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A B S T R A C T   

Invasive parasites are major threats to biodiversity. The honey bee ectoparasite, Varroa destructor, has shifted 
host and spread almost globally several decades ago. This pest is generally considered to be the main global 
threat to Western honey bees, Apis mellifera, although the damages it causes are not equivalent in all its new 
host’s populations. Due to the high virulence of this parasite and the viruses it vectors, beekeepers generally rely 
on acaricide treatments to keep their colonies alive. However, some populations of A. mellifera can survive 
without anthropogenic mite control, through the expression of diverse resistance and tolerance traits. Such 
surviving colonies are currently found throughout the globe, with the biggest populations being found in Sub- 
Saharan Africa and Latin America. Recently, genetic differences between mite populations infesting surviving 
and treated A. mellifera colonies in Europe were found, suggesting that adaptations of honey bees drive mite 
evolution. Yet, the prevalence of such co-evolutionary adaptations in other invasive populations of V. destructor 
remain unknown. Using the previous data from Europe and novel genetic data from V. destructor populations in 
South America and Africa, we here investigated whether mites display signs of adaptations to different host 
populations of diverse origins and undergoing differing management. Our results show that, contrary to the 
differences previously documented in Europe, mites infesting treated and untreated honey bee populations in 
Africa and South America are genetically similar. However, strong levels of genetic differentiation were found 
when comparing mites across continents, suggesting ongoing allopatric speciation despite a recent spread from 
genetically homogenous lineages. This study provides novel insights into the co-evolution of V. destructor and 
A. mellifera, and confirms that these species are ideal to investigate coevolution in newly established host- 
parasite systems.   

1. Introduction 

Invasive species represent major threats to our ecosystems and 
economy (Dunn and Hatcher, 2015; Essl et al., 2011; Marbuah et al., 
2014; Pyšek and Richardson, 2010). Understanding their dispersal 

abilities and the mechanisms shaping their adaptation potential in their 
new ranges can help to prevent additional invasions and mitigating the 
damages they cause (Banks et al., 2015; David et al., 2017; Hulme, 
2009). The mite Varroa destructor (Anderson and Trueman, 2000) is an 
ectoparasite that originally infested colonies of the Eastern honey bee 
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(Apis cerana, Fabricius, 1793) in Asia (Anderson and Trueman, 2000; 
Chantawannakul et al., 2016; de Jong et al., 1982). However, after 
successfully spilling over to introduced colonies of the Western honey 
bee (Apis mellifera, Linnaeus, 1758) in North-East Asia, this parasite 
managed to spread outside its original distribution range and to invade 
almost the entire range of its new host, which is distributed almost 
globally (Martin et al., 2012; Traynor et al., 2020). Acting as a vector of 
honey bee viruses (McMenamin and Genersch, 2015; Wilfert et al., 
2016), V. destructor is nowadays considered to be the main biotic threat 
to A. mellifera (Le Conte et al., 2010; Moritz et al., 2005; Neumann and 
Carreck, 2010). 

Despite the recent invasion and ubiquity of the parasite, not all 
populations of A. mellifera have been impacted similarly by V. destructor. 
For example, infestations with the mite in native European and 
European-derived Western honey bee lineages usually lead to devas-
tating levels of mite population growth, causing the host colonies to 
succumb within one or two years (Calis et al., 1999; Martin, 1998). 
Interestingly, a few populations of European or European-derived 
A. mellifera have adapted to the mite, through natural selection or se-
lective breeding (Büchler et al., 2010; Le Conte et al., 2007; Locke, 2016; 
Rinderer et al., 2010; Seeley, 2006). These “surviving populations” 
manage to keep parasite levels and damages under critical thresholds by 
the expression of a diversity of parasite resistance or tolerance traits 
(Kurze et al., 2016; Mondet et al., 2020). Such resilience to V. destructor 
infestations is also observed in A. mellifera subspecies native to sub- 
Saharan Africa (Nganso et al., 2017; Pirk et al., 2016; Strauss et al., 
2014), as well as some African-derived populations (Camazine, 1986; 
Guzman-Novoa and Sanchez, 1996; Medina-Flores et al., 2014). But 
despite these cases of surviving populations, resistance or tolerance 
traits are absent or not sufficiently expressed in the great majority of 
Western honey bee populations around the globe. Beekeepers managing 
such susceptible colonies must generally use intensive acaricide treat-
ments to keep the parasite populations below lethal thresholds (Rose-
nkranz et al., 2010). 

South America is a unique place to study the interactions between 
V. destructor and A. mellifera as several lineages of the host with different 
levels of resilience to mite infestations co-exist in that continent. 
Although the Western honey bee is not native to South America, a di-
versity of A. mellifera lineages have been introduced there (Nelson et al., 
2017; Wallberg et al., 2014). The first honey bees that were imported 
there were of European origins (A. m. mellifera and A. m. ligustica) 
(Bierzychudek, 1979). Additionally, African honey bees (A. m. scutellata) 
were introduced in Brazil in 1956. This introduction resulted in the 
quick spread of this lineage, and introgression between the different 
subspecies (Michener, 1975). Today, the resulting “Africanized” hybrids 
have spread to most countries of the continent, but climatic and envi-
ronmental factors limit their dispersal towards the southern regions of 
South America. Notably, Africanized hybrid colonies are found 
throughout most of Uruguay and the northernmost parts of Argentina 
(Branchiccela et al., 2014; Porrini et al., 2019), and display high resil-
ience levels against V. destructor infestations (Mendoza et al., 2020; 
Rosenkranz, 1999). 

In contrast to the diversity of hosts, V. destructor populations found in 
South America and other parts of its invasive range are genetically ho-
mogenous. In fact, pioneer work on V. destructor genetics suggested that 
only two lineages of mites from North-East Asia displaying a “quasi- 
clonal” genetic structure managed to leave their natural distribution 
(Anderson, 2000; Anderson and Trueman, 2000; Solignac et al., 2005). 
This low diversity was linked with bottleneck events associated with the 
host jump and further dispersal of the mite, and with the peculiar 
incestuous mating of the mite. Yet, several subsequent studies have 
described lineage admixture as well as significant levels of genetic dif-
ferentiation within and between mite populations infesting A. mellifera 
(Beaurepaire et al., 2017b, 2017a; Dietemann et al., 2019; Dynes et al., 
2017; Zheng et al., 2022). Given that V. destructor has a relatively short 
generation time (i.e., about a month) (Rosenkranz et al., 2010) 

compared to a honey bee colony (i.e., typically living several years), and 
that the parasite has started to invade the world several decades ago, the 
observed significant levels of genetic differentiation may be signs that 
mite populations have started adapting to their local new host pop-
ulations. Notably, such adaptations would be expected under co- 
evolutionary arms races between hosts and parasites. Under these as-
sumptions, selective forces are expected to lead to the swift emergence 
of adaptations (Paterson et al., 2010). These forces are expected to be 
stronger in parasites, because of their shorter generation time compared 
to their hosts (Ebert, 1994; Gandon and Michalakis, 2002), and may take 
different directions in spatially distant parasite populations, potentially 
leading to mosaics of co-evolution (Thompson, 2005; Thompson and 
Cunningham, 2002). 

Understanding the selective pressures affecting the emergence of 
adaptations to different honey bee populations in V. destructor is crucial 
to enhance the fundamental knowledge on this important pest and better 
understand how to mitigate its impact. Environmental conditions within 
A. mellifera colonies are very similar across the host’s distribution range 
due to homeostasis (Stabentheiner et al., 2021), and therefore not likely 
to represent a strong selective pressure on their parasites. In contrast, the 
expression of host resistance traits in colonies infested by the mites kept 
under natural selection pressure might play an important role because 
these host traits can significantly impact the parasite’s fitness (Eliash 
and Mikheyev, 2020; Neumann and Blacquière, 2016). In parallel, mites 
from regularly treated honey bee colonies may develop adaptations to 
the acaricides used (González-Cabrera et al., 2018; Milani, 1999). In that 
case, it can be expected that significant levels of genetic differentiation 
will be detectable in mites infesting different host populations under 
diverse pest management regimes (e.g., with and without treatments) 
(de Meeûs et al., 2007; Gandon et al., 2008; Mazé-Guilmo et al., 2016). 
Finally, parasite dispersal, e.g., through transportation of honey bee 
colonies by beekeepers, may disrupt local adaptation scenarios and 
could result in homogeneous parasite populations across spatially 
separated host populations despite high host-related selective pressures 
(Boulinier et al., 2016; Criscione et al., 2005). 

Several studies recently provided genotypic or phenotypic evidence 
for the emergence of adaptations in V. destructor infesting different 
treated and untreated A. mellifera populations in Europe (Beaurepaire 
et al., 2019; Moro et al., 2021a, 2021b). We here tested whether genetic 
changes can be detected in other populations of V. destructor infesting 
A. mellifera in order to further investigate the factors affecting the 
adaptation of this parasite in its invasive range. More precisely, we 
tested whether adaptations to different host populations can cause mite 
genetic diversification by analyzing the population genetics of 
V. destructor mites infesting introduced European and Africanized honey 
bee colonies in South America, and comparing them to mites infesting 
native populations of honey bees in Africa (South Africa) and Europe 
(France). Altogether, this study provides novel insights into the coevo-
lution between V. destructor and its new host, and into natural and 
anthropogenic factors influencing parasite adaptations. 

2. Material and methods 

2.1. Sampling 

Adult V. destructor females were collected using the powdered sugar 
and bottom board methods (Dietemann et al., 2013) in Argentina, 
Uruguay, France and South Africa (Fig. 1), in different groups of 
A. mellifera colonies consisting of bees of distinct origins and/or different 
mite management practices (Table 1).Some of the colonies used in this 
study originated from naturally mite-surviving population, i.e., groups 
colonies that can survive without the need for treatment against mites by 
means of natural selection (Le Conte et al., 2007; Mendoza et al., 2020; 
Strauss et al., 2014). Here, these colonies were labelled as “untreated” 
(Table 1). The data from France were previously published in Moro et al. 
(2021a), but two additional markers were included in the current 
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analysis (Suppl. Table 1). 

2.2. Genotyping 

The DNA of a total of 577 V. destructor samples (Table 1) was 
extracted using Chelex standard methods (Walsh et al., 1991) for the 
current study. 250 samples from France used in a previous study (Moro 
et al., 2021a) were also included (Table 1). A total of 8 microsatellite 
markers (Table S1) were used to genotype the samples following 
methods described in Beaurepaire et al. (2017b). 

2.3. Analyses 

The software GenAlex v 6.5 (Peakall and Smouse, 2012) was used to 
calculate several estimates of genetic diversity and population structure 
of mites. First, the number of alleles, the number of private alleles and 
the observed heterozygosity index were calculated across markers for 

each group and compared using Kruskal-Wallis tests using the software 
R v 3.6.1 (R Core Team, 2018). To display the genetic distance between 
mites infesting the different groups of honey bees, a PCA based on the 
mite genotypes was performed using the software R v 3.6.1. and the 
package Adegenet (Jombart, 2008; R Core Team, 2018). Additionally, 
the Jost D index (Dest) (Jost, 2008), an estimator reflecting genetic 
distance between groups (Whitlock, 2011), was calculated using the 
same software to compare mites infesting the different groups of hon-
eybee colonies. Finally, to analyze the population structure of 
V. destructor across samples from the different continents (South 
America: Uruguay and Argentina, Europe: France and Africa: South 
Africa) and between groups of colonies (e.g., treated or not) within each 
region, an Analysis of Molecular Variance (AMOVA) was conducted 
using GenAlex v 6.5. 

Fig. 1. Location of sampling sites. 
Map representing the approximate location of the study sites (red circles), see Table 1 for GPS coordinates. Image made with mapchart.net. 

Table 1 
Information on the samples and genetic estimates.  

Country Region GPS Host Ncolonies Nmites NA R HO 

Uruguay 
Treinta y Tres 33◦15′16.2”S 54◦25′34.1”W Africanized (UT) 6 139 2.33 1.96 0.04 

(0.33) (0.09) (0.02) 

Colonia 
34◦20′17.5”S 
57◦41′25.9”W European (T) 6 135 

2.44 1.77 0.03 
(0.41) (0.13) (0.01) 

Argentina 
Vieytes 35◦14′17.42”S 57◦38′26.589”W European (UT) 6 81 

2.00 1.67 0.04 
(0.17) (0.20) (0.01) 

La Plata 34◦54′40.2”S 57◦55′37.2”W European (T) 7 130 2.89 1.56 0.06 
(0.26) (0.19) (0.02) 

France* 
Avignon 43◦54′56.3”N 

4◦52′39.4′′E 
European (UT) 6 129 2.22 1.69 0.02 

(0.32) (0.14) (0.01) 

Avignon 
43◦54′56.3”N 
4◦52′39.4′′E European (T) 6 121 

1.89 1.75 0.02 
(0.20) (0.17) (0.01) 

South Africa 
Pretoria 25◦45′16.9”S 28◦13′51.0′′E A. m. scutellata (UT) 10 75 

1.89 1.28 0.01 
(0.35) (0.12) (0.01) 

Kalahari 29◦01′41.5”S 23◦46′57.1′′E A. m. scutellata (UT) 5 17 1.11 1.11 0.01 
(0.11) (0.11) (0.01) 

Information about the origin of the V. destructor analyzed and sample size: country of sampling, region of sampling, GPS coordinates, dominant lineage of A. mellifera 
(Host) according to morphological and behavioral together with treatment regime between parentheses (UT: untreated, T: treated in Fall with Amitraz, Apivar®) and 
sample sizes (number of colonies and of mites per group). Additionally, the number of alleles (NA), allelic richness (R) and the level of observed heterozygosity (HO) 
are presented as mean across the loci (+/− SE)) in each group is given. *: samples from Moro et al. (2021a). 
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3. Results 

The number of alleles differed significantly across the groups of 
V. destructor sampled (Kruskal-Wallis test, H = 21.142, p = 0.003) 
(Table 1). When running a post-hoc Dunn test to conduct a pairwise 
comparison between the mite groups, the group from the Kalahari 
Desert differed significantly from the rest (all p-values < 0.05). However, 
a lower sample size was analyzed in this group (N = 17) and may have 
caused the observed difference. Removing this group, the number of 
alleles was no longer significantly different across all groups (Kruskal- 
Wallis test, H = 8.683, p = 0.192), showing that the reduced sample size 
indeed affected the first tests. In parallel, the heterozygosity levels did 
not differ significantly across the eight groups (Kruskal-Wallis test, H =
11.326, p = 0.125) (Table 1). 

The PCA analysis revealed a clear segregation between some groups 
of mites (Fig. 2) based on the first two principal components. The first 
component, representing 26.23% of the total variance, clustered well 
the samples from France and the other six groups, while the second 
component, representing 15.27% of the variance, separated the samples 
from South Africa from the rest. 

In parallel, the analyses of genetic distance across mite groups 
revealed specific patterns of genetic differentiation between the 
V. destructor groups compared (Table 2). Notably, the highest genetic 
distance values obtained were between the groups from South Africa 
and France (average Dest = 0.309), whereas the values obtained when 
comparing groups from the same countries were low (average Dest =

0.007), albeit sometimes significant. The South American mite groups 
(Uruguay and Argentina) were not highly differentiated (average Dest =

0.010), but the differences between these parasites and the samples from 
France (average Dest = 0.138) and South Africa (average Dest = 0.154) 
were an order of magnitude higher. 

Finally, the AMOVA revealed that the genetic differences of mites 
across the three continents were responsible for a substantial amount of 
the genetic variation (33%, p-value <0.05), while the differences be-
tween groups of colonies within these continents were much smaller 
(3%, p-value <0.05) (Table 3). Yet, the majority of genetic variation was 
associated with the differentiation between individuals in each group 
(64%, p-value <0.05). 

4. Discussion 

In this study, analyses of the population genetics of invasive 
V. destructor mites infesting colonies of their novel host, A. mellifera, 
revealed distinct levels of genetic differentiation of the parasite across 
honey bee populations. Most notably, the findings documented here 

show that, although the parasite populations have originated from 
highly homogenous source populations that started invading the world a 
few decades ago (Solignac et al., 2005), they have now diversified 
significantly. 

Due to its incestuous mating system and recent worldwide spread 
from a restricted number of source populations, V. destructor populations 
were initially suggested to be composed of pseudo-clonal individuals in 
the invasive range of the parasite (Solignac et al., 2005). Yet, several 
recent studies conducted outside of Asia (i.e., in the invasive range of the 
mite) have shown that V. destructor populations display significant levels 
of genetic diversification at varying geographical scales (Beaurepaire 
et al., 2019; Dynes et al., 2017; Moro et al., 2021a). Here, our results 
confirm these findings, also revealing significant genetic differentiation 
across population of mites within and between the locations compared, 
in spite of an overall low numbers of alleles and heterozygosity. 

The experimental design used in this study, including paired honey 
bee groups in each of the investigated region, allowed comparing 
V. destructor populations over different levels: between distant regions of 
the world, as well as within these regions across host groups (i.e., col-
onies differing in their mite management regimes and/or host lineages). 
First, the differences between mites infesting honeybee colonies across 
the different regions was responsible for about a third of the total genetic 
variation of the dataset. This suggests that, despite common origins, 
V. destructor populations in these three continents are evolving in 
allopatry, and that no or limited further exchanges of mites between 
these areas have occurred in the recent past. 

The second level of variation compared allowed investigating the 
differentiation of mites between host groups located in the same envi-
ronment. The absence of difference between mites in the two South 
African honey bee groups differ from the previous results from France 
(Moro et al., 2021b). Our sampling design only allowed comparing a 
restricted number of colonies in a few apiaries per region, which was 
nevertheless sufficient to show genetic differentiation in European 
populations (Moro et al., 2021a). While we cannot exclude that genetic 
differences could have been detected when adding more sampling sites 
and/or more distance between the populations studied here, some spe-
cific host or management factors might have prevented parasites from 
differentiating. For instance, African A. mellifera colonies are known to 
swarm and migrate readily (Hepburn and Radloff, 1998; Pirk et al., 
2016), thereby facilitating parasites transmission over long distances 
and resulting in the maintenance of high gene flow levels across mites 
infesting colonies in geographically distant areas. In the case of the 
South American populations (Uruguay and Argentina), the absence of a 
strong genetic structuring of the mites of this region suggests that all 
mites sampled in this study is congruent with the predominance of a 

Fig. 2. Analysis of population structure of V. destructor. 
Principal Component Analysis based on the genotype of mites 
infesting different A. mellifera groups (color-code: see legend; 
countries: Arg: Argentina, Uru: Uruguay, Fra: France, SA: 
South Africa; P: Pretoria; K: Kalahari; groups: T: Treated, UT: 
Untreated, and Afr: African(ized)). The first two Principal 
components are displayed (PC1 = 26.23%, PC2 = 15.27%).   
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single invasive lineage of the mite, as suggested previously (Maggi et al., 
2012; Strapazzon et al., 2009). Moreover, the results obtained when 
calculating Dest estimates across paired host groups of samples in 
Uruguay and Argentina did not reveal particular structuring of 
V. destructor populations between the Africanized and European-derived 
host lineages. These data suggest an ongoing gene flow between para-
sites infesting colonies of Africanized and European-derived honey bees. 
Moreover, the lack of genetic differentiation between treated and un-
treated A. mellifera colonies in Uruguay and Argentina also suggests an 
ongoing strong gene flow between parasite populations infesting these 
host groups. Notably this finding contrasts with results found previously 
in Europe (Beaurepaire et al., 2019; Moro et al., 2021a). Given that the 
different host populations studied here were all first exposed to the 
parasite a few decades ago, this discrepancy might not be caused by 
different co-evolutionary periods. Instead, this observation might have 
rather been caused by the expression of different host resistance or 
tolerance traits in the populations, or different management factors 
which were not controlled for in the current study. Notably, further 
investigations of the potential role of host resistance traits and their 
possible impact on mite population genetics in South America and 
Europe are underway. 

Finally, the finer level of analysis of the genetic structure of 
V. destructor populations revealed a substantial diversity of mite geno-
types within every host groups, as shown by the AMOVA and also visible 
on the PCA. This result confirms previous ones documenting a dynamic 
population structure of V. destructor mites, probably led by the rapid 
fixation of rare mutations due to inbreeding followed by subsequent 
admixture via genetic recombination taking place when foundress mites 
co-infest host cells (Beaurepaire et al., 2017b). 

To conclude, our results show that V. destructor populations infesting 
A. mellifera across the Atlantic Ocean differ substantially, although these 
invasive populations are known to originate from the same source. 
These results illustrate well how coevolution can drive the rapid genetic 
differentiation of invasive species (Ebert, 1998; Paterson et al., 2010). 
These findings also call for follow-up studies aiming at comparing 
distinct mite population to decipher the mechanisms driving these dif-
ferences, and about the impact of mite divergence on honey bee health, 

e.g., whether different mite genotypes interact differently with varroa- 
transmitted viruses. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.meegid.2022.105340. 
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Results of the Analysis of Molecular Variance (AMOVA).  

Level d.f. Est. Var. % p-value 

Among regions 2 0.536 33% <0.05 
Among populations 5 0.055 3% <0.05 
Within populations 1646 1.050 64% <0.05 
Total 1653 1.641 100%  

Different levels of comparison, including differences between regions (South 
American, South African and French populations), among populations (between 
groups of honeybee colonies in each region) and within populations. The de-
grees of freedom (d.f.), estimated variance (Est. Var.), percentage of variation 
(%) and p-values are provided for each group and overall. 
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