rich and diverse 
collection of open datasets, LimeSoDa has the potential to significantly 
advance ML applications in pedometrics.
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Appendix A:. Literature review on DSM benchmarking studies

Appendix A.1: Literature review methodology

The “Web of Science” database was used for the literature review. We searched for “digital soil mapping” and “predictive soil mapping” as 
keywords in the abstract for documents defined as “data paper”, “early access” or “article” and restricted the search to publications from the year 2023. 
This resulted in an initial pool of 192 papers. From this pool, eight papers were excluded because they were not written in English, missed DSM context 
or were inaccessible. Another 73 were removed because the abstract did not indicate that any statistical benchmarking was conducted, leading to a 
total of 111 papers for the review on DSM benchmarking practices. As benchmarking we considered a broad definition, encompassing any comparison 
of competing statistical methods based on quantified validation metrics. This included comparisons of: prediction algorithms, feature selection 
methods, sampling designs, engineered features etc. We did not consider the comparison of sensors or features as benchmarking, if the focus did not lie 
on the statistical engineering of the features (e.g., temporal stacks). In some studies, the benchmarking was not the main objective of the study but 
rather supplementary information. We also considered these as “benchmarking study” when the comparison was mentioned in the abstract.

The code and data availability in each of the 111 papers was evaluated. We differentiated between “not shared”, “shared” and “partially shared”. 
The statement on material availability and any supplementary information provided were examined alongside keywords such as “repository”, 
“dataset”, “GitHub”, “Zenodo”, “code” etc. to determine the availability of code or data. We classified any data or code to be “shared” when they were 
directly accessible through the supplementary information or a repository (e.g., Zenodo or GitHub). In some code-repositories, datasets were not 
directly provided due to restrictive dataset licenses (e.g., as in LUCAS) but links to the websites that hosted these datasets were added. This was also 
considered as “shared” when it was provided in combination with the dataset pre-processing code. In other cases, links were given but they expired 
since the publication or the dataset hosting webpages were not in English, which made navigation impossible. These cases were considered “not 
shared”. Lastly, it was evaluated how many datasets were used for the benchmarking. We classified any collection of data based on a coherent 
sampling in a distinct study area as dataset.

Appendix A.2: Literature review results

A majority of over 90 % neither shared the data nor the code (Fig. A1). However, many studies (48 %) included a statement on the data availability 
with willingness to provide data on request. In contrast, such a statement on the availability of code was almost never included apart from a single 
exception (1 %). This can be explained by the fact that most journals ask for a statement on the availability of data but do not expect this for the code 
availability.

The majority of benchmarking was conducted based on a single dataset (95.5 %) and the maximum number of datasets did not exceed three 
(Fig. A2). All materials used in the literature review are provided at github.com/JonasSchmidinger/LimeSoDa_literature.review, with additional 
comments for boundary cases. 
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Fig. A1. Bar plot showing the relative frequency distribution on the availability of data (a) or code (c) in other DSM benchmarking publications from 2023, as well as 
the statement on data (b) or code (d) availability if datasets were not shared.

Fig. A2. Bar plot showing the relative frequency distribution on how many datasets were evaluated in other DSM benchmarking publications from 2023.
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Appendix B:. Further information on LimeSoDa

In the following section, we added further information and exploratory figures describing datasets of LimeSoDa. Table B1 provides information on 
the sampling design that was used to create the dataset and the availability of spatial coordinates. Nonetheless, coordinates may be provided on 
request by the authors if they are not included. The locations of the datasets are further depicted on a global map in Fig. B1. Fig. B2 illustrates the 
spectral reflectance curves of vis-NIR, NIR and MIR from each sample. Spectral data were provided as raw as possible in order to allow users of 
LimeSoDa to use their own processing methods. Fig. B3 shows the distribution of target soil property values per dataset. Since SOC and SOM were not 
harmonized, they are presented separately. Additionally, MG.44 and SSP.58 did not measure SOC and clay as gravimetric percentage but as con-
centration. Therefore, they needed an independent scale. Fig. B4 includes the correlation plots of the datasets. For concise visualization, we only 
selected a single feature with the highest absolute correlation to the target soil properties.

Table B1 
Extended overview of datasets included in LimeSoDa.

Dataset ID Sampling Design Availability of Spatial Coordinates

SSP.460 Regular Grid Sampling Without Coordinates
BB.250 Triangular Grid Sampling With Coordinates
SP.231 Random Sampling & Systematic Sampling With Coordinates
B.204 Regular Grid Sampling With Coordinates
G.150 Regular Grid Sampling With Coordinates
H.138 Adapted Latin Hypercube Sampling & Uncertainty Guided Sampling With Coordinates
SL.125 Regular Grid Sampling & Surface Tortoise Sampling With Dummy Coordinates
UL.120 Regular Grid Sampling & Surface Tortoise Sampling With Dummy Coordinates
NRW.115 Regular Grid Sampling Without Coordinates
MG.112 Regular Grid Sampling With Coordinates
SA.112 Incomplete Regular Grid Sampling Without Coordinates
G.104 Regular Grid Sampling With Coordinates
MGS.101 Regular Grid Sampling With Coordinates
CV.98 Stratified Random Sampling Without Coordinates
SC.93 Conditioned Latin Hypercube Sampling With Coordinates
BB.72 Triangular Grid Sampling With Coordinates
NRW.62 Stratified Systematic Sampling Without Coordinates
RP.62 Regular Grid Sampling Without Coordinates
SSP.58 Stratified Random Sampling Without Coordinates
NSW.52 Random Sampling from K-Means Clustering & Stratified Random Sampling With Coordinates
BB.51 Multi Criteria Sampling With Coordinates
W.50 Conditioned Latin Hypercube Sampling Without Coordinates
SC.50 Regular Grid Sampling With Coordinates
PC.45 Stratified Systematic Sampling Without Coordinates
MG.44 Random Sampling from Regular Grid With Coordinates
NRW.42 Regular Grid Sampling Without Coordinates
SM.40 Stratified Sampling from Regular Grid With Coordinates
MWP.36 Random Sampling of Field Transects With Coordinates
O.32 Regular Grid Sampling Without Coordinates
BB.30_1 Multi Criteria Sampling With Coordinates
BB.30_2 Regular Grid Sampling With Coordinates
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Fig. B1. Locations of the datasets on a global map. For datasets without coordinates, not the exact but only an approximate location is shown.

Fig. B2. Spectral curves from all individual samples of datasets containing vis-NIR, NIR or MIR.
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Fig. B3. Boxplot showing the distribution of the target soil properties. Clay and SOC are shown in different units as they were not harmonized.
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Fig. B4. Correlation plots for all datasets of target soil properties and a selected feature with the highest absolute correlation to the target soil properties. Correlation 
is given as Pearson correlation coefficient (R). Explanation of the feature codes can be looked up in the metadata of the datasets.

Appendix C:. Further information on the benchmarking

Appendix C.1: Validation metrics

RMSE and R2 were determined after aggregation of fold-wise test values (y) and predicted values (ŷ). RMSE was calculated as: 

RMSE =
1
n
∑n

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(yi − ŷi)
2

√

, (1) 

where n is the number of samples (i = 1,⋯,n). The RMSE has an optimal value of 0 and is expressed in the unit of the target property.
For Fig. 2 and Fig. 3, we used the ordinally ranked RMSE to evaluate the performances. For every prediction task, we ranked the four learning 

algorithms according to the RMSE. The first rank was assigned to the learning algorithm with the lowest (i.e., best) RMSE and the fourth rank to the 
highest (i.e., worst) RMSE. This returns a ranking distribution of the learning algorithms, which shows how often a model performed best to worst 
(Fig. 2). The mean rank represents the average ordinal rank over all prediction tasks (Fig. 2 & Fig. 3). Since the magnitude of differences in RMSE 
between the algorithms is not measured, this approach is less prone to outliers (i.e., unusual poor or strong predictive performances).

R2 was calculated as: 

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1

(
yi− y)2 , (2) 

it becomes negative if predictions are worse than the arithmetic mean of the test values y and its optimal value is 1.

Appendix C.2: Further results

Fig. C1 shows which dimensionality reduction method turned out to be best within the nested CV hyperparameter selection. The best selected 
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dimensionality reduction method was used to train the final models in the outer loop. As discussed in Section 3.2, PCA was most frequently the best 
method for handling the high dimensionality in vis-NIR, NIR and MIR datasets. However, with more samples, the unprocessed data (i.e., CMF = 1 in 
hyperparameter search) was increasingly useful for SVR. It was able to fit better models using the whole feature matrix of vis-NIR, NIR and MIR 
datasets with more than 100 samples (Fig. 3).

Fig. C1. Bar plot showing the relative frequency distribution of the best dimensionality reduction in the hyperparameter tuning for the four learning algorithms for 
predictions tasks from (a) all datasets, (b) datasets with more than 100 samples, and (c) datasets with less than 100 samples. “All datasets” refers here to all datasets 
with vis-NIR, NIR and MIR, in contrast to the previous figures, as no dimensionality reduction was used for the datasets without vis-NIR, NIR and MIR.

Fig. C2 shows the relative frequency of the best number of PCA components during the hyperparameter tuning. While there is a certain random 
component, it is still apparent that RF utilized less components than the other algorithms. This could explain the poor performance of RF for vis-NIR, 
NIR and MIR datasets. RF was not able to exploit the information encoded in the higher-order components as effectively as the other learning al-
gorithms.

Fig. C2. Line plot showing the relative frequency distribution of how many PCA components were best during the hyperparameter tuning for the four learning 
algorithms for datasets with vis-NIR, NIR and MIR.

Appendix D. Supplementary information

The supplementary information contains a table which shows the author contributions and the benchmarking results as R2 for each prediction task, 
i.e., dataset and soil property. Supplementary information to this article can be found online at https://doi.org/10.1016/j.geoderma.2025.117337.

J. Schmidinger et al.                                                                                                                                                                                                                            Geoderma 459 (2025) 117337 

14 

https://doi.org/10.1016/j.geoderma.2025.117337


Data availability

All datasets can be accessed through Zenodo (https://doi.org/10.5281/ 
zenodo.14932573), an R package (github.com/JonasSchmidinger/ 
LimeSoDa) and a Python package (https://github.com/a11to1n3/ 
LimeSoDa). R-code and results of the benchmarking study in Section 3 is 
available at https://github.com/JonasSchmidinger/LimeSoDa_bench 
marking. The literature review of Appendix A is available at 
https://github.com/JonasSchmidinger/LimeSoDa_literature.review.
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Piikki, K., Wetterlind, J., Söderström, M., Stenberg, B., 2021. Perspectives on validation 
in digital soil mapping of continuous attributes—A review. Soil Use Manage. 37 (1), 
7–21.

Pineau, J., Vincent-Lamarre, P., Sinha, K., Larivière, V., Beygelzimer, A., d’Alché-Buc, F., 
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