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Microbes are key to creating safe, edible and enriched

fermented food products. This is largely achieved by their

metabolism. Thus, the ability to understand the wiring of the

complete cellular metabolism is critical to control the

fermentation processes. Metabolic modelling is a useful tool for

integration of large datasets to link genotype to phenotype.

Here, we summarise how metabolic models are being used to

address the challenges in safety, biotransformation and food

enhancement in food-relevant settings. Finally, we discuss how

metabolic modelling can be integrated to assess more complex

scenarios such as microbial communities. Despite many

remaining challenges, metabolic models hold a large potential

for use in food microbiology.
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Introduction
In the beginning, food fermentation relied on spontane-

ous fermentation by natural microbial consortia and

uncontrolled process conditions. With the start of back-

slopping and the understanding of microbes, the produc-

tion got more controlled. Today people are understand-

ing, optimizing and designing the fermentation process

conditions and microbes at an industrial scale.

The objectives in food microbiology are often related to

(i) shelf-life and safety of the food products, (ii) specific

biotransformations and (iii) the enrichment of food with

desired properties. The preservation of food includes

rapid acidification to prevent growth of harmful microbes.
www.sciencedirect.com 
Biotransformations include the preparation of indigest-

ible food sources (e.g. coffee or cacao) but also the

utilization of alternative dairy products (e.g. oat milk).

The enrichment of food includes flavour compounds,

organoleptic properties, the increase of nutrition value

or strains with probiotic properties.

The tools to achieve these objectives have also advanced.

Advancements started, and still continues, with the

systematic collection and cataloguing of strains. The

phenotyping focused on morphology, growth or acidifica-

tion properties. Today, it includes whole genome

sequences, and the prevalence and activity of strain in

complex food matrices are routinely monitored by

multi-omics tools.

Despite the advances in technology and data, bridging

the gap from mere description to more mechanistic

understanding has remained challenging. Here metabolic

modelling, in particular through Genome Scale Metabolic

Models (GSMM), has great potential. Such GSMMs

organize an organism’s metabolism as a set of gene –

protein – metabolic reaction associations (reviewed in

Ref. [1]). These models thus provide a metabolic context

for integration of genomics and cell physiology data and

can predict metabolic capabilities based on genomes

(Figure 1). There is a wide variety of tools to help with

each phase of the process (see Ref. [2]).

Here, we summarise how metabolic models have been

used to address the key objectives of food microbiology

(Figure 2). Throughout we will emphasize open

questions and what the difficulties and limitations are.

We also include relevant examples of modeling outside

the field of food that we think could be promising;

this includes recent developments in microbial commu-

nity modelling, which we consider one of the most

promising but also challenging next frontiers for food

microbiology.

Chapters
Food production and safety

The production of safe-to-consume, stable and controlla-

ble products with enhanced shelf-lives is largely achieved

by the metabolism of acting microorganisms. GSMMs

have the potential to help understand the metabolism and

control the fermentation processes. Such models have

been developed for many food-related microorganisms,
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Steps for genome-scale metabolic model construction, curation and validation and illustration of the model analysis techniques discussed in this

paper and their main outcomes. Exploring the steady-state solution space gives all possible flux distributions and corresponding pathways;

subsequent optimization through flux balance analysis allows prediction of specific optimal states, for example, of maximal growth rate or maximal

yield of a product. Adding resource allocation to FBA gives additional constraints that result in strategy switchers, such as overflow metabolism (i.

e. lactate formation). Finally, dynamic FBA uses optimization in each time point to create dynamic growth profiles.
including baker’s yeast [3,4], many lactic acid bacteria

(LAB) [5] and recently acetobacteria [6]. By charting the

complete metabolism, we can gain insights into connec-

tions between processes, such as the role of amino acid

metabolism and redox balancing [5], or the regulation of

arginine metabolism in energy metabolism [7�]. While in

chemical biotechnology, such models have become pow-

erful tools for prediction and control of metabolic engi-

neering and cultivation strategies, in food biotechnology

they are less used. Indeed, many complications arise in

food that provide challenges to metabolic modeling. For

one, foods are often solid, opaque, turbid or exist as a

multi-phase system. An associated obstacle is cumber-

some quantification of metabolites in complex media,

critical to establish accurate exchange bounds in GSMMs.

To monitor processes in such systems to generate data,

alternative readouts, or accessible food-matrix models are

needed, as recently developed for milk [8].
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One key product that is used for food preservation is

lactate (or ethanol). Ironically, traditional Flux Balance

Analysis (FBA), the key modelling method for GSMMs,

has trouble predicting it. Since GSMMs include no

enzyme kinetics, only stoichiometry, they need uptake

constraints to constrain the fluxes through the metabolic

network [4]. FBA is an optimization problem: FBA

maximizes an objective, which, in most cases,

corresponds to maximal production of biomass compo-

nents. As a result, FBA predicts the metabolic activities

that produce the most biomass per limited substrate —

high-yield strategies therefore. Without additional con-

straints to the FBA problem, it will always predict

respiration over fermentation, or acetate formation (with

3 ATP/glucose) over lactate production (only 2 ATP/

glucose) [9], even though inefficient overflow metabo-

lism typically occurs under nutrient-rich conditions — in

food.
www.sciencedirect.com
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Overview of some of the key objectives of food microbiology (inner circle) and different modeling options (outer circle) that could be applied to

help reach those objectives.
Recent developments in modeling have improved the

predictive capabilities of GSMMs under food-relevant

conditions. By including resource allocation, that is, intro-

ducing additional constraints to capture the costs of

implementing a metabolic pathway, it was shown that

lactate formation costs the least protein per ATP pro-

duced. If glucose is abundant, protein cost (not metabolic

yield) is the relevant fitness currency, shown recently for

Lactococcus lactis [7�] and Saccharomyces cerevisiae [10].

However, optimal resource allocation assumes balanced

growth in a constant environment. Recently, researchers

identified metabolic routes which become active in

oxidative stress and acid stress conditions, thus mecha-

nistically explaining observed stress responses (e.g. deac-

tivation of branched-chain amino acid biosynthesis under

auxotrophy in oxidative stress) in Escherichia coli. This was

achieved by integrating multi-omics (transcriptomics and

quantitative proteomics) data into a whole-cell resource

allocation model of E. coli [11,12].

New insights into microbial metabolism might also

improve food safety. Following the work from well-stud-

ied classical food borne human pathogens (such as Listeria
monocytogenes [13]), metabolic models can advance under-

standing of the metabolism of other pathogenic/unde-

sired microbes. Recently, GSMMs were used to design

minimal chemically defined media to cultivate two
www.sciencedirect.com 
pathogenic bacteria, Bordetella pertussis [14] and Campylo-
bacter jejuni [15�], and a reconstruction of Lactobacillus vini
[16] identified nutrients assimilated into the biomass of

this prominent contaminant in sugarcane fermentation.

Biotransformation to make use of inaccessible

compounds

Further applications of fermentation in food sciences

include the biotransformation of indigestible and untam-

pered resources into edible food products. Traditional

biotransformations include the fermentation of coffee and

cacao beans for the removal of the mucilage layer [17].

Several models for cocoa-fermenting consortium mem-

bers have been made recently. A metabolic model of

Acetobacter pasteurianus [6] explained how A. pasteurianus
first uses ethanol as carbon source, and subsequently

consumes the off-flavours acetoin and acetate. Other

metabolic models of bacteria and yeasts were created

as a platform for the identification of species-specific

reactions [18�]. Moreover such knowledge obtained from

the metabolic models can be integrated with microbial

dynamics and metabolite kinetics to create optimal fer-

mentation models of for example, coffee [19] or cacao

fermentation [20].

However, the biotransformation of many traditional foods

is still largely based on spontaneous fermentation. One
Current Opinion in Food Science 2022, 43:225–231
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option is to focus on a compound of interest, for example,

reduction of citrulline during soy sauce fermentation with

Bacillus amyloliquefaciens [21]. There are other examples

outside food, where metabolic models are applied to

identify for example, lignocellulosic biomass as a good

resource for bioethanol production by Clostridium thermo-
cellum [22].

Recently, biotransformation of plant-based protein

sources, coined as precision fermentation, has received

a lot of attention [23]. Currently the field is based on

screening of strains with desired properties, but as data is

accumulating GSMMs can help in crafting the relevant

pathways, as is currently being done for flavour

production.

Enhancement of food through fermentation

The creation of distinct flavours is a pivotal step for many

fermented foods, but they are the result of relatively small

fluxes of side reactions whose functions are poorly under-

stood. Texture properties are often the result of

polysaccharides whose pathways are subject to complex

regulation. Therefore texture and flavour properties are

difficult to predict quantitatively, and only the potential

can be predicted.

It appears as if fast acidifiers are poor flavour producers,

suggesting a trade-off that is not yet fully understood [24].

Flavour formation therefore occurs mostly by adjunct

non-starter LABs. A GSMM of the heterolactic fermen-

tative Leuconostoc mesenteroides subsp. cremoris was con-

structed which includes flavour compound formation [25].

The GSMM shows that citrate is used as a redox sink,

allowing acetate rather than ethanol production. Flavour

production from citrate can furthermore be steered by

changing the environment.

Malolactic fermentation (MLF) is an essential step for

deacidification of red wine and enhances organoleptic

properties and flavour. The process is difficult to control,

which may lead to stuck or sluggish fermentations. A

GSMM was recently constructed for the malolactic organ-

ism Oenococcus oeni [26]. This GSMM was later used to

investigate the response of O. oeni to ethanol content of

the medium [27].

Metabolic models have been successfully used to

improve production of single food-related compounds

by genetically modified organism (GMO)-based biofac-

tories. An example is the production of vanillin b-D-
glucoside in S. cerevisiae. The model suggested multiple

strategies, of which the partial reduction of flux through

pyruvate decarboxylase (PDC) increased vanillin b-D-
glucoside production the most [28]. New tools also have

the potential to aid in the improvement of specific com-

pound production in food. Although not applied to food,

newer tools for in silico strain design showed engineering
Current Opinion in Food Science 2022, 43:225–231 
strategies to increase ethanol, succinate and 2,3-butane-

diol production in S. cerevisiae [29]. Other recent endea-

vours to use metabolic model-guided in silico strain design

led to insights on how to increase production of narin-

genin in Streptomyces albus [30] and pyrroloquinoline

quinone in Methylovorus sp. [31]. The obvious limitation

of metabolic engineering is that GMOs cannot be used in

food processes in the European Union.

Increasing nutritional value of food by incorporation of

probiotics and prebiotics has large industrial potential.

Prebiotics enhance the nutritional value of the food itself,

while probiotics are microorganisms that survive within

the gut and confer a health benefit to the host [32]. The

metabolic diversity between probiotic Bifidobacteria

strains was investigated from semi-automatically gener-

ated genome-scale metabolic models [33]. This method,

and others alike, could help in predicting the suitability of

strains in different applications as in silico screening could

save both time and resources.

Community modelling: a new frontier

Food fermentation often relies on the action of a commu-

nity of microorganisms, rather than a single microbial

strain. From a modelling perspective, moving from single

GSMMs to community GSMMs raises several challenges.

First, many approaches are based on optimisation of an

objective, which is much more difficult to define – if at all

possible – for a community. Community FBA solves this

by analysing steady-state growth of all members in a

community — whose growth rate must then be equal

and is taken as the objective [34–36]. This analysis offers

useful insights on the (optimal) structure of the commu-

nity and its metabolite conversions, including otherwise

poorly accessible information, such as potential cross-

feeding fluxes, as applied to yogurt probiotics [37] and

cacao fermentations [18�].

Another challenge is the inherent dynamic nature of

(microbial) ecosystems. Dynamic FBA uses uptake kinet-

ics to convert external metabolites into flux constraints for

a subsequent FBA analysis. The FBA computes growth

rates and uptake rates, which are subsequently used to

update the environment [38]. This approach allows a

natural extension to communities, as each species can

aim to maximize its own growth rate, even in spatial

structures: a powerful tool COMETS has been developed

for this purpose [39��]. Such spatial effects were impor-

tant to understand the population dynamics in kefir

granules [40].

Dynamic FBA was used to analyse co-culture models for

LAB present in cheese starter cultures [41�]. These

models accurately predicted biomass compositions and

concentration profiles of glucose and lactic acid. Moreover

they showed that the cross-feeding of different amino

acids depends on the interacting LABs.
www.sciencedirect.com
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Besides characterization of naturally occurring communi-

ties, another promising application of metabolic models is

to use them for building synthetic consortia. Synthetic

consortia can replicate or enhance the performances and

the flavour profile of naturally occurring starter or ripening

cultures [42], and allow the introduction of probiotic

strains [37]. Metabolic models have already been used

to screen for efficient syntrophic pairs for biotechnological

applications. The resulting synthetic communities

showed enhanced stability [43] and the ability to bypass

community member-specific metabolic bottlenecks [44].

Conclusions
Many open questions in food sciences (Figure 2) relate to

microbial metabolism, and metabolic modelling enables

quantitative predictions of metabolic activity. Within

chemical biotechnology metabolic models have proven

to be powerful tools for metabolic engineering and culti-

vation strategies, and such strategies have the potential to

be transferred to food sciences. However, we discussed

specific challenges in food microbiology: the growth

media are complex, the control knobs limited and not

GMO-accessible, and many microbes interact.

A final complication over cell factories is that food micro-

biology exploits diversity of not only species but even

strains. Moreover, the genes involved in important treats

– often from secondary metabolism – may not be know

yet. Pan-genome GSMMs have been used to study diver-

sity, recently within the propionibacterium clade [47]. To

address the need for strain-level resolution, we can bene-

fit from methods that generate large collections of models

[45,46], models for multiple strains of the same organism

[48], and those that reconstruct genome scale metabolic

models directly from metagenomes [49]. These models

often require further manual curation (and a set of dedi-

cated experiments!) to reach the desired level of confi-

dence, which provides a major bottleneck to high-

throughput generation of well curated models.

Within the food context, metabolic models are in partic-

ular relevant to better understand the physiology of

microbes, as tools for advanced data integration, and

for exploration of metabolic capabilities, rather than as

predictive tools for direct steering towards better and

safer foods. Overall, success stories over the years on

fostering fundamental knowledge through metabolic

modelling should encourage application of these methods

in food-relevant settings.
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Olarte HH, Rodrı́guez-López C, Calderón D et al.: Dissecting
industrial fermentations of fine flavour cocoa through
metagenomic analysis. Sci Rep 2021, 11:8638

Interesting attempt to characterize the core microbiome of industrial
cacao fermentations using a combination of metagenomics, bioinfor-
matics and metabolic modeling. Although still at an early stage, their
model describes a community-level pathway for flavour formation.

19. de Carvalho Neto DP, de Melo Pereira GV, Finco AMO, Letti LAJ,
da Silva BJG, Vandenberghe LPS, Soccol CR: Efficient coffee
beans mucilage layer removal using lactic acid fermentation in
a stirred-tank bioreactor: kinetic, metabolic and sensorial
studies. Food Biosci 2018, 26:80-87.

20. Moreno-Zambrano M, Grimbs S, Ullrich MS, Hütt M-T: A
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