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A B S T R A C T   

Under the United Nations Framework Convention on Climate Change (UNFCCC), industrialized countries and 
countries with economies in transition (so called Annex 1 countries) are encouraged to move towards more 
sophisticated approaches for national greenhouse gas reporting. To develop a model-based approach for esti-
mating nitrous oxide (N2O) emissions from agricultural soils, model calibration is one of the first important steps. 
Extensive multisite field observations are necessary for this purpose, as agricultural management in Western 
Europe is complex (e.g., diverse crop rotations, different types of fertilizer and soil tillage). In the present study, 
we used ca. 24,000 daily N2O flux observations from six cropland sites, two in France and four in Switzerland, to 
conduct an automatic data-driven calibration of the biogeochemical model DayCent. This model is planned to be 
used for greenhouse gas reporting in the entire European Union as well as in Switzerland. After a site-specific 
calibration, a leave-one-out (LOO) cross-evaluation was conducted to assess the model’s ability to predict N2O 
emissions for sites it was not calibrated for. Mean observed N2O fluxes for 54 interactions of crop cycles, field 
studies and treatments were used to evaluate the model. The LOO cross-evaluation resulted in a R2 of 0.63 for the 
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prediction of mean N2O fluxes per crop cycle, compared to an R2 of 0.51 obtained with default parameterization. 
Our results showed that the improvement in N2O predictions was associated with the adjustment of only seven 
parameters controlling the N cycle in soil (e.g., the maximum daily nitrification amount and the inflection point 
for the effect of water-filled pore space on denitrification) out of several hundred parameters. These parameters 
showed a wide range of values between sites, revealing an important challenge for calibration-based improve-
ment of N2O simulations. Despite the remaining uncertainty, our model-based estimates of N2O emission per 
crop cycle (2.64 kg N ha-1) were clearly closer to measurements (2.67 kg N ha-1) than commonly used emission 
factor approaches (1.60–1.71 kg N ha-1). Based on extensive field observations, our results suggest that, after 
data-driven calibration of only few N cycle parameters, DayCent simulations are useful for reporting N2O 
emissions of complex cropland management. These model based-estimates were more accurate, because they 
consider key drivers that are disregarded by simpler approaches. Moving towards more complex methods of N2O 
reporting, is therefore expected to improve the accuracy and additionally allows to assess mitigation options.   

1. Introduction 

The global emissions of nitrous oxide (N2O), a potent greenhouse and 
ozone-depleting gas, increased from approximately 11 Tg N yr-1 in the 
pre-industrial era to 17 Tg N yr-1 in recent decades (Müller, 2021). 
Agriculture is the main anthropogenic source of global N2O emissions, 
which is associated with the input of reactive forms of N to the soil 
(Hergoualc’h et al., 2019), originating from synthetic fertilizers, animal 
excreta, biological N2 fixation, soil organic N mineralization and at-
mospheric deposition. The assessment of the important sources and 
potential mitigation options are necessary to define policies for curbing 
soil N2O emissions. However, large-scale estimates of soil N2O emissions 
are still highly uncertain. A main reason for this uncertainty is the 
spatially and temporally dynamic nature of nitrification, denitrification, 
and N2O reduction to N2, which are the major processes controlling soil 
N2O fluxes (Ibraim et al., 2019; Verhoeven et al., 2019; Gallarotti et al., 
2021). Disregarding the key drivers of those processes is the main 
problem of national-scale N2O emission reports based on generic ap-
proaches that rely on emission factors (EF). The EF concept considers the 
ratio of N losses as N2O to N inputs as a fixed proportion. The EF-based 
estimates of soil N2O emissions, usually performed for an aggregated 
time-scale (e.g., a year), do not take into account the variation in N use 
efficiency by different crops, soil properties, soil management, and 
climate (Hergoualc’h et al., 2019; Del Grosso et al., 2020). This is an 
important issue for mitigation policies, which depend on accurate esti-
mates of the greenhouse gas (GHG) budget of the region for policy 
implementation. Process-based modeling that includes our current 
mechanistic understanding of the C and N cycles can be an adequate 
option for the assessment of critical soil, management and weather 
conditions influencing N2O emissions from soils at regional scales 
(Lugato et al., 2018). 

Biogeochemical models help to overcome the difficulty to conduct 
extensive, and thereby expensive, field measurements of N2O over time 
(e.g., decades) and over geographic regions (e.g., ecoregions). Among the 
biogeochemical models, DayCent has been successfully applied for 
reporting N2O emissions in the national GHG inventory of the U.S. 
(US-EPA, 2022). It has been employed also to simulate the impact of 
different management practices or climate change scenarios on GHG 
emissions and to do life-cycle analysis (Álvaro-Fuentes et al., 2017; 
Lugato et al., 2018; Del Grosso et al., 2019). However, the success of 
using process-based models like DayCent relies on the calibration and 
further evaluation of the model against reliable field measurements 
(Deng et al., 2018; Ogle et al., 2019). Although there have been key 
studies focused on the improvement of model estimates of GHG emis-
sions from croplands in Switzerland and other regions of temperate 
Europe (e.g., Necpálová et al., 2018; Lugato et al., 2018; Revill et al., 
2019; Lee et al., 2020a,2020b), there is still a lack of studies focusing on 
the model evaluation based on multisite measurements of N2O emis-
sions. More specifically, DayCent’s performance has not been widely 
tested against field measurements of N2O covering different pedocli-
matic conditions and management practices in temperate Europe. 

A particular challenge of estimating N2O fluxes in agricultural 

systems with diverse cropping and management practices over time are 
legacy effects, such as the amount of N returned as crop residues and left 
in soil from one cropping season to the next. Those legacy effects in-
fluence background N2O fluxes, which represent a major fraction of the 
total emissions in complex farming systems, and are difficult to predict 
(Hansen et al., 2019). Therefore, for croplands with higher diversity of 
crop rotations and management, process-oriented models could provide 
more accurate estimates, which are unattainable by using simpler ap-
proaches. For instance, the assessment of the additive or interactive 
effects of different mitigation practices in N2O emissions can be 
improved by using process-based models. 

There is a clear lack of studies with multisite data-driven calibration 
of model parameters controlling N transformation by nitrification and 
denitrification in soil and determining the model’s predictive ability for 
N2O emissions. This is considered one of the main bottlenecks in 
modeling soil N2O emissions (Del Grosso et al., 2020). The calibration of 
N cycle parameters depends on reliable field data covering different 
crops, soil type and interannual variability of climatic variables. This is 
particularly important in regions with complex interaction of diverse 
crop rotations (e.g., integration of ley, presence of legumes, number of 
crops), different N sources, and different soil management practices 
including full inversion tillage. 

The objective of this study was to evaluate the performance of 
DayCent to estimate soil N2O emissions from several crop cycles in six 
field studies in Western Europe. A specific aim was to assess the range of 
values of critical parameters controlling nitrification and denitrification 
in soil that directly affect the simulation of N2O emissions. Further, we 
compared the N2O estimates based on DayCent for crop cycles against 
estimates using the commonly applied EF approach. 

2. Materials and methods 

2.1. DayCent model 

DayCent is an abbreviation for “Daily CENTURY Model” (Hartmann 
et al., 2018). The processes in the soil-plant system are simulated by 
integrated submodels, including vegetation growth (forest, grassland 
and cropland), decomposition of plant residues and soil organic matter 
pools, soil water and soil temperature dynamics, N transformation by 
nitrification and denitrification determining NO3

- leaching and gaseous 
losses of N, methane oxidation and methanogenesis (Del Grosso et al., 
2011; Hartmann et al., 2018). The DD17centEVI version of DayCent was 
used in the present study (Hartmann et al., 2018). Additional description 
of the model is provided in the Appendix. 

2.2. Field data 

The measurement data of six field studies were used for the cali-
bration and evaluation of the DayCent model (Fig. 1). The most 
important soil and weather characteristics of the field studies are pre-
sented in Table 1. Soil properties available at the plot level were used as 
input for each modeled treatment. Soil hydraulic properties were 
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estimated using pedotransfer functions (see Appendix). Approximately 
24,000 daily N2O flux observations were included in the present study 
considering the frequency of sample collection and the number of 
chambers per treatment in each field study. Some details of the N2O flux 
measurements in the different field studies are presented in Table 2. The 
studies using chambers meet the set of criteria defined by Rochette and 
Eriksen-Hamel (2008) for quality control of N2O flux measurements (e. 
g., minimum chamber height, insertion in soil, sampling time). The crops 
used in the field studies are among the most important in terms of 
harvested area in Western Europe (FAOSTAT, 2021). The N rates per 
crop cycle during the N2O flux monitoring across different field studies 
and treatments ranged from 0 to 335 kg N ha-1. Details of the crop ro-
tations at each field study are presented in Table 2. 

The long-term field study in Bretenière, located in Eastern France, 
was set up to assess agronomical and environmental effects of different 
weed management cropping systems (Chikowo et al., 2009; Ugarte Nano 
et al., 2015, 2016; Vermue et al., 2016). It involves different crop ro-
tations, intensities of tillage and herbicide application. Originally, five 
different treatments were applied in different plots, without replication 
(Chikowo et al., 2009). Measurements of N2O were performed in four 
treatments representing different management systems (Vermue et al., 
2016), including (i) S1, a reference system with conventional tillage, 
crop rotation and use of herbicides; (ii) S2, a no-tillage system with less 
herbicide use than in the reference; (iii) S3, an integrated weed man-
agement system in which tillage was carried out for weed control only 
when necessary; and (iv) S5, a fully integrated weed management sys-
tem with weed control based on cultural practices, soil cultivation when 
necessary and without herbicides. Soil N2O emissions were measured 
using 6 chambers per treatment. 

The long-term field study known as EFELE is located in Le Rheu, 
Northwestern France. It has been conducted to assess the effect of long- 
term repeated application of organic N derived from animal production 
(INRAE, 2021). This study is part of the French National Observatory 

SOERE PRO, which is a network focused on long-term environmental 
impacts of organic waste products on cropping systems (INRAE, 2021). 
Soil N2O fluxes have been measured for eight sequential years in two 
treatments applied in field plots (no replicates) fertilized with different 
N sources: (i) ammonium nitrate, and (ii) pig slurry. Measurements of 
soil N2O emissions were performed using 3 chambers per treatment. 

The long-term field study known as DOK is located in Therwil, 
Switzerland. DOK is the German acronym for “Dynamisch, Organisch, 
Konventionell”. This study has been conducted on an area of 2 ha to 
compare different farming systems characterized by fertilization stra-
tegies and plant protection management (Mäder et al., 2002; Mayer 
et al., 2015; Skinner et al., 2019). The treatments considered for simu-
lations were: (i) BIOORG, organic farming with manure and slurry as N 
fertilization, (ii) CONFYM, conventional farming with manure plus 
additional mineral fertilization, (iii) CONMIN, conventional farming 
with only mineral fertilization, and (iv) NOFERT, unfertilized control 
with four replicates each. The biodynamic treatment was not included in 
the present study. Plant protection in the organic and the unfertilized 
system is based on mechanical weeding, indirect disease control mea-
sures and plant extracts together with bio-controls against insects, while 
in the non-organic systems herbicides, fungicides and pesticides are 
applied. 

The long-term field study in Frick, Switzerland, was set up to 
compare management factors related to the type of organic fertilization, 
soil tillage and biodynamic preparations (Berner et al., 2008; Gader-
maier et al., 2012; Krauss et al., 2017). Nitrous oxide fluxes were 
measured in four treatments based on a combination of two different 
types of organic fertilizer and two types of tillage, with four replicates 
(Krauss et al., 2017, dataset: doi.org/10.5281/zenodo.1566066). The 
effect of biodynamic preparations was not included in the N2O moni-
toring. The organic fertilization treatments were (i) cattle slurry alone 
(Slurry) and cattle manure compost plus slurry (Manure compost). The 
soil tillage treatments were (i) conventional tillage (15–18 cm, 

Fig. 1. Location of the field studies used for the calibration and evaluation of the DayCent model.  
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inversion) and (ii) reduced tillage (7–10 cm, non-inversion). The 
amounts of N input in different fertilization treatments were determined 
by the N content in slurry and manure compost multiplied by application 
rates (Gadermaier et al., 2012). 

In the long-term field study in Oensingen, Switzerland, which is part 
of the Swiss FluxNet (database code CH-Oe2; for details, see Emmel 
et al., 2018), the ecosystem-scale N2O fluxes were measured in 2019 at 
high temporal resolution (10 Hz) using the eddy-covariance technique 
(Maier and Buchmann, 2019). For the present study, the N2O fluxes were 
averaged to daily values. This field study is managed with intensive crop 
rotations following the Swiss Integrated Pest Management regime, 
known as IP-SUISSE. Various types of N inputs have been used since the 
beginning of the field study. Mineral N inputs were mostly ammonium 
nitrate-based fertilizers. Organic N inputs were slurry, cattle manure and 
cattle manure compost. Typical conventional soil tillage practices used 
in Switzerland were applied at this site, including ploughing (chisel and 
moldboard), cultivation and rolling for seedbed preparation. 

The field study in Reckenholz was conducted for one cropping season 
in 2014 to test the effect of biochar and limestone application on N2O 
emissions from a soil under maize (Hüppi et al., 2015). The treatments 
were the type of additions to soil before maize sowing, including (i) 
biochar, (ii) limestone control, and (iii) a control without additions. 
Three replicated plots were used per treatment. The field was sown with 
maize for grain production in 2014. Ammonium nitrate-based fertilizer 
was applied 18, 39 and 69 days after sowing at rates of 40, 80 and 
40 kg N ha-1, respectively. 

2.3. Meteorological data 

Meteorological data for the field studies were obtained from stations 
located at the field experiments or from nearby stations (i.e., at distances 
up to 5 km) for gap-filling. Data from nearby stations in Switzerland 
(Basel-Benningen, Wynau, and Reckenholz) were available on the 
IDAWEB portal of the Swiss Federal Office of Meteorology and Clima-
tology (https://gate.meteoswiss.ch/idaweb) and in France (Dijon and 
Rennes) on the CLIMATIK portal provided by INRAE (https://intranet. 
inrae.fr/climatik_v2). Simulations for each field study were performed 
using the DayCent’s extra climate driver’s mode with six meteorological 
variables at a daily resolution. The variables were maximum and mini-
mum air temperature, precipitation, solar radiation, relative air hu-
midity, and wind speed. 

2.4. Initialization of the model 

The initialization of the model consisted of a simulation of the C and 
N cycling over many centuries to define the size of different soil organic 
matter pools before starting simulations for the recent experimental 
period. For this model initialization, an overall land-use history in 
Switzerland and France during the last two millennia was assumed as 

proposed by Necpálová et al. (2018) based on literature of the history of 
land-use in Western Europe (e.g., Vannière et al., 2003; Bürgi, 2016). We 
considered the presence of a deciduous forest until the end of the 15th 
century. The definition of parameters for this “medieval forest phase” 
was mostly based on default parameters for deciduous forests from the 
DayCent library. Some adjustments were made in these forest parame-
ters by accounting for litter composition measurements performed in 
European forests (e.g., Jacob et al., 2010). We assumed that agriculture 
was established after forest clearing and has undergone different stages 
according to the development of farming technology (Necpálová et al., 
2018). The first agricultural phase was from 1500 to 1750 (pre agri-
cultural revolution), the second phase from 1751 to 1850 (agricultural 
revolution), the third phase from 1851 to 1950 (agriculture intensifi-
cation), and the fourth phase from 1951 to the year before the beginning 
of the field study (modern agriculture). Gradual increments in N inputs, 
diversity of crops, and yields were considered over these phases. The 
meteorological data from each field study (see Section 2.3 above) were 
used with recursion for the initialization of the model. 

2.5. Assessment of DayCent’s performance 

The model’s predictive ability for N2O emissions was assessed using 
a leave-one-out (LOO) cross-evaluation (Efron and Tibshirani, 1994; 
Wallach et al., 2018). The cross-evaluation was based on splitting the six 
datasets in five “calibration” sites and one “evaluation” site. In this way, 
the simulations for each site were carried out by averaging the values of 
calibrated parameters obtained at remaining sites. It means that for a 
given site the values of the calibrated parameters obtained for this site 
were excluded from the calculation of the average values of parameters 
used to test the model’s performance. Only the crops for which a cali-
bration was performed at least for one independent site were included in 
the cross-evaluation. 

The model calibration at each site was performed by coupling Day-
Cent with PEST (Fig. 2). PEST is an abbreviation for “Model-Indepen-
dent Parameter Estimation”. It is a statistical tool based on inverse 
modeling for iterative selection of the best set of parameter values based 
on best fit, i.e., minimization of difference between the modeled and 
observed values (Doherty, 2020). For the calibration, the PEST code 
executes DayCent runs several times with variations of the parameters. 
The parameter estimation is based on a gradient optimization using a 
Jacobian matrix of sensitivities of model outputs to parameters (Doh-
erty, 2020). This process is performed by sequentially varying the 
parameter values in the input files, running DayCent, recording the 
output values and comparing them with the observed values. The 
Gauss-Marquardt-Levenberg algorithm is used by PEST to iteratively 
select the parameter values minimizing the difference between model 
outputs and observed values. The parameter estimation process is con-
ducted until no improvement occurs between two sequential iterations 
(Doherty, 2020). 

Table 1 
Climate and soila characteristics of the six field studies used for simulations with DayCent.  

Field study Location Coordinates Altitude (m. 
a.s.l.) 

MAP 
(mm) 

MAT 
(◦C) 

Soil Class ( 
FAO-WRB, 2014) 

Clay 
(%) 

Silt 
(%) 

Sand 
(%) 

pH SOC 
(%) 

Bulk density 
(g cm-3) 

Bretenière Bretenière, 
France 

47◦14’N, 
5◦6’E  

211  770  10.5 Hypereutric 
Cambisol  

41  53  5  6.9  1.91  1.49 

EFELE Le Rheu, France 48◦6’N, 
1◦48’W  

40  754  12.0 Stagnic Luvisol  14  71  15  6.1  1.16  1.32 

DOK Therwil, 
Switzerland 

47◦30’N, 
7◦32’E  

306  791  9.5 Haplic Luvisol  16  71  11  6.1  1.43  1.32 

Frick Frick, 
Switzerland 

47◦30’N, 
8◦01’E  

350  1000  8.9 Vertic Cambisol  45  27  28  7.1  2.20  1.11 

Oensingen Oensingen, 
Switzerland 

47◦17’N, 
7◦44’E  

452  1086  9.8 Eutri-stagnic 
Cambisol  

43  47  10  6.4  2.12  1.23 

Reckenholz Zürich, 
Switzerland 

47◦26’N, 
8◦31’E  

437  1054  9.4 Eutric Mollic 
Gleysol  

36  27  37  6.3  2.62  1.30  

a Average of plots used for the simulations (plough layer). MAP: mean annual precipitation; MAT: mean annual temperature; SOC: soil organic carbon. 
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To perform the calibration, we selected the same plant and man-
agement parameters sensitive to measured data as found by Necpálová 
et al. (2018). Considering the significant correlation between many 
parameters found by these authors, we also followed independent 
sequential stages for calibration of the model parameters, but with an 
additional stage for the calibration of the N cycle parameters. Parame-
ters calibrated in previous stages were kept at their optimized values for 

the calibration of parameters in a subsequent stage. The five sequential 
stages are: 

• Stage I: the parameter denoting the photosynthetic radiation-use ef-
ficiency in the forest phase was calibrated during model initialization 
based on initial soil organic C (SOC) stocks observations in the top 
arable layer at a 20 cm depth at each field study. 

Table 2 
Crop rotations and details regarding N2O measurements of the six field studies used for simulations with DayCent.  

Field 
studies 

Period of the 
studya 

Crop rotation in the last ten years used for simulationb Period of N2O 
flux 
measurements 

Method of N2O 
flux 
measurements 

References 

Bretenière 2000–2013 Treatment S1: 
WB04–RP05–WW06–WB07–RP08–WW09–WB10–RP11–WW12–WB13; 
Treatment S2: 
RP04–WW05–OA05–SB06–SY07–WW08–RP09–SY10–WW11–SB12–OA12–SY13; 
Treatment S3: 
MU03–WW04–RP05–TR06–SY07–WW08–RP09–TR10–RP11–WW12–CC12–SY13; 
Treatment S5: 
WB04–FB05–TR06–RP07–WW08–WB09–CC09–FB10–WW11–AF12–MZ13 

Mar. 2012–Apr. 
2013 

Chambers with 
automated 
sampling 

Chikowo et al. (2009); 
Ugarte Nano et al., 
(2015, 2016); Vermue 
et al. (2016) 

EFELE 2012–2020 All treatments: WW13–CC14–MZ14–WW15–CC16–MZ16– WW17–CC18–MZ18– 
WW19–CC20–MZ20 

Mar. 2013–Sep. 
2020 

Chambers with 
automated 
sampling 

INRAE (2021) 

DOK 1977–2014 All treatments: GC05–MZ06–WW07–GM08–SY08–RY09–PO09– 
WW10–GC11–GC12–MZ13–GM14 

Aug. 2012–Mar. 
2014 

Chambers with 
manual sampling 

Mäder et al. (2002);  
Mayer et al. (2015);  
Skinner et al. (2019) 

Frick 2002–2014 All treatments: SP05–GC06–GC07–MZ08–WW09–CC10–SF10– 
SP11–GC12–GC13–WW14–CC15 

Aug. 2012–Oct. 
2014 

Chambers with 
manual sampling 

Berner et al. (2008);  
Gadermaier et al. 
(2012); Krauss et al. 
(2017) 

Oensingen 2003–2020 WW11–WB12–RP13–WW14–WB15–PE16–WW17–RP18–WW19–WB20 Jan. 2019–Jan. 
2020 

High resolution 
eddy covariance 
system 

Emmel et al. (2018);  
Revill et al. (2019);  
Maier and Buchmann 
(2019) 

Reckenholzc 2014 All treatments: MZ14 Mar. 2014–Dec. 
2014 

Chambers with 
automated 
sampling 

Hüppi et al. (2015)  

a Period from the beginning of the experiment to the last year of simulations, i.e., not necessarily to the end of the experiment. 
b Letters indicate the crop and subscript numbers indicate the last two digits of the year of crop harvest or termination (cover crop, catch crop or green manure); AF 

= alfalfa (Medicago sativa L.), CC = catch or cover crop, CL = clover (Trifolium spp.), FB = faba bean (Vicia faba L.), GC = grass+clover ley, GM = green manure, MZ 
= maize (Zea mays L.), MU = mustard (Sinapis alba L.), OA = oats (Avena sativa L.), PE = peas (Pisum sativum L.), PO = potato (Solanum tuberosum L.), RP = rapeseed 
(Brassica napus L.), RY = rye (Secale cereale L.), SB = summer barley (Hordeum vulgare L.), SF = sunflower (Helianthus annuus L.), SP = spelt (Triticum spelta L.), SY 
= soybeans (Glycine max (L.) Merr), TR = triticale (Triticale hexaploide Lart.), WB = winter barley, and WW = winter wheat (T. aestivum L.); bold abbreviations 
indicated the crop cycles in which the N2O fluxes were measured. 

c Please note that the simulations for EFELE and Reckenholz field studies were performed for less than 10 years. 

Fig. 2. Procedure for calibration of DayCent using inverse modeling based on field observations.  
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• Stage II: crop parameters were calibrated based on yield data.  
• Stage III: the tillage parameters, which control the effect of tillage on 

different SOC and soil N pools, were calibrated based on measure-
ments of SOC stocks over time. 

• Stage IV: for the sites with organic N inputs, we performed a cali-
bration of parameters determining decomposition of organic inputs 
(manure, manure compost and slurry) based on measured SOC stocks 
and crop yield data. 

• Stage V: N cycle parameters controlling nitrification and denitrifi-
cation were calibrated based on observed cumulative N2O emissions 
over time. 

Linear interpolation was used for gap filling of daily measured N2O 
fluxes to calculate the cumulative emissions. Long gaps in measured 
daily fluxes (≥ 4 d) after fertilization or tillage events were not filled to 
avoid errors in the calibration process related to the calculation of cu-
mulative N2O emissions. Therefore, the modeled daily N2O fluxes cor-
responding to the unfilled gaps were also excluded from the modeled 
cumulative N2O emissions used in the calibration process. Thus, for 
coupling DayCent and PEST for calibration of N cycle parameters at the 
stage V described above, new selective datasets were created with 
simulated N2O emission data coincident to the available gap-filled data. 
Additional details of the inverse modeling for calibration of DayCent 
parameters using the PEST tool are given by Rafique et al. (2013) and 
Necpálová et al., (2015, 2018). 

By selecting only crop cycles with entire gap-filled management 
periods for N2O flux measurements, we made a comparison of DayCent 
estimates against EF approaches commonly used in IPCC Tier 1. The 
latter represents the most basic method for national inventories of 
greenhouse gas emissions and hardly includes country specific data. 
Two EF approaches were considered for this comparison with model 
estimates. The first approach is the use of an aggregated EF with a 
general value of 1% of the N losses as N2O from N inputs (Klein et al., 
2007). The second approach is a refinement of the Tier 1 approach based 
on the use of disaggregated EFs, which means that the percentage of N 
loss as N2O depends on the type of N input, with 1.6% for synthetic 
fertilizers and 0.6% for other inputs (Hergoualc’h et al., 2019). Further 
detailed procedures for estimates based on EF approaches were 
described in the Appendix. 

In addition to the observed N2O emissions for each site, we used 
observed crop yield data to evaluate the overall performance of the 
model, i.e., as a general quality control of the model outputs (Del Grosso 
et al., 2020). Evaluating crop yields in the different stages was also an 
attempt to reduce the risk of a good model performance for N2O emis-
sions due to errors in parameters not directly related to the N cycle. More 
insights on the equifinality, i.e., good model fit obtained for the wrong 
reasons, was given by Beven (2006). For the cross evaluation, the 
average of parameters was obtained in a more generic way, which would 
be the approach most likely applied for simulating N2O emission over 
large regions (e.g., for national inventories). For example, plant pa-
rameters were averaged at a species level rather than at a cultivar level. 

2.6. Statistical metrics 

Linear regressions of modeled against observed crop yields and mean 
daily N2O fluxes over a crop cycle were used to assess the overall 
model’s performance. To calculate the mean fluxes, a crop cycle was 
considered to begin at the seedbed preparation or pre-plant fertilizer 
application or only sowing in some cases (e.g., no-tillage), i.e, any of 
these events occurring first. Therefore, the occurrence of one of these 
events was also considered as the end of a previous cycle. In this way, the 
post-harvest period was included in the crop cycle with the effect of crop 
residue decomposition on N2O emissions, as recommended by IPCC 
(Hergoualc’h et al., 2019). The winter period was also included in the 
cycles of some crops (e.g., winter wheat and ley). The combination of 
different crop cycles, treatments and field studies resulted in n of 54 for 

mean N2O fluxes and 236 for crop yields. Average values were used for 
treatments with field replicates (see Section 2.2 above). In addition to 
the coefficient of determination (R2), we also used the relative root mean 
square error (rRMSE), the ratio of performance to interquartile distance 
(RPIQ), and the bias as a statistical metrics for the regressions. The 
rRMSE and the RPIQ value is calculated based on the root mean square 
error (RMSE), which is defined as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(obs − mod)2

√

where n is the number of measurements, obs is the observed value and 
mod is the modeled value. The rRMSE value is calculated as follows: 

rRMSE =
RMSE

obs  

where obs is the average of the observed values. Smaller values of rRMSE 
indicates greater accuracy in the predictions (Wallach et al., 2018). The 
RPIQ value is calculated as: 

RPIQ =
Q3 − Q1

RMSE  

where Q3 is the third quartile of the observed values, i.e., the middle 
value between the median and the maximum value of the observed data 
set, and Q1 is the first quartile of the observed values, i.e., is the middle 
value between the minimum value and the median of the observed data 
set. An advantage of RPIQ is that it takes in account the degree of 
variation in observed values (Bellon-Maurel et al., 2010). It denotes a 
comparison of the level of dispersion in the observed data set with the 
prediction error. The higher the value of RPIQ, the better the model’s 
predictive ability. The bias is calculated as follows: 

bias = mod − obs  

where mod is the average of the modeled values. The value of bias in-
dicates systematic errors in the model estimates. 

The integrated development environment R studio (Campbell, 2020) 
was used to develop a script to run DayCent for each site and instanta-
neously obtain the graphics and data outputs for assessing DayCent’s 
performance during calibration and evaluation stages. 

3. Results 

3.1. Site-specific calibration and simulation of daily N2O fluxes 

DayCent’s ability to reproduce daily N2O fluxes before and after 
calibration is illustrated in Fig. 3 in an exemplary way by showing the 
simulation results of two treatments at two sites. The simulations of 
daily N2O fluxes for all the remaining studies and treatments are pre-
sented as Appendix (Fig. A.1–A.6). Site-specific calibration effectively 
increased the adjustability of the modeled to observed daily N2O fluxes 
as affected by crop types, N inputs and soil tillage for both sites (Fig. 3a- 
d). With the uncalibrated model, simulations performed at the 
Bretenière site showed some fertilizer-induced N2O pulses up to 34 g N 
ha-1 d-1 during the wheat-growing season under conventional tillage 
(reference treatment), while the observed fluxes stayed below 10 g N ha- 

1 d-1 (Fig. 3a). Conversely, the uncalibrated model significantly under-
estimated the high N2O fluxes in the no-tillage treatment, which were up 
to 246 g N ha-1 d-1 after barley fertilization (Fig. 3b). The site-specific 
calibration substantially improved DayCent’s ability to capture the ef-
fects of these contrasting managements on N2O emissions (Fig. 3b). This 
improvement is evident by comparing the observed and modeled cu-
mulative N2O emissions (lower panels in Figs. 3a and 3b). The observed 
cumulative N2O emissions were 0.1 kg N ha-1 in the reference treatment 
and 4.9 kg N ha-1 in the no-tillage treatment. Before calibration, the 

M. dos Reis Martins et al.                                                                                                                                                                                                                     



European Journal of Agronomy 141 (2022) 126613

7

differences of the modeled and the observed values were 2.0 kg N ha-1 

for the reference and − 3.1 kg N ha-1 for the no-tillage treatment. After 
calibration, the agreement between modeled and observed cumulative 
N2O emissions were much better, with differences of 0.8 kg N ha-1 for 
the reference and − 0.1 kg N ha-1 for the no-tillage. 

Also at the Frick site, the site-specific calibration clearly improved 
simulations of DayCent by reducing overpredicted cumulative N2O 
emissions (Figs. 3c and 3d). Although some N2O pulses associated with 
slurry applications (labeled S) and rotary tillage (labeled rt) were 
underpredicted by DayCent, the modeled cumulative emissions were 
significantly better adjusted after the site-specific calibration (Figs. 3c 
and 3d). Overall, this improvement in the adjustment for cumulative 

N2O emissions was also found for the other field studies (Appendix, 
Fig. A.1–A.6). The two exceptions to this were the fully integrated weed 
management treatment at the Bretenière site (Fig. A.1) and the ammo-
nium nitrate treatment at the EFELE site (Fig. A.2). It is also worth 
noting that for BIOORG, CONMIN, CONFYM, treatments at DOK field 
study, even the uncalibrated model simulated the cumulative emissions 
well (Fig. A.3). On the other hand, in this field study, we observed the 
largest relative deviation between modeled and observed N2O emissions 
in the control treatment (NOFERT), even after model calibration. 
Despite the underestimation, the lower modeled N2O fluxes in this 
treatment are consistent with no N-fertilizer inputs for several decades 
(Mayer et al., 2015; Skinner et al., 2019). A possible explanation for this 

Fig. 3. Modeled (lines) versus observed (symbols) daily soil N2O fluxes (top panels) and cumulative N2O emissions (lower panels) from the ‘Reference’ (a) and the 
‘No-tillage’ (b) treatments in Bretenière (France) and from the ‘Conventional tillage + manure’ (c) and the ‘Reduced tillage + slurry’ (d) treatments in Frick 
(Switzerland). Arrows associated with lowercase letters indicate cultivation events (cr = cover crushing, hb = herbicide, pl = moldboard plowing, rl = rolling, rt =
rotary tillage, st = shallow tillage). Arrows associated with uppercase letters followed by values indicate N inputs, including fertilization type (F = synthetic fertilizer, 
S = slurry, M = manure compost) and rates, in kg N ha-1, respectively (e.g., F50 indicates an application of synthetic fertilizer at a rate of 50 kg N ha-1). Please note 
the scale and breaks in the Y-axis. The crop growing periods from sowing to harvest or termination are indicated below the X-axis of the upper panels. CC 
= cover crop. 
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underestimation of N2O emissions is a systematic overestimation of crop 
yields for the NOFERT treatment (result not shown). This results in 
overestimation of N uptake by plants derived from N sources other than 
N-fertilizer (e.g., soil organic matter mineralization). Therefore, the 
model likely underestimated the amounts of soil N available to micro-
organisms that produce N2O. 

3.2. Average model calibration and evaluation 

Regressions of modeled against observed crop yields and N2O 

emissions from crop cycles at the six sites were used to assess DayCent’s 
performance (Figs. 4 and 5). It is possible to observe how much 
improvement in the estimates of crop yields and N2O emissions was 
possible to attain by site-specific calibration (Figs. 4b and 5b) instead of 
using default parameters (Figs. 4a and 5a). Site-specific calibration 
increased the R2 values from 0.22 to 0.78 for crop yields and from 0.51 
to 0.78 for mean N2O fluxes. The RPIQ values also clearly indicate a 
better fit, increasing from 1.6 to 2.7 for crop yields and from 1.3 to 2.1 
for mean N2O fluxes. Values of rRMSE declined from 75% to 29% for 
crop yields and from 88% to 54% for mean N2O fluxes. Positive bias 

Fig. 4. Modeled against observed crop yields for six different field studies in 
Switzerland and France. Model performance was assessed for default parame-
terization (a), site-specific calibration (b), and leave-one-out cross-evaluation, i. 
e., the mean parameter value of all other sites except the one simulated was 
used (c). Each symbol stands for a harvest event of a specific treatment and site. 
Different crop types are indicated by different colors. The agreement between 
modeled and measured data is described by the coefficient of determination 
(R2), the relative root mean square error (rRMSE), ratio of performance to 
interquartile distance (RPIQ) and bias. 

Fig. 5. Mean modeled versus observed soil N2O fluxes during different crop 
cycles of six sites in Switzerland and France. Model performance was assessed 
for default parameterization (a), site-specific calibration (b), and leave-one-out 
cross-evaluation, i.e., the mean parameter value of all other sites except the one 
simulated was used (c). Each symbol stands for a crop cycle of a specific 
treatment and site. Please note that N2O measurements were usually only 
performed during a few single crop cycles of the entire long-term experiments, 
explaining the lower number of symbols compared to Fig. 4. 
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slightly decreased for crop yields (29–23 g C m-2) and turned into 
negative bias for N2O emissions (3.0 to − 2.5 g N ha-1 d-1) after site- 
specific calibration. 

The LOO cross-evaluation also showed a slight improvement in the 
model performance compared to the default (Figs. 4a and 4c), although 
it was, as expected, lower compared to site-specific calibration (Figs. 4b 
and 4c). For crop yields, the improvement in the model performance 
compared to using default parameters is shown by an increase of R2 from 
0.43 to 0.52. The use of plant parameters averaged at a species-level for 
the LOO cross-evaluation instead of using cultivar-specific parameteri-
zation limited further improvement of model estimates of crop yields. It 
is important to consider that when the model is applied for simulations 
over regions (e.g., country), field activity data at a cultivar level (e.g., 
share of land area with a specific cultivar) is often not available at large 
scales. Therefore, averaging parameter values at a species level is 
necessary for model simulations covering large regions. The LOO cross- 
evaluation for N2O emissions showed an R2 of 0.63, which was still 
higher than 0.51 obtained using the default parameters (Figs. 5a and 5c). 
The values of rRMSE and RPIQ also showed better model performance in 
the LOO cross-evaluation compared to the use of default parameters. 

The best performance of the model for predicting N2O emissions in 
the LOO cross-evaluation was achieved by adjusting the model param-
eters controlling nitrification and denitrification (Fig. 6). When these N 
cycle parameters were kept at their default values and other parameters 

related to plant growth and management were adjusted, we observed 
only a slight improvement of the model’s predictive ability for N2O 
emissions (Fig. A.7). 

In the LOO cross-evaluation, some of the N cycle parameters deviated 
significantly from the default value. This was evident, for example, for 
the maximum daily nitrification amount (MaxNitAmt) and the inflection 
point for the effect of water-filled pore space on denitrification 
(wfpsdnitadj). Other parameters ended by presenting LOO averages close 
to the default values, like the N2:N2O ratio adjustment coefficient 
(N2N2Oadj), even presenting site-specific values deviating significantly 
from the default value (Fig. 6). 

3.3. DayCent model versus emission factor approaches 

For a comparison of modeled and EF approaches, we estimated the 
mean cumulated N2O emissions for crop cycles with all management 
periods (N fertilization and tillage) covered by measurements with gap- 
filling, including winter (See Section 2.5). This was possible for 23 in-
teractions of crop cycles and treatments from three field studies (DOK, 
Frick, EFELE) for winter wheat, silage maize and grass-clover ley. The 
observed N2O emissions for the selected crop cycles presented a wide 
range of values (0.7–7.0 kg N ha-1) with a mean of 2.7 kg N ha-1 (Fig. 7). 
The N2O emissions estimated using the aggregated EF approach, i.e., 
considering 1% of N losses from N inputs (Klein et al., 2007), presented a 

Fig. 6. DayCent parameters controlling soil N2O emissions before and after 
calibration based on data from six cropland field studies in Switzerland and 
France. The gray solid vertical lines indicate the original default model values 
of the parameter, the dashed blue lines indicate the value of the average cali-
bration using all six sites with horizontal blue bars indicating the confidence 
interval of the leave-one-out values for α = 0.05. The yellow symbols indicate 
the values from the individual site-specific calibrations. Ncoeff = minimum 
water and temperature limitation coefficient for nitrification, N2Oadjust_fc 
= maximum proportion of nitrified N lost as N2O at field capacity, N2Oad-
just_wp = minimum proportion of nitrified N lost as N2O at wilting point, 
MaxNitAmt = maximum daily nitrification amount (g N m-2), netmn_to_-
no3 = fraction of new net mineralization that goes to NO3

- , wfpsdnitadj 
= adjustment on inflection point for water-filled pore space effect on denitri-
fication, N2N2Oadj = N2:N2O ratio adjustment coefficient. 

Fig. 7. Box plots of cumulative N2O emissions and N inputs per crop cycle in 
field studies (n = 23 crop cycles). Different approaches were compared with 
observed N2O emissions including IPCC emission factor (EF) and modeling. 
Two types of EF approaches were considered: Aggregated (IPCC-06) means that 
1% of the N inputs are lost as N2O (Klein et al., 2007); Disaggregated (IPCC-19) 
is a refinement of the previous EF approach and means that the percentage of N 
loss as N2O depends on the type of N input, with 1.6% for synthetic fertilizers 
and 0.6% for other inputs (Hergoualc’h et al., 2019). The range from the first to 
the third quartile are indicated by boxes. The horizontal lines within the boxes 
indicate median values and diamond symbols indicate mean values. The upper 
and lower extremes are represented by whiskers and the outliers by circles. The 
dotted lines and the gray area indicate extremes and interquartile range of 
observed emissions, respectively. 
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37% lower mean value (1.7 kg N ha-1). Besides this, the variation of 
emission estimates using this aggregated EF approach was much nar-
rower, ranging from 1.2 to 2.0 kg N ha-1 (Fig. 7). The use of dis-
aggregated EFs, i.e., 1.6% for synthetic fertilizers and 0.6% for other 
inputs (Hergoualc’h et al., 2019) resulted in a wider range of emissions 
(0.3–3.0 kg N ha-1) and a mean estimated emission of 1.6 kg N ha-1, also 
clearly lower than mean value of observed emissions (Fig. 7). The model 
estimates with either site-specific calibration or LOO average of pa-
rameters were significantly better than the EF approaches, although the 
interquartile range of estimates is narrower. This indicates that the 
adjustment of model parameters by site-specific site calibration or LOO 
average made the model more parsimonious for prediction of extreme 
N2O emissions. 

4. Discussion 

Based on an extensive set of N2O flux observations we identified 
which parameters of the biogeochemical model DayCent are most crit-
ical for improving the prediction of N2O emissions from cropland soils 
(Figs. 3, 5 and 6). The data set included measurements from six different 
sites with various crop rotations, soil management and fertilization 
types. Our results indicate a significant variability in N cycle parameter 
values for different sites. This was a limiting factor for the improvement 
of the model’s predictive ability by using an average parameterization 
strategy. On the other hand, we were able to show that, in the LOO cross- 
evaluation, some of the N cycle parameters deviated significantly from 
the default value, like MaxNitAmt and wfpsdnitadj (Fig. 6). This implies 
that even the application of average values for these parameters helped 
to enhance the model’s performance in the LOO cross-evaluation 
(Figs. 5a and 5c). This result suggests that experimental efforts to 
assess these parameters that directly affect nitrification and denitrifi-
cation could contribute to improve the process-based modeling of N2O 
emissions. 

The simulation of gaseous N losses using biogeochemical models 
includes some steps that are particularly challenging. A recent study 
emphasized the difficulty to improve simulations of the denitrification 
process due to a lack of measurement data to support modeling (Del 
Grosso et al., 2020). For example, measurements of N2 emissions are 
scarce due the difficulty of determining N2 fluxes from soils because of 
the high atmospheric concentrations (78%). The partitioning between 
N2 and N2O in the denitrification process driven by N-NO3

- is taken into 
account to simulate N2O in DayCent (Hartmann et al., 2018; Del Grosso 
et al., 2020). In our study, the parameter related to this partitioning is 
the N2:N2O ratio adjustment coefficient (N2N2Oadj). Similar as dis-
cussed above for other N cycle parameters, this coefficient also pre-
sented high variability between sites, but it ended by presenting LOO 
average values close to default values (Fig. 6). Therefore, the restricted 
offset of the LOO average values of N2N2Oadj could not contribute 
significantly to improve the overall model’s prediction ability. A more 
in-depth knowledge of the drivers of N2:N2O stoichiometry would 
contribute to improve the simulation of N2O emissions. The reduction of 
N2O to N2 is the main process determining the proportion of the two 
gases (Ibraim et al., 2019; Verhoeven et al., 2019; Gallarotti et al., 
2021). Improving the simulation of the N2O reduction process in 
biogeochemical models could increase accuracy in simulations of N2O 
fluxes. For instance, a better sub-model structure for soil water dynamics 
could improve this step in the simulation of N2O emissions (Smith et al., 
2020). 

Accurate predictions of N2O emissions are not only determined by 
the simulation of soil N transformations. Ensuring reasonable model 
performance for predicting plant growth and yield also has positive 
consequences for modeling N2O emissions. Part of the errors in model 
predictions of crop growth in the LOO cross-evaluation (Fig. 4c) likely 
contributed to the errors in the model prediction of N2O emissions 
(Fig. 5c). This is consistent with the slight improvement of modeled N2O 
emissions associated with the adjustment of only plant growth 

parameters in the LOO cross-evaluation (Fig. 5a, Fig. A.7a). Better pre-
diction of plant growth reduces the errors in key model outputs caused 
by a “cascade effect” and the possibility of obtaining a good model 
performance caused by biased parameterization is diminished (Houska 
et al., 2017; Sima et al., 2020). For example, errors in estimates of crop 
growth affect predictions of N uptake during a crop cycle, as well as the 
amount of N in plant residues after harvest. Consequently, this impacts 
the predicted N2O emissions derived from residue decomposition. 
Further improvements of model simulations of crop growth would also 
contribute to improve the simulations of cropland N2O emissions. 

A particularly challenging point in simulating N2O emissions in 
conventional tillage-based croplands is the model’s ability to capture the 
N2O pulses induced by soil physical disturbance. Conventional tillage 
with regular full-inversion and seedbed preparation is representative for 
croplands in Western Europe and is reflected by treatments in the pre-
sent study. Overall, the model was able to reproduce reasonably well the 
post-tillage N2O pulses over time (Fig. 3 and Fig. A.1–A.6). The ability of 
DayCent to capture these physical soil disturbance effects is likely one of 
the main reasons why simulations outperformed estimates by the EF 
approach (Fig. 7). Our results showed that DayCent was able to mimic 
soil physical disturbance effects on N mineralization and increases of 
easily decomposable C, which supply energy for denitrification (Zhu 
et al., 2013). Occasional underestimation of fluxes induced by tillage, 
like observed in Frick (Figs. 3c and 3d), can be attributed to the fact that 
models of intermediate complexity do not fully reproduce the interac-
tion of organic pools with dynamic soil physical variables. Among 
physical variables, soil aggregation is usually not explicitly represented 
by ecosystem models. However, it plays an important role in the pro-
tection of soil organic pools and therefore controls dynamics of soil C 
and N (Six et al., 1999, 2004). 

By considering crop cycles with entire gap-filled management pe-
riods for N2O flux measurements, we were able to show that model es-
timates can provide more accurate estimates of cropland N2O emissions 
compared to EF approaches (Fig. 7). This result can be partially 
explained by the fact that N fertilizer inputs, which are the major pre-
dictor used in EF estimates, did not present large variation, showing an 
interquartile range of 102–138 kg N ha-1 per crop cycle. A more general 
comparison of the model and EF approaches would require N2O data for 
a wide range of soil, climate, and crop types. Overall, measurements of 
N2O emissions in Western Europe have usually been performed for the 
most important crops such as winter wheat and maize that cover large 
areas (e.g., Sehy et al., 2003; Oorts et al., 2007; Maier et al., 2022). There 
is a lack of N2O flux measurements for other important crops, such as 
sugar beets, potatoes, sunflowers and secondary small-grained cereals, 
such as rye and triticale (FAOSTAT, 2021). Furthermore, N2O flux 
measurements are rarely performed over many seasons in long-term 
field studies, which are extremely valuable for modeling (Coleman 
et al., 1997). Still N2O emissions have generally been measured more 
often compared to other types of N losses that would be just as important 
(e.g., NO3

- leaching and N2 emissions). An intensive monitoring of daily 
N2O fluxes is necessary to cope with the high variability due to the 
spatially and temporally dynamic nature of nitrification, denitrification 
and N2O reduction (Chadwick et al., 2014; Barton et al., 2015; Hörtnagl 
et al., 2018). 

Despite the potential calibration-based improvement we identified, 
our results suggest that DayCent is an adequate model for reporting 
cropland N2O emissions for Western Europe with complex soil man-
agement and diverse crop rotations (Fig. 7). The main advantage over 
commonly used EF approaches is that DayCent takes into account key 
drivers not considered by simple estimates. Estimates based on EF do not 
explicitly account for the impact of tillage or the long-lasting effect of 
crop residues on the interseasonal variability of background N2O emis-
sions, which has been recognized as a major contribution to the total 
emission (Hansen et al., 2019). Other important factors, such as N and 
water use efficiency of crops are not accounted by EF approaches. 
Considering the influence of these factors is crucial to forecast the 
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impact of climate change on N2O emissions. Management alternatives 
towards emission abatement can also only be tested by considering the 
major processes involved, which are simulated by ecosystem models 
such as DayCent. 

5. Conclusions 

Our results showed that predictions of N2O emissions could be 
improved by adjusting only a few parameters controlling the soil N 
cycle, such as the maximum daily nitrification amount and the inflection 
point for the effect of water-filled pore space on denitrification. Exper-
imental efforts to assess these parameters directly affecting nitrification 
and denitrification could support the process-based modeling of N2O 
emissions. Further systematic multisite N2O monitoring covering 
different soils and weather conditions would also contribute to addi-
tional calibration-based improvement of model estimates. Overall our 
results showed that DayCent simulations were clearly more accurate 
than EF approaches. Based on extensive field observations, our results 
suggest that, even with scope for further improvement, DayCent simu-
lations are useful for reporting cropland N2O emissions under complex 
soil management by considering key drivers affecting the N trans-
formation in soil. 
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