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A B S T R A C T

Earth Observation by means of remote sensing imagery and gridded environmental data opens tremendous
opportunities for systematic capture, quantification and interpretation of plant–environment interactions
through space and time. The acquisition, maintenance and processing of these data sources, however, requires
a unified software framework for efficient and scalable integrated spatio-temporal analysis taking away the
burden of data and file handling from the user. Existing software products either cover only parts of these
requirements, exhibit a high degree of complexity, or are closed-source, which limits reproducibility of
research. With the open-source Python library EOdal (Earth Observation Data Analysis Library) we propose a
novel software that enables the development of fully reproducible spatial data science chains through the strict
use of open-source developments. Thanks to its modular design, EOdal enables advanced data warehousing
especially for remote sensing data, sophisticated spatio-temporal analysis and intersection of different data
sources, as well as nearly unlimited expandability through application programming interfaces (APIs).
1. Introduction

Images from Earth Observation (EO) satellites and in-situ observa-
tions are of great importance for ecophysiological (Caparros-Santiago
et al., 2021) and agroecological research (Karthikeyan et al., 2020).
Such data can be used to determine plant traits and allow mapping
of plant growing conditions for larger areas using standardized meth-
ods (Weiss et al., 2020). Open-access, high-resolution satellite data
such as from the European Space Agencies’ Sentinel-2 (S2) mission
can resolve field heterogeneity and provide site-specific farming mea-
sures operationally. Examples include yield estimates (Marshall et al.,
2018; Perich et al., 2022), extraction of phenological metrics (Duarte
et al., 2018), variable irrigation rates (Barker et al., 2018) and site-
specific fertilization scheduling (Mittermayer et al., 2022). Remotely
sensed plant traits and their dynamic development over time can
further be augmented with environmental covariates such as climate,
soil and terrain data, as well as information about farm management
to perform integrated analysis on material and energy fluxes across
spatio-temporal scales (Asam et al., 2018).

However, accessing, managing and analyzing EO data is complex
and often requires solid knowledge of geographic information sci-
ence and coding to properly handle large spatial data sets. We base
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this finding on an exhaustive review of existing software tools. For
example, the philosophy of the OpenDateCube1 initiative is about
integrated analysis of EO data using standardized interfaces. Installing
the software, however, is complex as setting up a database instance
is required. The Framework for Operational Radiometric Correction
for Environmental monitoring (FORCE) (Frantz, 2019) is primarily
designed for the creation of Analysis-Ready-Data (ARD) but does not
provide interfaces for data analysis workflows. Analysis workflows us-
ing standardized interfaces are the main subject of the openEO2 project.
openEO, however, focuses on cloud environments. Thus, data sets that
are not available on externally operated web platforms are currently
excluded. This applies particularly to (experimental) research data sets.
Researchers therefore often spend a significant amount of time getting
the data into an analysis-ready format. Based on the analysis of more
than 3000 productive machine learning pipelines at Google, Xin et al.
(2021) identified great potential for optimization in the area of data
management and pre-processing, which also appears to be true in the
EO area.

For these reasons, we developed the Earth Observation Data Analy-
sis Library (EOdal) as an open-source Python (3.8+) package designed
to make EO data analysis tools available to researchers without the
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Fig. 1. Overview of EOdal and its three layers: The core layer (top) handles different input data sources in a standardized way. The analysis layer (bottom left) builds upon the
core and the processing layer (bottom right) for data maintenance, querying, intersection and integration into user-defined data science pipelines.
need for in-depth knowledge about geoinformation science, coding and
remote sensing data handling. A key aspect of EOdal is the ability to
apply spatial data science methods to data from different sources within
a unified framework based on open-source tools. We also intend to pro-
vide researchers with an alternative to proprietary software solutions
such as the widely used Google Earth Engine (Gorelick et al., 2017).

The functionality and structure of EOdal is explained in Section 2
of this paper. In Section 3, we present a reproducible use case based on
an agricultural research question followed by a discussion in Section 4.

2. Description of EOdal

EOdal consists of three layers as shown in Fig. 1. The layers are
organized in a triangle to emphasize their inter-dependencies. The core
layer (Fig. 1, top) provides the Python classes required to perform I/O
operations to read and write geo-spatial data sets in a generic way. It
is also the basis for data warehousing, i.e., the storage of metadata.
Class inheritance extends its capabilities to specific EO sensors such as
S2 Multispectral Imager (e.g., for convenient reading of data organized
in the Satellite Archive for Europe structure). (Pre-)processing of these
datasets is accomplished in the processing layer (Fig. 1, lower right).
Processing steps such as spatial reprojection are often a necessity to
combine different datasets for analysis. The analysis layer (Fig. 1, lower
left) enables automatized, reproducible EO data management and is
the backbone for data-driven analysis of geo-spatial data sets and their
spatio-temporal intersection.

Deployment of EOdal is independent of an Operating System. Fur-
thermore, EOdal can be used on local premises (e.g. for processing
research datasets) but also in cloud environments for fast access to
large, freely accessible data such as the global S2 or Landsat archive.
To enable fast and scalable deployment required for large-scale analysis
tasks EOdal can be installed into containerized environments (Docker
containers).

2.1. Core layer

The data model of the core layer (Fig. 1 top) follows the object-
oriented programming paradigm and includes different classes. There
2

are three classes in the EOdal core layer: Bands, RasterCollections and
derived (inherited) sensor-specific classes. The Band class represents
the base class. In simple terms, a Band refers to a two-dimensional array
referenced in a geo-spatial coordinate reference system. A RasterCollec-
tion is a collection of zero to 𝑛 Band objects, which can exist in different
spatial reference systems, grid cell sizes (pixel sizes) and spatial extents.
Band objects in a collection are identified by names (e.g., ‘‘blue’’,
Fig. 1 top right) instead of numeric indices. Bands and RasterCollections
can be created from any geo-referenced raster data set understood
by Geospatial Data Abstraction Library (GDAL, e.g., GeoTiff), vector
features (e.g. Shapefile, GeoJSON), and from numerical arrays (Python
libraries, e.g. NumPy, Zarr). Sensor-specific RasterCollections include
all the functionalities and attributes of the RasterCollection class, but
are tailored to the requirements and capabilities of specific imaging
sensors such as, for example, S2, or Landsat. The inheritance-based soft-
ware design allows the introduction of further sensors and makes the
core layer extensible also with regard to upcoming future EO platforms
such as the hyperspectral Copernicus expansion mission CHIME3 and
beyond.

A further central element of the core layer is the collection of meta-
data in a spatio-temporal catalog allowing the filtering of records by
data source, time period, and geographic region of interest (ROI). EOdal
supports Spatio-Temporal Asset Catalogs (STAC), which are available
in many cloud environments that provide geo-spatial (satellite) data,
such as Microsoft Azures Planetary Computer,4 Amazon Web Services
(AWS) Earth5 and the Copernicus Data and Information Access Services
(DIAS). For local deployment, EOdal offers the possibility to store
metadata in a PostgreSQL database with the spatial PostGIS extension.

In terms of spatial data models and standards, EOdal supports area
(polygons and multi-polygons) as well as point features following the
general feature model defined in the ISO 19109 standard (ISO, 2015).
This allows point-based in-situ observations, for example from weather
stations or ground sensors, to be intersected with EO data and auxiliary
data sources such as Digital Elevation Models (see Section 3).

3 https://www.esa.int/Applications/Observing_the_Earth/Copernicus/
Going_hyperspectral_for_CHIME

4 https://planetarycomputer.microsoft.com/
5 https://aws.amazon.com/de/earth/
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Fig. 2. Result of a single Jupyter notebook run using EOdal (v0.0.1) on Microsoft Planetary Computer. S2 false-color infra-red composite of the field parcel before the heavy
rainfall events in June and July 2021 (a) and spatial heterogeneity in winter wheat green-up during spring 2022 (b–c). In addition, cumulative growing degree days (GDD) and
daily precipitation sums derived from a nearby weather station are shown (f). The extent of the flood in 2021 – evident as darker areas in (b–c) – corresponds to a depression
visible in the Digital Elevation Model (e). The flood affected plant growing conditions in spring 2022 as shown in the MSAVI time series (d) of a ‘flooded’ pixel (blue) and a
pixel that was little affected by the floods in 2021 (orange). The dashed lines in (d) correspond to the timing of (a), (b) and (c), respectively, whereas the blue rectangle in (d)
indicates the approximate timing of the flooding in 2021.
2.2. Processing layer

The processing layer (Fig. 1, lower right) provides functionalities for
EO data preparation and (pre-)processing. Data preparation is usually
necessary to enable the merging datasets from different sensors and
platforms. This includes image manipulation methods such as spatial
resampling and reprojection from one coordinate system into another
or masking operations to mask out bad quality observations or land
cover classes.

2.3. Analysis layer

The analysis layer (Fig. 1, bottom) is used for the analysis of data
from EO satellites and environmental covariates such as meteorological,
terrain, soil and land use data. It builds upon the core layer to query
and access different data sources and the processing layer to prepare the
data analysis-ready. The underlying complex data management such as
the merging of data from satellite tiles and filling of no-data values is
hidden from the user in the processing layer (see Section 2.2).

EOdal provides interfaces to widely-used open-source Python li-
braries (e.g., geopandas, numpy, xarray). This allows users to integrate
their own EO processing workflows and modules (c.f. Section 2.4)
to e.g. estimate biochemical, structural or integrated traits such as
chlorophyll, leaf area index, yield or land surface phenology (Fig. 1,
lower left).
3

2.4. Applications of EOdal

EOdal has already been used for studies in agroecological re-
search. Perich et al. (2022) used EOdal for pixel-based prediction of
crop yield using S2 time series. In Graf et al. (2022), EOdal is used to
propagate radiometric uncertainty from S2 reflectance factors to phe-
nological metrics. Moreover, EOdal drives the EO platform at the Swiss
Federal Center of Excellence for Agricultural Research, Agroscope,
underpinning its relevance within an operational and governmental
environment.6

3. Usage example: Interpreting in-field growth heterogeneity
through time with topographic and meteorological data

We illustrate here the potential of EOdal for integrated spatio-
temporal analysis over an example ROI from western Switzerland near
Lake Neuchâtel (46.98◦𝑁 , 7.07◦𝐸). All results were produced by a single
Jupyter notebook (https://doi.org/10.5281/zenodo.7278252) running
EOdal v0.0.1 on Microsoft Planetary Computer. Due to large-scale
land subsidence, the entire region – a former peat land – is subject
to increased flood risk (Egli et al., 2020). An agricultural parcel (12
ha) was affected by flooding during heavy rainfall (360 mm within
30 days) between mid-June and July 2021, causing flood damage to

6 http://www.eoa-team.net/
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the previously homogeneous green canopy. Fig. 2 shows S2 derived
false-color infra-red images of the parcel in 2021 before the flood
(reddish tones in Fig. 2a). In the spring 2022, differences in canopy
greenness of the emerging winter wheat are evident (Fig. 2b and c).
Darker areas, which indicate lower soil cover, can be discerned in
the otherwise red-colored canopy. The spatial pattern within the field
corresponds to the patterns within the DEM (Fig. 2e) and reveals that
parts with lower elevation values were more impacted by flooding than
the rest of the field. Extraction of the Modified Soil Adjusted Vegetation
Index (MSAVI, Qi et al., 1994) time series from two selected S2 pixels
(Fig. 2d) allows to evaluate the impact of the flood in 2021 on the
growth dynamic in 2022 and confirms the findings from the false-color
S2 images.

As additional usage example, the growth pattern of a field is inves-
tigated in relation to meteorological data, often used to validate and
calibrate ecophysiological growth models. In this case (Fig. 2f), the
cumulative growing degree days (in ◦ C) and cumulative daily rainfall
amount (in mm) were derived from a nearby weather station (Ins)
operated by the Swiss Federal Office of Meteorology and Climatology
(MeteoSwiss) calculated from November 1st 2021.

4. Discussion and conclusion

The usage example shown in Fig. 2 highlights how EOdal can be
used to combine different environmental covariates with vegetation
dynamics obtained from satellite time series to develop a holistic
understanding of plant–environment interactions. This simple example
shows how EOdal lowers the barriers of entry to EO analysis unlocking
potential for data-based decision-making in agroecology. In addition,
by using Docker and cloud infrastructure, the analysis can be extended
to larger spatial and temporal scales. For the future we envision an
ecosystem of user modules that build on EOdal, complement themselves
and are developed and made freely available to the EO community.

EOdal is in line with recent developments in agriculture that allow
(technically inexperienced) users to run complex analyses: Godara
et al. (2022) developed a platform called ‘‘AgriMine’’. The platform
enables spatio-temporal analysis of issues in Indian agriculture based
on help-desk calls improving the Indian agricultural extension service.
Improvements in variety testing were enabled by an online platform
in China that makes processes more efficient and lines up with re-
cent incentives in high-throughput phenotyping efforts (Pan et al.,
2022). Similarly, EOdal can contribute to increased use of EO data in
agriculture.

Although we focus on agriculture (Section 2.4), EOdal is not limited
to it. Rather, EOdal can be used in all disciplines that process EO data
and require open, reproducible data analysis workflows. Thus, we ex-
pect EOdal to trigger further open-source developments, either through
the release of additional Python packages that build on the existing
functionalities, or through its integration into existing data processing
frameworks. Ultimately, EOdal is intended to provide researchers with
an alternative to proprietary software platforms while also easing the
burden of data management for practitioners. For this reason EOdal is
particularly well suitable for educational activities in the field of EO.
This supports the transition to reproducible science, benefiting the EO
community as a whole.
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