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Abstract

Introduction: Biogeography describes spatial patterns of diversity and explains why

organisms occur in given conditions. While it is well established that the diversity of soil

microbes is largely controlled by edaphic environmental variables, microbiome

community prediction from soil properties has received less attention. In this study,

we specifically investigated whether it is possible to predict the composition of soil

fungal communities based on physicochemical soil data using multivariate ordination.

Materials and Methods: We sampled soil from 59 arable fields in Switzerland and

assembled paired data of physicochemical soil properties as well as profiles of soil fungal

communities. Fungal communities were characterized using long‐read sequencing of the

entire ribosomal internal transcribed spacer. We used redundancy analysis to combine

the physical and chemical soil measurements with the fungal community data.

Results: We identified a reduced set of 10 soil properties that explained fungal

community composition. Soil properties with the strongest impact on the fungal

community included pH, potassium and sand content. Finally, we evaluated the model

for its suitability for prediction using leave‐one‐out validation. The prediction of

community composition was successful for most soils, and only 3/59 soils could not be

well predicted (Pearson correlation coefficients between observed and predicted

communities of <0.5). Further, we successfully validated our prediction approach with a

publicly available data set. With both data sets, prediction was less successful for soils

characterized by very unique properties or diverging fungal communities, while it was

successful for soils with similar characteristics and microbiome.

Conclusions: Reliable prediction of microbial communities from chemical soil properties

could bypass the complex and laborious sequencing‐based generation of microbiota

data, thereby making soil microbiome information available for agricultural purposes

such as pathogen monitoring, field inoculation or yield projections.
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1 | INTRODUCTION

Soils host a large community of microbes with an estimated diversity

of several thousands of species per gram of soil (Roesch et al., 2007).

The global microbial biomass (bacteria, fungi, archaea, protists and

viruses) is estimated to be >1000 kg per hectare (Fierer, 2017). Soil

microorganisms participate in important soil functions such as

nutrient cycling and soil carbon sequestration, thereby contributing

to soil fertility. Fungal communities notably play a key role in the

decomposition of organic matter, thus driving the carbon cycle. In

addition to their role as saprotrophs, soil fungi include symbiotic

organisms such as mycorrhizal fungi or major crop pathogens, thus

contributing to plant growth and soil, plant and animal health

(Banerjee & van der Heijden, 2023).

Biogeography studies patterns of species diversity over space

and times (Martiny et al., 2006). Biogeography seeks to understand

the relationship between ecological factors and species distributions

(Figure 1, Section ‘Background’). Similar to plants and animals,

biogeographical patterns are also studied for microorganisms, which

follow distribution principles other than those of larger organisms

(Martiny et al., 2006). While the biogeography of macroorganisms is

often dependent on spatial distance or dispersal, microbial bio-

geography is often controlled by the physical and chemical variables

of the immediate environment (Fierer & Jackson, 2006). Greatly

facilitated with modern DNA sequencing, the main drivers of global

microbial biogeography have been demonstrated across different

ecosystems around the globe (Delgado‐Baquerizo et al., 2018;

Tedersoo et al., 2014). Particular for soils, the immediate physico-

chemical environment, including pH, nutrient availability and humid-

ity, comprises the critical drivers explaining the local microbial

diversity and richness (Chu et al., 2020). For instance, the

biogeography of soil bacterial communities, even across different

ecosystems, was largely explained by soil pH (Fierer & Jackson, 2006;

Karimi et al., 2018). Karimi et al. defined the hierarchy of the main

drivers of soil bacterial and archaeal diversity with soil pH > land

management > soil texture > soil nutrients > climate (Karimi et al.,

2018). By contrast, soil fungal biogeography is primarily driven by

climate, followed by edaphic variables as well as by spatial drivers

(Tedersoo et al., 2014). In addition to soil pH, prominent edaphic

drivers of soil microbial biogeography across ecosystems are levels of

organic carbon and redox status, which shape bacterial communities

(Fierer, 2017), while calcium and phosphorus are the strongest

drivers of fungal diversity (Tedersoo et al., 2014). Soil microbial

diversity patterns also vary within ecosystems; for example, distinct

microbial communities are found in the same field soils after different

cropping management practices (Hartmann et al., 2015; Hartman

et al., 2018). Such observations exemplify that the immediate

physicochemical conditions also operate at a very fine scale to drive

soil microbial biogeography, such as in agroecosystems.

Our motivation for this work is rooted in the vision that

microbiome information of field soils, that is, abundance patterns of

certain bacteria or fungi, can be deployed for agricultural purposes

(Schlaeppi & Bulgarelli, 2015). Chemical soil information is often

taken as a basis for decisions about agricultural management; for

example, in Switzerland, farmers who receive government subsidies

need to adjust fertilizer regimes based on soil nutrient and texture

analyses (Richner & Sinaj, 2017). On the other hand, microbiome

information on agricultural soils remains untapped for rational

management decisions. For instance, the presence or absence of soil

microbes could be used to predict the likelihood of pathogen

development or symbiont establishment, to explain over‐ and

underyielding fields or to estimate the efficiency of nutrient cycling.

Obtaining the biological information of soils remains more complex

and laborious than generating chemical soil data, which is standard

practice in analytical soil laboratories. The analysis of biological soil

parameters is more demanding because they are time‐consuming in

the laboratory (e.g., microbial biomass, microbial community analysis)

or because they rely on experimental bioassays (e.g., microbial

respiration, soil suppressiveness). A solution to obtain microbiological

soil information is to exploit biogeographical principles and predict

soil microbiomes from chemical data.

Biogeography can be interpreted in a forward or reverse manner

(Figure 1, Section ‘Background’). This distinction of forward versus

reverse interpretation of biogeography becomes particularly impor-

tant for prediction. Most studies cited above model the relationships

between edaphic soil factors and soil microbiomes but often without

performing actual species predictions from their models, for

example (Karimi et al., 2018; Tedersoo et al., 2014). In those studies,

the word ‘prediction’ is used for explaining biogeographic relation-

ships, but not to predict species distribution from environmental

conditions. By contrast, reverse prediction uses species distributions

to explain the environmental conditions. In this case, soil micro-

biomes serve as an explanatory variable to predict, for example, crop

F IGURE 1 Forward and reverse biogeography. Forward‐based
interpretation of biogeography explains species distribution from
environmental conditions while reverse‐based interpretation uses
species distribution to explain the environment. In this study, we
measured the biological, chemical and physical properties alongside
with the fungal species in soil samples from different fields (Step 1).
Next, we modelled the biogeography of soil fungi based on the soil
properties (Step 2). Finally, we used this model for prediction of soil
fungi from the soil property data of a test field (Step 3).
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productivity (Chang et al., 2017), type of land use (Hermans et al.,

2020) or ecosystem functions (Wagg et al., 2019). We propose to use

microbial biogeography in a forward manner, that is, explaining

species distribution from the environmental conditions. In that case,

the soil microbiome is the response variable. To the best of our

knowledge, no forward biogeography studies have been addressing

predictions of soil fungal communities from soil properties.

Microbial ecology traditionally displays microbial diversity using

ordination techniques to which the environmental factors can be

fitted to describe the multifactorial relationships; see Kundel

et al. (2020) or Chen et al. (2021) as examples. Other methods,

including deep learning approaches, have been used to predict soil

microbial community composition from soil properties (García‐

Jiménez et al., 2020); however, multivariate ordination has rarely

been used for prediction. The environmental properties can partici-

pate in the ordination; in this case, the ordination is called

‘constrained’. Redundancy analysis (RDA) is a commonly used

constrained ordination technique that combines regression with

principal component analysis (PCA) (Borcard et al., 2018). A key

advantage of RDA is that covariates can be included in the model to

account for confounding factors. This statistical method is called

partial RDA (Borcard et al., 1992) and is the multivariate equivalent of

partial linear regression (Borcard et al., 2018). For example, the

researcher is interested to display the relationship between species

composition and spatial variables, when the effect of temporal

variables is held constant. Recently, RDA has been successfully used

as a tool to predict genomic composition (Capblancq & Forester,

2021). Here, we explored the use of multivariate ordination to predict

microbial community composition from environmental properties.

In this study, we tested the proof‐of‐principle that composition

of soil fungal communities can be predicted based on measured

physicochemical soil properties. For this, we sampled soils from 59

arable fields and characterized their fungal communities using long‐

read amplicon sequencing as well as their chemical, physical and

biological properties. Using partial multivariate ordination, a reduced

set of 10 variables was identified to model the relationship between

soil properties and fungal community composition. Furthermore, we

followed the same approach using a publicly available data set. Both

models allowed successful prediction of species composition, except

for soils with unique properties or few representatives in the data set.

2 | MATERIALS AND METHODS

2.1 | Soil sampling

Soil samples were collected from 22 fields in 2018, 25 fields in 2019

and 12 fields in 2020 (Supporting Information: Figure S1). These

fields belong to farmers who agreed to participate in an inoculation

experiment with arbuscular mycorrhizal fungi, which took place over

three years (Lutz et al., Submitted). The exact global positioning

system coordinates of those sites are available but not provided here

for confidentiality reasons. In 2018, fields were sampled from April

23 to May 16. In 2019, fields were sampled from April 18 to June 7.

In 2020, fields were sampled from April 22 to May 16. Soils were

sampled before fertilization with a soil auger (Eijkelkamp; diameter

3 cm, depth 20 cm). Approximately 20 soil cores were mixed to form

a composite sample. In the laboratory, soils were sieved with a 2mm

sieve to remove stones and decomposing plant material. Subsamples

for DNA extraction were stored at −20°C until extraction. Soils were

stored at 4°C for a maximum of 2 weeks before further processing.

2.2 | Soil analysis

Soil texture, cation‐exchange capacity, base saturation, humus and

water holding capacity were determined at the Environmental

Analytics laboratory at Agroscope according to the Swiss reference

methods (FAL R. FAW, 2004). Microbial biomass and respiration were

measured by the Soil Biology Laboratory at Agroscope with

chloroform fumigation extraction and substrate‐induced respiration,

respectively, both according to Swiss reference methods (FAL R.

FAW, 2004). Nitrate and ammonium concentrations were deter-

mined photometrically according to the reference procedure (FAL R.

FAW, 2004); Nmin is the sum of nitrate and ammonium. Macro‐ and

micronutrients as well as pH were measured at Labor für Boden‐ und

Umweltanalytik (Eric Schweizer AG) according to their standard

protocols. Data are provided in Supporting Information: Table S1.

2.3 | Profiling fungal communities

DNA was extracted from approximately 250mg soil with the

NucleoSpin Soil kit (Macherey‐Nagel) from four subsamples from

each soil. Samples from each year were extracted independently and

sequenced in a separate library. Finally, the DNA extracts from the 3

years were used as templates for polymerase chain reaction (PCR) to

sequence a fourth library. For this library, the DNA from the four

subsamples was pooled in equimolar ratios. After quantification with

a Picogreen Quant‐iT PicoGreen dsDNA Assay kit (Invitrogen), DNA

was diluted to 1 ng/μL.

The PCR primers ITS1F (Gardes & Bruns, 1993) and ITS4 (White

et al., 1990) were used to amplify the entire internal transcribed

spacer (ITS) region for long‐read sequencing (Bodenhausen et al.,

2019). Amplicon libraries were prepared using a two‐step PCR

protocol. The first step amplifies the ITS region from genomic DNA,

while the second step adds barcodes specific for each sample. PCRs

were prepared in the same way for each library: 5 Prime Hot Master

Mix (Quantabio Beverly) was used with a total reaction volume of

20 μL with 0.3% BSA and 500 nM of each primer. The PCR

programme consisted of an initial denaturation step of 2min at

94°C, followed by 25 cycles of denaturation at 94°C for 45 s,

annealing at 55°C for 1min, and elongation at 72°C for 1min with a

final elongation step of 10min at 72°C. Clean‐up was followed by

solid‐phase reversible immobilization with SPRIselect beads (Beck-

man Coulter). The second PCR step consisted of the same PCR but
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with barcoded ITS1F and ITS4 primers and without BSA and the same

cycling programme but with only 10 steps. Finally, DNA was

quantified with Picogreen and pooled in equimolar ratios. Negative

controls were included for PCR and sequenced along with the other

samples.

Four libraries were sequenced with the long‐read sequencing

technology Single Molecule, Real‐Time (SMRT) of PacBio (Supporting

Information: Table S2). The first SMRT library was sequenced on a

Sequel I instrument at the Functional Genomics Centre in Zürich

(https://fgcz.ch) according to standard PacBio protocols. That library

was sequenced twice to obtain more coverage. The second and third

libraries were sequenced on a Sequel I instrument, while the fourth

library was sequenced on a Sequel IIe, all at the Next‐Generation

Sequencing Platform of the University of Bern (https://www.ngs.

unibe.ch) according to standard PacBio protocols. The raw data were

converted to circular consensus sequences (min. passes = 5) and

demultiplexed with SMRT software (v. 9.0.0, Pacific Biosciences of

California).

2.4 | Bioinformatics

Calculations were performed at the SciCORE (http://scicore.unibas.

ch/) scientific computing centre at the University of Basel. The R

statistical environment (R version 4.0.0) was used for data analysis

(Team Rs, 2016). All the following steps were performed using the R

package dada2 (1.16.0) (Callahan et al., 2016). Although all samples

from each year were sequenced separately, they were analyzed

together to form one operational taxonomic unit (OTU) table. After

orienting all sequences in the same direction, primer sequences were

removed. Sequences were quality filtered (max. expected errors: 2,

min. length: 500 bp), truncated (after 1800 bp or at the first instance

of a quality score <3) and dereplicated. Next, sequencing errors were

denoised by the DADA algorithm using a parametric error model. A

count table of amplicon sequence variants (ASVs) was created,

chimeras were removed and ASVs were clustered by 97% similarity

with the R package DECIPHER (v. 2.16.1). Finally, the naïve Bayesian

classifier from the ribosomal database project RDP (Wang et al.,

2007) was used to assign taxonomy based on the UNITE database

(Nilsson et al., 2019) with utax_reference_dataset_10.05.2021.fasta.

Because the assignments were ambiguous for some ASVs, we

assigned the data with an alternative classifier (IDTAXA, minimal

bootstrap = 40%) again using the UNITE database (UNITE_v2020_-

February2020.RData provided by DECIPHER). We combined the

assignments of both classifiers, choosing for each ASV the classifier

that could assign to a deeper taxonomic rank. In the case of equality,

the assignment of the RDP classifier was chosen.

2.5 | Statistical analysis

The R package ggplot2 was used for plotting (Wickham, 2016),

except when otherwise noted.

The soil variables were correlated with each other using the

Pearson correlation coefficient and displayed with ggcorrplot::corre-

logram() (Kassambara, 2022). PCA was conducted with the function

base::prcomp() using scaled and centred variables. Soil texture

was classified with the R package soiltexture (Moeys, 2018)

using the classification system ‘USDA.TT’ and displayed with the

soiltexture::TT.plot() function.

The R package phyloseq was used to process the microbiome

data (McMurdie & Holmes, 2013) with the R package vegan for

community analyses (Oksanen et al., 2019). Negative controls were

filtered out since the number of sequences was very low. One sample

with 23 sequences was considered failed and removed (F35, replicate

3). After normalization (relative abundance), data were split into three

sublibraries for each year, and absent OTUs were removed from OTU

tables for each sublibrary. PCA was performed with vegan::rda() on

Hellinger‐transformed data (Legendre & Gallagher, 2001). The four

replicates for each field generally clustered close together (Support-

ing Information: Figure S2), indicating that they have similar

communities. Therefore, the four replicates were merged by

summing the reads. Supporting Information: Table S2 shows

summary statistics for the three merged libraries.

Rarefaction curves were prepared with vegan::rarecurve(), confirm-

ing that the fungal communities were sequenced sufficiently deep to

capture the existing diversity (Supporting Information: Figure S3).

Rarefaction analysis also revealed that the number of sequences per

sample depended on the sampling year. Of note, the factor ‘year’ is

confounded with the preparation of separate sequencing libraries for

each year (see below, where we disentangle the ‘year/library’ effect).

Summary statistics are presented in Supporting Information: Table S3.

The number of generated sequences per sample was highest in 2018

because that library was sequenced twice in two subsequent runs. The

OTU table was rarefied to the lowest number of sequences per sample

(4272) phyloseq::rarefy_even_depth() for subsequent data analysis, as

recommended by (Weiss et al., 2015).

The data was filtered based on prevalence, keeping only OTUs

present in at least five samples. After filtering, the OTU tables

comprised 227,801 sequences and 452 OTUs. To plot the taxonomy

profile with a bar chart, OTUs were merged based on phylum name

with phyloseq::tax_glom(). The abundant community was defined as

the OTUs that were present in 90% of the samples. PCA and partial

PCA were performed with vegan::rda() on Hellinger‐transformed data

(Legendre & Gallagher, 2001), conditioning for library (Borcard et al.,

2018). The Bray–Curtis dissimilarity matrix of the Hellinger‐

transformed data was calculated with vegan::vegdist() and the

maximum distance was extracted from this distance matrix.

For constrained ordination, variable selection for RDA was

performed with vegan::ordiR2step() and 999 permutations, condi-

tioning on the library. We performed forward selection and started

with an ‘empty’ model and a ‘scope’ model which contains all the

candidate variables (Borcard et al., 2018). Variables are added in

order of decreasing F‐values, the permutations are used to test the

addition of each variable. The variable selection stops when the

permutation probability is larger than a predefined significance level

228 | BODENHAUSEN ET AL.

 2767035x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sae2.12055 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [13/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://fgcz.ch
https://www.ngs.unibe.ch
https://www.ngs.unibe.ch
http://scicore.unibas.ch/
http://scicore.unibas.ch/


(0.05). In case of two variables with equal F‐values, the selected set

of variables is that which yields the model with the lowest Akaike

Information Criterion, see Supporting Information: Table S4 for

results. The significance of the relationship between the selected

variables and the community matrix was tested with a global

permutation test using vegan::anova.cca() with 999 permutations.

We used leave‐one‐out validation to predict community compo-

sition. Its principle is to omit the data of one site (both fungal

community and soil properties), to build a model based on the data of

all the remaining other sites and to predict the site scores of the

omitted sample using its soil property data (Supporting Information:

Figure S4). This is then repeated for each field. Model selection was

performed for each reduced data set with vegan::ordiR2step() as

before except with only 99 permutations. Each model was saved and

all the models were displayed with a heatmap. Prediction was

performed with vegan::predict(); this function can predict the species

composition (with argument type = ‘response’). Root mean square

error (RMSE) is the mean of the differences between the predicted

values and the observed values, and this was calculated for each

iteration of the leave‐one‐out validation.

The fourth library contains all the samples from the 3 years, see

Supporting Information: Table S3 for summary statistics. PERMANOVA

analysis was performed using vegan::adonis2(), see Supporting Informa-

tion: Table S5 for results. The effect sizes of ‘year’ were similar both with

samples in the same library (9.1%, estimated based on R2 values from

PERMANOVA) and with samples in separate libraries (12.7%). PCA was

performed as before and shows that the community composition of the

re‐sequenced library is very similar to the community composition of the

first three libraries (Supporting Information: Figure S5).

The data analysis code is made accessible through github. com/

PMI‐ Basel/Bodenhausen_et_al_Prediction_soil.

The environmental data of the Swiss Soil Monitoring Network

(NABO) (https://www.agroscope.admin.ch/agroscope/en/home/topics/

environment-resources/soil-bodies-water-nutrients/nabo.html) is availa-

ble upon demand by signing a data usage agreement. The microbiome

data is published (Gschwend et al., 2021). We analyzed the

environmental data and the fungal community data using the same R

scripts as before, so we provided only the report (Supporting

Information: Data set S1).

Soil physicochemical properties were measured according to

standard protocols and both bacterial and fungal communities were

sequenced once a year for 5 years, but here we focus only on the

fungal community of the last year. For constrained ordination,

variable selection for RDA was performed as before except without

conditioning, see Supporting Information: Table S6 for results.

3 | RESULTS

3.1 | Soil properties

We focused our study on soils from 59 arable fields and collected

samples from 22 fields in 2018, 25 fields in 2019 and 12 fields in 2020

(Supporting Information: Figure S1). These fields were managed by the

farmers according to Swiss standards of conventional agriculture (Richner

& Sinaj, 2017). We collected soil samples in spring before fertilization and

measured a broad panel of a total of 39 physical, chemical and biological

properties, including texture, pH, macro‐ and micronutrients, microbial

biomass and microbial respiration (Supporting Information: Table S1). We

classified the texture of the soils according to the Food and Agriculture

Organization and found that most soils were either clay loam (17 field

soils) or loam (29 field soils), while the remaining 13 field soils were

categorized in other and less abundant classes (Supporting Information:

Figure S6). We correlated all the measured properties with each other

and found several groups of highly correlated measurements (Supporting

Information: Figure S7); for example, different extraction methods of

magnesium, potassium or phosphorus as well as soil fertility measures

correlated with each other. To avoid overfitting, the number of variables

was further reduced by retaining one measurement for each type of

analysis (Supporting Information: Figure S7). We performed a PCA with

this reduced set of 18 soil properties to examine the physical, chemical

and biological diversity of the sampled soils. The first axis of the PCA,

which accounted for 34.5% of the variance, separated the soil according

to microbial biomass, and other variables strongly correlated with this

variable, such as organic carbon and water holding capacity (Figure 2).

The second axis of the PCA, which explained 16.0% of the variance,

separated the soils according to the concentration of several macro‐ and

micronutrients, with the main driver for the second axis being the

concentration of phosphorous.

3.2 | Fungal communities

From the exact same soil samples, we characterized the fungal

communities by amplifying the full‐length ITS region with the PCR

F IGURE 2 Properties of the different field soils. PCA biplot of 18
soil variables. F stands for field which are numbered from 01 to 59.
The soil samples were collected over 3 years, in 2018 (red), 2019
(green) and 2020 (blue). Corg, organic carbon; MIC, microbial
biomass; PCA, principal component analysis; Ptot, total phosphorous;
resp, microbial respiration; WHC, water holding capacity.
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primers ITS1F and ITS4 and sequencing the amplicons with long‐read

sequencing technology. Consistent with our previous results

(Bodenhausen et al., 2019), we found that this primer pair

predominantly amplified DNA from Ascomycota, Basidiomycota and

Mortierellomycota (Supporting Information: Figure S8) and detected

only a small amount of Glomeromycota (<5%). Substantial (>5%)

proportions of other phyla were found for Zoopagomycota (sites F32,

F33, F36, F38, F39 and F42), Chytridiomycota (sites F05, F14, F27,

F39, F40, F44 and F50), and Olpidiomycota in one field soil (F12).

Inspecting the most abundant members of the fungal community, we

noticed that the three most abundant fungal sequences were present

in all field soils, while the prevalence pattern of less abundant

community members varied more between the different soils

(Figure 3). The most abundant fungal sequence (OTU1), accounting

for an average of 18% of the community, belonged to a Mortierella

species (Table 1). Other consistently abundant sequences corre-

sponded to Plectosphaerellaceae (OTU2) and an Orbiliaceae (OTU3). A

few field soils contained uniquely abundant fungi such as Fusicolla

septimanifiniscientiae (OTU8), Gibberella intricans (OTU11), Fusarium

solani (OTU19), all three of them Ascomycota, and Solicoccozyma

aeria (OTU09), a Basidiomycota. Grouping the soil fungal communi-

ties using hierarchical clustering identified four major clusters, which

mainly reflected combinations of the three most abundant fungi.

OTU1 was moderately abundant in the communities of cluster

C1, OTU1 and OTU2 were both very abundant in C2, and OTU1 and

OTU3 had different ratios in clusters C3 and C4 (Figure 3).

Analogous to the analysis of soil properties, we performed a

PCA to examine the fungal diversity in the sampled soils. We noticed

that the samples clustered by year (Supporting Information:

Figure S9A), reflecting the fact that a separate sequencing library

was prepared for each year. We used partial PCA conditioned with

‘year/library’ to control for this effect (Supporting Information:

Figure S9B) for the subsequent combinatory analysis of soil

properties and fungal community data.

3.3 | Modelling soil properties and fungal
communities

We would like to predict community composition based on combined

soil properties. Therefore, we used RDA to model the relationship of

the set of reduced soil properties with fungal community composi-

tion. RDA begins with a regression of the community data with the

predictors which is the environmental data followed by a PCA

ordination. To identify the soil properties that best explained the

community composition, we performed forward variable selection in

RDA while partialling out the library effect. We identified the

following 10 variables (Supporting Information: Table S4 for

associated F statistics and p values): pH, potassium, sand, microbial

biomass, boron, mineral nitrogen, microbial respiration, manganese,

clay and total phosphorus. This model has an adjusted R2 of 0.1430,

which means that 14.3% of the variance is explained by these 10 soil

variables; furthermore, we confirmed the significance of the

relationship (global test: F = 2.05, p = 0.001).

For visualization, we report the results of the RDA with two

biplots, with the samples (data as site scores) on the left and as OTUs

(data as species scores) on the right and the soil properties in both

plots (Figure 4). Arrow length and direction visualize the contribution

and relationship of the soil properties to the fungal community data.

Potassium and pH were the soil properties that explained most of the

F IGURE 3 Abundant community members were defined as the OTUs which were present in 90% of the samples. OTUs are ordered by mean
abundance. Data were log10 transformed for the heatmap. Zero counts are represented with a grey square. Hierarchical clustering (with ward.D
method) was used to group the fields using Bray–Curtis dissimilarities. Four clusters, C1–C4, are highlighted with grey boxes.
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community structure (longest arrows), while manganese had only a

weak contribution (shortest arrow). The angles between the response

variables (fungal community) and explanatory variables (soil propert-

ies) or between variables themselves reflect their relationships

(Borcard et al., 2018). The first RDA axis separated the fungal

communities mainly according to the key nutrients phosphorous,

potassium and boron, with manganese pointing in the opposite

direction. The second axis separated the fungal communities due to

clay, Nmin, microbial respiration and microbial biomass (all measures

of soil fertility) and was opposite to sand. Hence, the second RDA

axis represents a soil fertility gradient across the sampled field sites.

The contribution of pH to the ordination is particular, as its arrow is

roughly at a 45° angle to both RDA axes. The fields F02 and F44 are

close to the arrowhead of pH and perpendicular to the arrow for sand

TABLE 1 Taxonomy and mean relative abundance of the abundant community members.

OTU Phylum Order Genus and species Classifier
Mean relative
abundance (%)

OTU1 Mortierellomycota Mortierellales Mortierella minutissima RDP 18.34

OTU2 Ascomycota Glomerellales NA IDTAXA 7.59

OTU3 Ascomycota Orbiliales NA RDP 6.00

OTU4 Ascomycota Hypocreales NA IDTAXA 2.45

OTU6 Mortierellomycota Mortierellales Mortierella exigua RDP 3.06

OTU8 Ascomycota Hypocreales Fusicolla

septimanifiniscientiae

RDP 1.64

OTU9 Basidiomycota Filobasidiales Solicoccozyma aeria IDTAXA 1.92

OTU10 Ascomycota NA NA RDP 1.19

OTU11 Ascomycota Hypocreales Gibberella intricans RDP 1.29

OTU16 Zoopagomycota Zoopagales Syncephalis sp IDTAXA 1.86

OTU17 Ascomycota Helotiales NA IDTAXA 0.87

OTU19 Ascomycota Hypocreales Fusarium solani RDP 0.79

OTU20 Ascomycota Glomerellales Plectosphaerella

niemeijerarum

IDTAXA 0.91

OTU22 Ascomycota Thelebolales Pseudeurotium bakeri IDTAXA 0.75

OTU23 Ascomycota Hypocreales NA IDTAXA 0.65

(a) (b)

F IGURE 4 Redundancy analysis (RDA) biplots reporting the fungal community and soil chemical data. The fungal community data are
reported based on site (a) or species scores (i.e., OTUs, b) together with the chemical soil properties. Only OTUs with absolute values of scores
>1 are labelled. MIC, microbial biomass; Nmin, mineral nitrogen; Ptot, total phosphorous; resp, microbial respiration.
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(Figure 4a), which indicates that these soils are characterized by

relatively high pH and low sand contents (Supporting Information:

Table S1). Analogously, the RDA ordination can be interpreted for the

relationships of the fungal species with the soil properties. For

instance, OTU2 is close to the arrowheads of sand and potassium

(Figure 4b) and is therefore expected to be abundant in potassium‐

rich sandy soils. By contrast, OTU5 and OTU6 are located opposite

the arrow for pH, indicating that they are abundant in low‐pH soils.

These examples of interpretations of the RDA can be confirmed with

single linear regression (Supporting Information: Figure S10).

3.4 | Predicting fungal communities from
soil properties

Next, we tested the suitability of RDA to predict fungal community

composition using leave‐one‐out validation (Supporting Information:

Figure S4). At each iteration, we performed forward variable selection

to identify the model that best explained the community composi-

tion. Supporting Information: Figure S11B lists for each site the

retained soil properties of these models. Three variables (pH, K and

microbial respiration) were selected for all the iterations. The ten

variables from the full model (Figure 4) were selected by most of the

iterations. In addition, Corg, WHC and Ca were selected in 1, 2 or 3

iterations.

RDA can be used to predict the abundances of individual fungi

(estimates of the community data). Using leave‐one‐out validation,

we predicted the OTU abundances for each soil and compared them

with the observed OTU abundance data (Figure 5). We calculated the

RMSE to compare the quality of the models. The fields with highest

RMSE (poor prediction) were F02, F15 and F30 (Supporting

Information: Figure S11A). As an intuitive measure for ‘goodness’

of prediction, we utilized Pearson's r from correlations of observed

versus predicted fungal abundances. For more than half of the soils,

the model predicted well (Pearson r > 0.7) the abundances of

individual community members (Figure 5a). Predictions were fair

(Pearson 0.7 > r > 0.5) for 15/59 fields while in only three fields

(namely, F02, F30 and F46), the predicted abundances did not agree

(Pearson's r < 0.5) with the observed community data. Figure 5

provides examples of field soils where predictions were best (F13;

Figure 5b), average (F42; Figure 5c), and worst (F30; Figure 5d).

These panels also show that species which were absent in the

observed communities were predicted to occur by the RDA.

To understand what explained poor predictability, we investi-

gated the contributions of different technical and experimental

factors of the data set. Prediction success depends weakly on soil

(a)

(b) (c) (d)

F IGURE 5 Predicting species abundance with leave one‐out‐validation. (a) Pearson correlation coefficient for each site; horizontal grey lines
show thresholds of 0.7 and 0.5. (b)–(d) Relationship of predicted and observed abundance of individual OTUs for each field: (b) best‐predicted
field, (c) median predicted field and (d) worst predicted field. Only OTUs with values >2.5 are labelled.
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texture classes (Supporting Information: Figure S12A) and the ‘year/

library’ effect (Supporting Information: Figure S12B). By contrast,

prediction success is negatively correlated with the maximum

Bray–Curtis dissimilarity (Supporting Information: Figure S12C),

indicating that fungal communities of sites which have similar

communities to other sites can be better predicted than sites with

a unique fungal community (larger Bray–Curtis dissimilarity). Simi-

larly, prediction success depends strongly on the group membership

of the most abundant members of the community (Supporting

Information: Figure S12D). All three soils of poor predictability

belonged to cluster C1 (Figure 2), which is also the cluster with the

lowest numbers of soils.

We validated our prediction approach with a publicly available

data set of paired physicochemical soil properties and soil fungal

profiles, which was collected for a soil monitoring network of 10

arable, 10 grassland and 10 forest sites (Gschwend et al., 2021). We

analyzed this data using the approach described above (Supporting

Information: Data set S1) and subsequently for RDA‐based predic-

tion. The RDA modelling the relationship of soil properties with

fungal community composition revealed a clear clustering by land use

and a particularly high variability among the forest sites (Figure 6a). A

full model with soil C/N ratios and pH (Supporting Information:

Table S6) was sufficient to explain differences in soil fungal

communities with an adjusted R2 of 0.139 (significance confirmed

with a global test: F = 3.34, p = 0.001). These soil properties were

retained after forward variable selection in all leave‐one‐out

iterations and resulted in predictions models of similar quality as

with our data set (RMSE range: 0.15–0.34; Supporting Informa-

tion: Data set S1). Again, we used Pearson correlation between

observed and predicted abundances as a measure for ‘goodness’ of

prediction. Land use strongly affected prediction (F = 30.01,

p < 0.001, Supporting Information: Figure S13B), with predictions

for arable and most grassland sites working well (Pearson r > 0.7) to

fair (Pearson 0.7 > r > 0.5), while predictions failed for the forest sites

(Pearson r < 0.5; Figure 6b). Soil texture classes did not affect

predictability, because forest soils are of many different soil textures

(Supporting Information: Figure S13A). On the other hand, forest

fungal communities are very different from each other (Supporting

Information: Figure S13C) and do not have the same abundant taxa

as arable and grassland sites (Supporting Information: Figure S13D).

This validation experiment highlights that predictions generally work

if closely related samples of similar physicochemical soil properties

and similar fungal communities are present in the database during

leave‐one‐out validation.

4 | DISCUSSION

4.1 | 10 factors in our model

Using RDA, we modelled the relationship between soil properties and

fungal communities and identified 10 explanatory variables: pH,

potassium, sand, microbial biomass, microbial respiration, Nmin,

manganese, boron, clay, and total phosphorus (Figure 4). We found

soil pH to be one of the strongest variables shaping the fungal

community in the agricultural soils assessed in this study. Soil pH is

known to be a major factor shaping bacterial communities at the

global scale (Lauber et al., 2009) and also at the field level

(Rousk et al., 2010). By contrast, soil pH was not found to be the

strongest factor for fungal communities either at the global scale

(Bahram et al., 2018) or at more local scale, such as long‐term field

experiments (Rousk et al., 2010) or in a collection of abandoned

(a) (b)

F IGURE 6 Validation of our approach. We tested our approach with another data set of 30 sites of a long‐term soil monitoring network with
sites under three different land (arable, grassland and forest). (a) Redundancy analysis (RDA) triplot reporting the sites in colours, the OTUs with
grey crosses, and arrows showing the soil properties, retained after forward variable selection. (b) Pearson correlation coefficient between
predicted and observed fungal communities at each site; horizontal grey lines show thresholds of 0.7 and 0.5.
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farmlands (Zhang et al., 2018). However, in our experiment, pH was

one of the strongest factor, which could be because all our soils are

used for the same purpose, as arable land, and managed by

conventional farmers, and they do not differ very much in terms of

other soil properties.

Soil pH can affect microbial communities either directly, for

example, by modifying enzymatic activities, or indirectly, by changing

the solubility of soil minerals. Indeed, we found the macronutrients

potassium and phosphorous as well as the micronutrients manganese

and boron to be important drivers of the fungal communities in Swiss

arable fields. Nitrogen and phosphorous availability are well‐known

factors structuring microbial communities (Fierer & Jackson, 2006),

but less is known about manganese and boron. Manganese is a

micronutrient and plays a role in redox equilibrium and as a co‐factor

in enzymes and transcription factors (Kinskovski & Staats, 2022). On

the other hand, boron is thought to be a nonessential element for

fungi, but it can be toxic thus is often used as an antifungal agent

(Estevez‐Fregoso et al., 2021). Using a pot experiment, Vera and

coworkers were able to show that boron concentration affected

bacterial community composition (Vera et al., 2019); however, they

found only weak evidence for the effect of boron on the fungal

community, in contrast with our results with Swiss agricultural soils.

Manganese application was also shown to alter both fungal and

bacterial community composition in an incubation experiment (Jin

et al., 2022). However, we found few publications reporting the

effects of boron and manganese on the fungal communities of

agricultural soils.

Soil texture, which is the proportion of sand, silt and clay, is a

known factor shaping microbial communities (Fierer, 2017); never-

theless, microbial biomass and respiration are not often described as

factors shaping microbial communities, perhaps because they are not

often analyzed (Bünemann et al., 2018). However, we (and others)

have found that they are both strongly correlated with soil organic

carbon and water holding capacity, which are often measured and are

known drivers of the microbial community (Fierer, 2017).

4.2 | Other (not measured) factors

The RDA model of this study, including 10 soil properties, explained

only 14% of the variance in the fungal community; similarly, the RDA

model of the publicly available data used for validation also explained

only 14% of the variance. These seemingly low values are typical for

microbiome studies. For example, in our previous microbiome studies

of long‐term field experiments, the management system explained

13.5% (Kundel et al., 2020) to 30% (Hartman et al., 2018) of the

variance in fungal communities. However, we might have missed key

soil properties or biological parameters that predict fungal abundance

(e.g., fungal grazers). Some classical soil indicators, in particular

physical properties, were missing from our list. For example, we did

not measure bulk soil density because we expected that it would not

differ much since all the farmers participating in our study ploughed

their fields. Nevertheless, soil compaction has been shown to impact

microbes in forests (Hartmann et al., 2014) as well as in potato fields

(Gattinger et al., 2002). Perhaps more importantly, we did not assess

climatic variables even though precipitation has been shown to

impact arbuscular mycorrhizal fungi (Davison et al., 2021) and

rhizosphere communities (Mittelstrass et al., 2021). Finally, we did

not measure pesticide residues, which were recently shown to impact

microbial communities (Riedo et al., 2021). Of course, the more soil

properties that could be measured, the better. Future work will need

to show which additional soil parameters further enhance the

predictions of soil fungal communities. For this proof of concept

study, we started with the chemical soil properties that farmers often

have at hand for decisions about agricultural management.

4.3 | Successful prediction with RDA

We evaluated our model with leave‐one‐out validation and predicted

abundances of OTUs (Figure 5). Prediction was successful for most

fields in our study. This collection of soils is quite similar because the

fields are all used for the same goal (growing maize) and managed in

the same way (conventional agriculture), and they are located in a

relatively small area (80 km around Zürich in Switzerland). Moreover,

we found that the fungal communities share several similarities in

terms of the abundant community members (Figure 2), which

probably contributes to good predictability. A limitation of our study

is that we used a relatively small number of different samples in

comparison to other publications, such as (García‐Jiménez et al.,

2020). However, this was a deliberate decision as we chose these

fields for on‐farm experiments with arbuscular mycorrhizal fungi

inoculation, which will be reported in a separate publication (Lutz

et al., Submitted). The aim of that subsequent publication is to predict

inoculation success using both soil properties and microbiome

composition. In contrast, this present study represents a first step

to predict the soil fungal microbiome based on soil properties.

Additionally, we validated our approach with a data set from a soil

monitoring network. Compared to our field soil data set, the latter is

more heterogenous because it includes different types of land uses.

We found that fungal communities from arable and grassland soils

could also be predicted with RDA while prediction of forest sites was

generally poor, which could be explained by the highly variable nature

of the forest sites. The forest sites were more different from each

other based on the soil physicochemical properties (Figure 6a) as well

as the fungal communities (Supporting Information: Figure S13).

Consequently, they did not have closely related sites (similar properties

and communities) present in the database for prediction with leave‐

one‐out validation. With both data sets, prediction was less successful

with soils which were most different from each other, indicating that

the number of similar soils per group influences the goodness of

prediction. Overall, the predictability of fungal communities functioned

best for field soils that were most similar to the soils used to train the

RDA model, whereas ‘solitary’ sites with more unique soil properties

and noncanonical OTU dominance patterns were more difficult

to predict.
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Careful inspection of the predicted fungal communities revealed

the presence of taxa which were not measured in the observed data

(Figure 5b,c,d; Supporting Information: Data set S1). These missing

taxa were generally fungi of low abundance. The observation of such

missing taxa in the predictions could be due to insufficient

sequencing depth of the particular field sample or because the

prediction model uses data from a similar soil where this fungus is

present at low abundance. As a note of caution, while species

prediction is reliable for abundant fungi which are present at many

sites, it has some distortion for rare members of the community. We

think that this limitation will be overcome with more intensive

sequencing and increasing numbers of field sites that contribute to

modelling.

Here we demonstrated that RDA is an effective technique for

predicting microbiome composition with two different data sets.

Alternatively, machine learning type of approaches could be used,

too. One such method is deep learning, which was used to predict the

rhizosphere microbiome of maize based on five factors: temperature,

precipitation, plant age, maize line and maize variety (García‐Jiménez

et al., 2020). One advantage of RDA compared to machine learning is

that it is an ordination technique allowing for visual representation of

the model. In addition, RDA is computationally inexpensive and does

not require extensive bioinformatic expertise. Finally, RDA relies on

statistical methods rather than a black box approach and can correct

for known experimental covariates like year, library or sampling

difference. Finally, both types of approaches share a common

limitation in their ability to extrapolate beyond the training data, as

they rely on the data used to train them and may not produce reliable

predictions for data that fall outside the training set.

5 | CONCLUSIONS

Previous biogeography studies have identified certain factors that

influence the microbial community: for example, the well‐

documented relationship between pH and bacterial diversity (Fierer

& Jackson, 2006), or the association between soil calcium and fungal

diversity (Tedersoo et al., 2014). However, to the best of our

knowledge, no studies have attempted to use those factors in a

‘forward’ biogeographical manner to predict microbial species

abundance. Our study is a proof‐of‐concept that microbial commu-

nity composition can be predicted with multivariate ordination. We

show that a model with 10 soil properties is sufficient to accurately

predict fungal community composition in arable fields. Through

leave‐one‐out validation, we were able to successfully predict species

abundance for most of the fields. We further showed that this

prediction approach also works with another publicly available data

set. These findings show that multivariate analysis can be used to

predict microbial community composition from environmental data.

Future research is needed to further test our approach with fields

outside the study area. In addition, prediction based on ordination

should be tested with different soil types, such as forest soils, or

marine ecosystems.
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