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A B S T R A C T   

Mapping and predicting crop yield on a large scale is increasingly important for use cases such as policy-making, 
risk insurance and precision agriculture applications at farm and field scale. The higher spatial resolution of 
Sentinel-2 compared to Landsat allows for satellite-based crop yield mapping even in relatively small scaled 
agricultural settings such as found in Switzerland and other central European regions. In this study, five years 
(2017–2021) of cereal crop yield data from a combine harvester were used to model crop yield within-field, on a 
spatial scale corresponding to the Sentinel-2 pixel level. Three established methods from literature using (i-ii) 
spectral indices and (iii) raw satellite reflectance as well as (iv) a recurrent neural network (RNN) were chosen 
for analysis. Although the RNN approach did not outperform the other methods, it was more efficient because of 
the comparatively simple end-to-end training of the model, resulting in much less time spent on data cleaning 
and feature extraction needed for spectral index time series analysis. The RNN was also able to discriminate 
cloudy data by itself, reaching similar performance levels as if using pre-processed, cloud-free data. Modelling 
was performed on individual years, all years combined and on unseen years using leave-one-year-out cross- 
validation. The models performed best when using data from all years (R2 up to 0.88, relative RMSE up to 10.49 
%) and showed poor performance when predicting on unseen data years, especially for years with previously 
unknown weather patterns. This highlights the importance of yearly model calibration and the need for 
continuous data collection enabling long time series for future crop yield models.   

1. Introduction 

Prediction, modelling and mapping of crop yields based on remote 
sensing holds great potential for a multitude of applications and stake-
holders. For farmers, policymakers, crop insurance and non- 
governmental organisations, it is of great interest to anticipate crop 
yield (Weiss et al., 2020). The advent of readily available satellite data 
has made crop yield mapping and prediction feasible on large scales, 
either globally (Fritz et al., 2019; Atzberger, 2013) or nation-wide as 
was shown for the United States (Lobell et al., 2015) and Australia 
(Kamir et al., 2020). In most cases, the Landsat family of satellites has 
been used to achieve these tasks (Deines et al., 2021; Kamir et al., 2020; 
Lopresti et al., 2015; Battude et al., 2016; Jain et al., 2016; Beck et al., 

2006; Kang and Özdogan, 2019), however, the Sentinel-2 (S2) satellites 
see increasing use (Hunt et al., 2019; Skakun et al., 2019). Their higher 
spatial resolution should enable the mapping of relatively small-scaled 
agricultural systems such as found in Switzerland, southern Germany 
and other central European regions. With an increasing interest in a 
more diverse agriculture and small-scale applications of precision agri-
culture, such data is gaining in importance. Pixel-based remote sensing 
is better suited for precision agriculture (i.e., the farmer) as opposed to 
the field- and regional level which is more relevant for policymaking. 
Crop insurances are interested in both field- and regional-scale settings 
(Weiss et al., 2020). Most current satellite-based crop yield mapping 
systems involve the use of a spectral index (SI) time series such as the 
Normalised Difference Vegetation Index (NDVI) (Kamir et al., 2020; 
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Beck et al., 2006; Battude et al., 2016), the Green Chlorophyll Vegeta-
tion Index (GCVI) (Deines et al., 2021; Lobell et al., 2015) or the 
Enhanced Vegetation Index (EVI) (Kang and Özdogan, 2019). An 
alternative approach to the use of SIs, is the use of reflectance values 
recorded by the satellite sensors directly (Hunt et al., 2019). 

Time series of optical satellites such as Landsat and S2 are inherently 
challenged by the presence of clouds. Various strategies to remove 
cloud-induced artifacts from image time series have been employed, 
often involving time series interpolation methods or the use of com-
posite images. Composite satellite images integrating information from 
multiple satellite scenes offer cloud-free time series data (Kamir et al., 
2020; Stumpf et al., 2020) but are not always feasible in the context of 
monitoring rapidly growing agricultural crops as they integrate sensor 
data over a time span. For time series analysis on field crops using sat-
ellite data, interpolation of missing values is therefore more common. 
Popular interpolation techniques are the fitting of smoothing functions 
such as ‘double logistic (Battude et al., 2016; Beck et al., 2006; Kamir 
et al., 2020),’ ‘Fourier series’ (Deines et al., 2021), ‘4253H twice 
smoother’ (Kang and Özdogan, 2019) and splines (Cai et al., 2017; 
Hermance et al., 2007). Such interpolation techniques may, however, 
not always be applicable. In central Europe, clouds occur very frequently 
in particular during the winter months, leading to strongly reduced data 
availability from October to March. Coupled with an orbit design having 
higher revisit times in high-latitude regions than near the Equator 
(Claverie et al., 2018), optical satellite data availability is not always 
sufficient to extract a long enough time series for the application of a 
smoothing function. Roy and Yan (2020) suggest that up to 15–20 
temporal observations are needed, whereas Deines et al. (2021) estimate 
eight observations to be sufficient. After smoothing the time series 
(either SI or direct reflectance), features are then extracted for a machine 
learning (ML) regression algorithm. Many different ML algorithms have 
been used for this, with Random forest regression (RFR) being one of the 
more popular methods (Kamir et al., 2020; Hunt et al., 2019). In their 
paper, Kamir et al. (2020) showed that approximately half of the tested 
ML algorithms had very similar performance to one another. Especially 
when there’s much data to train on, the performance of even simple 
reference ML models reaches that of complex crop models (Deines et al., 
2021). With increasing data availability and therefore size, data 
‘intensive’ methods such as neural networks (NNs) are becoming more 
applicable. Especially Recurrent Neural Networks (RNN) have estab-
lished themselves as powerful tools for modelling sequential data. They 
have led to significant progress for a variety of applications, notably 
language processing and speech recognition (Sutskever et al., 2014; 
Graves et al., 2013; Vinyals and Le, 2015). Recently, they also achieved 
state-of-the-art performance for remote sensing time series tasks such as 
crop classification (Rußwurm and Körner, 2017; Rußwurm and Körner, 
2018; Metzger et al., 2021; Turkoglu et al., 2021a,b). They have, how-
ever, only sporadically been applied to the estimation of crop yield 
models, as the community has so far largely focused on SI methods. In 
remote sensing, ground reference data (often referred to as ground 
‘truth’ data) availability is usually low (Weiss et al., 2020). We therefore 
release the data set and the code along with the paper to increase data 
availability for the community and help foster future method develop-
ment in the field of modelling crop yield. 

In this study, we aim to model and predict the crop yield of small 
grain cereals, including winter wheat, on the S2 pixel level using high- 
resolution S2 time series data. We focus on the comparison of 
different models for their performance and applicability to the task in a 
relatively small-scaled agricultural setting. Three already published 
models were selected along with a fourth model, which is an adaption of 
an also published RNN model. The selected models are: (i-ii) two models 
based on SIs, (iii) one model based on S2 reflectance values and iv) the 
adapted RNN model. We compare the models’ performance across three 
scenarios: (i) on individual data years, (ii) on all data years combined 
and iii) across data years to assess the capability of the models to esti-
mate crop yield in general (scenarios i-ii), as well as to predict it on 

unseen years (scenario iii). 

2. Data 

2.1. Yield data 

Combine harvester data was obtained from a large farm in western 
Switzerland (46◦59′15.157′′N7◦03′31.814′′E, WGS84) with predomi-
nant soil type Gleysol. It contains yield data from different field crops for 
the years 2017–2021. For this study, the data was filtered for the cereal 
crops winter wheat, winter barley and triticale resulting in a cereals (CR) 
data set with 54 fields and a winter wheat (WW) sub set with 19 fields. 
These winter cereals are all managed very similarly in the Swiss agri-
culture, as the management practices adhere to the Swiss ‘Proof of 
Ecological Performance’ (Bundesamt für Landwirtschaft, 2022), which 
prescribes management details to be eligible to receive Swiss agricul-
tural direct payments. All cereals were sown in autumn between the end 
of September and beginning of November of the preceding year; the 
harvest was between mid July and end of August and they were rainfed 
and fertilised three times. The average field size was 12.78 ha in the CR 
and 13.11 ha in the WW data set. The mean grain yield per field of the 
CR data set ranged from 4.88 t/ha in 2021 to 8.65 t/ha in 2020 (Table 1 
and appendix table A.1 for more details). Mean grain yield for the WW 
data set ranged from 4.52 t/ha in 2021 to 8.04 t/ha in 2020. 2021 is 
considered an exceptional year for farming in Switzerland with precip-
itation largely above normal and many hail and frost events in the early 
cropping season leading to yield losses. 

The data contains individual, georeferenced measurement points of 
the combine harvester, taken every two seconds at an average speed of 
4 km/h, resulting in a data point every 2.3 m. The topography of the 
study area is negligible, with the whole area exhibiting less than 2 m 
height difference across all fields. The raw combine harvester data 
points were pre-processed as follows (see Fig. 1): In the 1st step, yield 
values below 0.1 t were filtered out. Then, outliers exceeding three 
standard deviations (e.g. 3 σ) from the global median were filtered out. 
The swath width of the combine harvester was 7.2 m, therefore, values 
below 7 m were omitted to avoid overlapping paths. To remove artifacts 
caused by speed, values farther than 3 σ from the median speed were 
filtered out. The last applied step was a ‘rolling window’ filter, where the 
three nearest neighbours of each yield point were assessed and values 
farther than 3 σ from the local median were omitted. The filtered yield 
data was buffered inwards by 20 m from the field border and then ras-
terised to a 10 m raster using the ‘geocube’ package in python with 
linear interpolation. This resulted in a total of 54’098 pixels with yield 
information for the CR data set and 20,170 pixels with yield information 
for the WW subset (see also Table 1 for per-year pixel numbers). From 
this rasterised yield data, a CSV file containing each pixels’ coordinates 
and yield (in t/ha) was extracted for subsequent modelling (see Fig. 1 for 
a schematic overview of the data pre-processing). Comparison against 
the farmers’ harvested yields for each field (e.g., the field calendar) 
showed a systematic over-estimation of yield in the combine harvester 
data (Supplementary Fig. A.8) that was corrected for by a scaling factor 
of 0.87. The yield data published along with this study corresponds to 
the outcome of the pre-processing described in this section. 

Table 1 
Mean yield over all fields in tonnes per hectare (t/ha) and the number of yield 
pixels per year for the cereals (CR) and the winter wheat (WW) data set. The WW 
data set is a sub set of the CR data set.  

year CR yield [t/ha] WW yield [t/ha] CR px WW px 

2017  7.35  5.53  10,536  1638 
2018  6.87  6.29  13,108  6240 
2019  7.36  7.08  13,696  4340 
2020  8.65  8.04  12,727  4969 
2021  4.88  4.52  4031  2983 
total  7.02  6.29  54,098  20,170  
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2.2. Sentinel-2 data 

All available S2 scenes containing the study region from January 
2017 to December 2021 were downloaded from the Data and Informa-
tion Access Service (DIAS) platform ‘Creodias’ and pre-processed as 
shown in Fig. 1. S2 scenes prior to March 2018 were only available in the 
top-of-atmosphere L1C format and were downloaded as such. Later 
scenes were downloaded in the bottom-of-atmosphere L2A format. The 
L1C scenes were processed to L2A product level using the ‘Sen2Cor’ 
processor version 2.9 provided by ESA. The S2 bands at 60 m resolution 
(bands 1, 9 and 10) were omitted from the analysis, as they lie within 
spectral regions affected by atmospheric disturbances caused by aerosols 
and water vapour (Spoto et al., 2012). For each S2 scene, the 20 m bands 
were resampled to 10 m using ‘cubic’ interpolation settings and all 
bands were written to a 10-band stacked TIFF file. The Scene Classifi-
cation Layer (SCL) provided by ESA is a classification of each pixel in a 
S2 scene and is provided in 20 m resolution. It was resampled by 
dividing each 20 m pixel into four 10 m pixels, effectively using a 
‘nearest neighbour interpolation’. The resampled SCL layer was also 
added to the bandstack. From these bandstacks, data was extracted 
using the SCL layer to filter out clouds, cloud shadows, dark areas and 
defective pixels. Only pixels from the SCL classes 4 (vegetation), 5 

(non-vegetated) and 6 (water) were kept. This resulted in a CSV file 
containing – for each pixel – the S2 reflectance data for each cloud-free 
S2 scene (e.g., date) in the growth period from sowing to harvest of the 
selected field. Clouds are a common occurrence in the data set, as the 
study region lies between three lakes. Figure 2 illustrates how the 
fraction of cloud-free pixels of the study region is low for the autumn and 
winter months October to February (0–120 Days After Sowing (DAS)) 
and only stabilises late in the growing season in April (around 175 DAS). 
After S2 data pre-processing, data from 134 S2 scenes were kept for 
analysis. Appendix table A.2 gives an overview of the available S2 scenes 
for each field used in this study. The S2 data processing routines were 
performed using an early version of the open source ‘Earth Observation 
Data Analysis Library’ - ‘EOdal’ (https://doi.org/10.5281/zenodo. 
7278252) available under GNU General Public version 3 license (Graf 
et al., 2022). 

2.3. Meteorological data 

Daily temperature and rainfall data was obtained from the Swiss 
Federal Office of Meteorology and Climatology ‘MeteoSwiss’. Both 
weather variables are available in 1x1 km gridded tiles in the Swiss 
national coordinate system CH1903/LV03 (EPSG:21781). For each field 

Fig. 1. Schematic of the data pre-processing performed on the different data sets.  
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polygon, the centroid was calculated and data from the nearest weather 
data coordinate was assigned as this field polygons’ weather data. The 
daily rainfall data was summed up, resulting in cumulative rainfall for 
each S2 scene. 

3. Methods 

For this study, we compared four models for their advantages and 
potential disadvantages to learn about optimal applicability for crop 
yield modelling and prediction on the S2 pixel level. The focus was to 
assess method robustness, accuracy and data processing needs. The 
methods were chosen from literature based on their heterogeneity, e.g. 
as to include diverse time series analysis techniques, variables (e.g. using 
SI’s vs. spectral bands directly) and ML algorithms. The two methods 
based on SIs, the ‘partial integral at peak GCVI’ (Section 3.1) and 
‘smoothed NDVI’ (Section 3.3) were chosen due to the prevalance of SI 
methods in the remote sensing literature (see introduction). The ‘four S2 
scenes’ method (Section 3.2) was chosen as it is a robust, yet high- 
performing method using all available spectral bands of S2 as input 
variables. The used RNN (Section 3.4) was chosen as there are very few 
examples of pixel-based crop yield modelling using RNNs. Table 2 gives 
a brief overview of the methods, while Fig. 3 gives a graphical illus-
tration thereof. 

3.1. Partial integral at peak GCVI 

The first implemented method originates from Deines et al. (2021), 
which use the partial integral of the smoothed GCVI time series curve 
between the peak GCVI and thirty days after the peak in addition to the 
weather variables rainfall and temperature. This method was chosen as 

it is a simple, easy to understand method which, in theory, allows for 
in-season prediction as it only takes a small window (Deines et al., 2021) 
call it the ‘key crop growth window’) of the S2 time series into account. 
In their paper, Deines et al. (2021) primarily describe their Scalable 
Crop Yield Mapper (SCYM) approach, but also benchmark against a 
RFR. The latter was taken as a method for this study. The GCVI time 
series was calculated from the pre-processed S2 data (Fig. 1) and was 
smoothed using a 2nd order Fourier series smoothing (FSS) as follows: 

f (t) = c +
∑n=2

k=1
akcos(2πωkt) + bksin(2πωkt) (1)  

where f(t) is the fitted SI value at time point t, ω is the frequency, ak and 
bk are the cosine and sine coefficients and c the intercept coefficient 
calculated as the mean SI value over the whole SI time series. The unit of 
each time point t was given in days after sowing (DAS). From this, the 
peak GCVI was calculated and the partial integral between the DAS of 
the peak GCVI and + 30 days was defined and the area under the curve 
(AUC) thereof was calculated as described in Deines et al. (2021). In 
addition to the AUC, the maximum temperature in June (peak growth 
for cereals) and the total April to June rainfall were taken as variables 
for the RFR model. The hyperparameters of the RFR model were chosen 
based on the values reported in Deines et al. (2021) as follows: A RF tree 
size of 200, 2 variables per split, a minimum leaf size of 2, and a bag 
fraction of 0.63. 

Fig. 2. Fraction of cloud-free pixels of the study region from every Sentinel-2 
scene of all five data years. 

Table 2 
Overview table of the methods used in this study and their respective variables.  

Method Smoothing Time series length Selected variables Weather variables Total 
variables 

Regression 
algorithm 

References 

Partial integral 
at peak 

Fourier 
series 

Integral of 30 days 
after peak GCVI 

Area under the GCVI Curve (AUC) Max June temp. + tot. 
Apr. to June rainfall  

3 RFR Deines et al., 2021 

Four S2 scenes – 4 selected S2 scenes Raw S2 reflectance of 10 bands Monthly avg. Temp. 
+ total monthly rainfall  

8 RFR Hunt et al., 2019 

Smoothed 
NDVI 

B-Splines 8 selected NDVI 
observations 

Smoothed NDVI values + extracted 
features (e.g. slope, min/max 
NDVI, AUC, etc.) 

Avg. daily temp. 
+ cumulative rainfall  

31 RFR Kamir et al., 2020; 
Battude et al., 2016 

Recurrent 
Neural 
Network 

– Full available S2 
time series 

Raw S2 reflectance of 10 bands Avg. daily temp. 
+ cumulative rainfall  

12 RNN Turkoglu et al., 
2021a,b  

Fig. 3. Spectral index curve of an exemplary pixel, illustrating how the selected 
methods of this study each use more or less of the available Sentinel-2 (S2) time 
series. The ‘integral at peak’ method uses the least information from the time 
series (yellow area). The ‘smoothed NDVI’ method uses eight equidistantly 
sampled values along the NDVI curve (green triangles). The ‘Four S2 scenes’ as 
well as the Recurrent Neural Network (RNN) do not use the spectral index, but 
rather use the ten available S2 bands. The former uses information from four 
time points (orange crosses), whereas the latter uses the full time series (blue 
dots). For a detailed description see section 3. 
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3.2. Four S2 scenes 

The method proposed by Hunt et al. (2019) takes four arbitrarily 
selected, cloud-free S2 scenes across the growth period of winter wheat, 
extracts the reflectance of the ten S2 bands (Section 2.2) and uses it 
together with monthly aggregates of temperature and rainfall in a RFR. 
This method was chosen as it is a straight-forward method using all 
(except the 60 m) bands of S2, has shown good performance and is easy 
to implement. Furthermore, Hunt et al. (2019) have been using very 
similar point-based yield data from combine harvesters in their study, 
which makes their method attractive for evaluation on this study’s data 
set. The original selection of S2 scenes (December, April, June and July) 
performed by Hunt et al. (2019) could not be exactly matched because 
no cloud-free S2 scenes were available at these dates for the study re-
gion. Instead, four S2 scenes were selected for the whole AOI according 
to the availability of fully cloud-free S2 scenes. The 10 available S2 
bands (Section 2.2) were kept as features for the RFR model. In addition, 
the monthly average of the daily mean temperature and the total 
monthly precipitation were calculated for each of the four selected S2 
scenes. RFR model parameters were set in accordance with Hunt et al. 
(2019) to: RF tree size of 500, 1/3 of variables used to split the data at 
each node and 10-fold cross-validation. 

3.3. Smoothed NDVI 

This method is a synthesis of methods found in literature where 
features from a smoothed NDVI time series were extracted for a ML al-
gorithm (Kamir et al., 2020; Battude et al., 2016; Beck et al., 2006). It 
was chosen to be representative of a NDVI-based model, which is 
arguably one of the most widespread SIs used for crop and plant 
phenology models in the remote sensing community. Here, the NDVI 
time series of the cloud-free S2 observations was smoothed using 
B-Splines and a RFR was selected as the ML algorithm. In addition to the 
cloud filtration using the SCL (Fig. 1), S2 scenes on which an individual 
field had less than 90% cloud free pixels were omitted. This resulted in 
more dense per-pixel NDVI time series, which still included visible 
outliers in the form of clouds. Therefore, an additional cloud filter 
adapted from the MAJA cloud detection algorithm (Hagolle et al., 2017; 
Bolton et al., 2020) was used, which masked pixels as cloudy if: 

(ρblue(D) − ρblue(Dprev)) > 0.03 ∗ (1 + (D − Dprev)∕30) (2)  

where ρblue(D) is the reflectance of the blue band on date D, Dprev is the 
date previous to D and the difference between D and Dprev is given in 
days. Since a sudden variation in ρblue can also occur due to agricultural 
management practices or natural variations such as fires or snow 
(Hagolle et al., 2017), a 2nd check was implemented. Additional to 
equation (2), a pixel was not masked if the following condition was 
fulfilled: 

(ρred(D) − ρred(Dprev)) > 1.5 ∗ (ρblue(D) − ρblue(Dprev)) (3)  

where ρred is the reflectance of the red band on date D and ρred()Dprev the 
reflectance of the red band on the date (Dprev, the date of the S2 obser-
vation previous to D. The resulting, cloud-free NDVI time series were 
smoothed using B-Splines with four knots and a polynomial degree of 
three. 

For this model, Growing degree days (GDDs), a measure for tem-
perature normalised plant growth, were used as the value of the time 
axis. GDDs are agronomically more relevant than days after sowing 
(DAS), as they include information on the phenological growth stage of 
the plant. GDDs were calculated using daily maximum and minimum 
temperatures according to McMaster and Wilhelm (1997) as follows: 

GDD =
Tmax + Tmin

2
− Tbase (4)  

where if (Tmax + Tmin)∕2 < Tbase, then GDD = Tbase. The base 

temperature Tbase denotes the temperature below which the crop does 
not grow and was set to 0∘C in this study (McMaster and Wilhelm, 1997). 
Tmax and Tmin are the daily maximum and minimum temperatures. GDDs 
were calculated for each day and summed up to obtain a cumulative 
GDD number for each S2 scene. 

The following features were extracted from the smoothed NDVI time 
series: max & min NDVI, timepoint of max & min NDVI, area under the 
(NDVI) curve (AUC), min & max GDD. In addition to these features, 
eight NDVI observations as well as the cumulative rainfall and the 
average daily temperature at these NDVI observations were taken as 
features, totalling in 31 variables/features. These features were input 
into a Random forest regression (RFR) model. Opposed to the previous 
methods, where the ML models’ hyperparameters were taken from their 
respective source papers, the RF parameters of this method were 
selected based on cross-validation: The RF tree size was 500, 16 vari-
ables were used for each split and the bag fraction was 0.632. 

3.4. Recurrent neural network 

An RNN was used as the fourth method in this study because they 
belong to the family of neural network approaches for time-series 
analysis, which is receiving increasing attention for crop analysis 
using remote sensing data (Rußwurm and Körner, 2018; Turkoglu et al., 
2021a). The RNN architecture, originally developed for crop type clas-
sification in (Turkoglu et al., 2021a), was adapted to the regression task 
of yield modelling. A 2-layers Gated Recurrent Unit (GRU) architecture 
(Cho et al., 2014; Chung et al., 2014) with 256 hidden units was used 
with dropout rate set to 0.5, and learned with the ‘Adam’ optimiser 
(Adam et al., 2010) with learning rate set to 0.001. Training was done 
for 60 epochs with a batch size of 8, taking the equivalent of 15 min per 
GPU (NVIDIA RTX 2080Ti) and data year. 

Contrary to the other methods, which use sub sets differing in length 
from the available time series (Fig. 3), the RNN was run with the full 
available time series for each field pixel as input data. E.g. all ten S2 
bands as well as the cumulative rainfall and the average daily temper-
ature at each available S2 scene (Section 2.2). In addition, the RNN was 
run with two other input data sets: i) with the raw, cloudy data (i.e., not 
filtered using the SCL layer of ESA) to assess the ability of the network to 
discriminate clouds from true S2 scene content on the ground. ii) with 
the same data used in the four S2 scenes method (Section 3.2), i.e., 
cloud-free but reduced time series length to enable better model 
comparison. 

3.5. Model scenarios and implementation details 

All models were run on three different scenarios. In the 1st scenario 
(‘per-year’), each model was trained on an individual data year and 
evaluated on the test set from the same year. For each data year and 
individual field, 80 % of the yield pixels were taken as training, and 20 % 
as the test set. In the 2nd scenario (‘all-year’), the training and test set 
data from all five years was aggregated and then used for modelling. The 
training and test sets split was kept the same for all methods for these 
two scenarios. The 3rd scenario (‘cross-year’) consisted of a leave-one- 
out cross-validation: Each of the five years was held out once, while 
the models were trained on the four remaining years of data. The 
holdout year was then predicted on to assess model performance. The 
performance metrics chosen for model evaluation were the coefficient of 
determination (R2) and the Root Mean Square Error (RMSE): 

R2 = 1 −
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − y)2 (5)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(6)  

where y is the average observed yield of all samples. Additionally, the 

G. Perich et al.                                                                                                                                                                                                                                  



Field Crops Research 292 (2023) 108824

6

relative RMSE (rRMSE, in %) was calculated from the yearly average 
cereal yields (Table 1) as follows: 

rRMSE =
RMSE

y
∗ 100 (7)  

4. Results 

4.1. Per-year performance 

The performance of the per-year models can be seen in Table 3. For 
the CR data set, the integral at peak method showed the least perfor-
mance. The other methods showed similar per-year performance, with 
R2 values being within 0.10 and rRMSE values being within ≈ 5 % of 
each other. The four S2 scenes method showed the best performance by 
a small margin over both the RNN and the smoothed NDVI method. The 
models exhibited the worst performance on the year 2017 and the best 
for the year 2020. For the smaller WW sub set, the integral at peak 
method also showed the least performance with the other methods 
exhibiting similar performance. The four S2 scenes method again 
showed the best performance on the WW sub set, albeit by a small 
margin. The RNN exhibited slightly better performance than the 
smoothed NDVI method, with the exception on the year 2017. The best 
model predictions were on the year 2021. Performance on the WW sub 
set was, like in the CR data set, worst for the year 2017. Compared to the 
other three methods, the integral at peak method did not exhibit a 
performance loss for the year 2017 when going from the CR to the WW 
data set. Generally, the models exhibited slightly lower coefficients of 
variation (R2 values) on the smaller WW sub set than on the CR data set. 
The rRMSE values were generally similar between the WW and CR data 
sets. 

4.2. Neural network with cloudy data 

The results of running the RNN on the original pre-processed data 
(Section 2.2) as well as the two additional data sets (Section 3.4) are 
shown in Table 4. Overall, the RNN performs similar across all three 
input S2 time series. The cloudy time series exhibited the best 

performance among the three tested time series by a few percentage 
points for both R2 and rRMSE. This held true for both the CR and the WW 
data set, with the performance increase of using the cloudy time series 
data being larger for the WW sub set. 

4.3. All-year performance 

The model performance using training and test data from all five 
years is shown in Table 5. For the CR data set, the integral at peak 
method showed the lowest performance. The other three methods 
showed similar R2 values ranging between 0.82 and 0.86. The four S2 
scenes and the RNN showed the lowest RMSE values at 0.76 t/ha 
(rRMSE = 10.82 %) and 0.79 t/ha (rRMSE = 11.25 %), respectively. All 
methods exhibited better model performance on the WW sub set, which 
was also observed in the tighter grouping of the scatterplots (Fig. 4). The 
largest increase in model performance was observed in the integral at 
peak method. The other methods performed slightly better on the WW 
sub set than on the CR data set with R2 values again being very com-
parable (0.84–0.88). RMSE values were all below 1 t/ha with the four S2 
scenes method exhibiting the lowest RMSE at 0.66 t/ha (rRMSE =
10.49%). 

Figure 5 shows an exemplary yield map for a winter barley field 
using the predictions of the all-year models and the corresponding 
prediction errors as the predicted yield minus the true yield. All models 
showed no clear pattern in the distribution of prediction errors. This 
seemingly random distribution of errors (both from yield over- and 
underestimations) indicates, that there is no systematic, spatial error 

Table 3 
Performance metrics of the per-year models for both the cereals (CR) and the 
winter wheat (WW) data set. The per-year models were trained and evaluated on 
each data year individually. The best score for each metric is bold, the 2nd best 
underlined and the 3rd best in italics.    

R2 RMSE [t/ha] rRMSE [%]  

Data 
set 

CR WW CR WW CR WW 

Method Year       

Integral at peak  2017  0.34  0.33  1.60  0.69  21.77  12.48   
2018  0.39  0.39  1.19  1.15  17.32  18.28   
2019  0.42  0.20  1.36  1.17  18.48  16.53   
2020  0.36  0.36  1.34  1.19  15.49  14.80   
2021  0.71  0.77  1.18  1.04  24.18  23.01 

Four S2 scenes  2017  0.80  0.55  0.89  0.56  12.11  10.13   
2018  0.83  0.80  0.64  0.66  9.32  10.49   
2019  0.79  0.73  0.81  0.67  11.01  9.46   
2020  0.85  0.82  0.65  0.63  7.51  7.84   
2021  0.87  0.89  0.79  0.73  16.19  16.15 

Smoothed NDVI  2017  0.73  0.50  1.03  0.59  13.95  10.73   
2018  0.77  0.74  0.72  0.75  10.55  11.98   
2019  0.73  0.63  0.93  0.80  12.61  11.25   
2020  0.82  0.77  0.71  0.72  8.17  8.93   
2021  0.82  0.86  0.92  0.80  18.82  17.76 

Recurrent Neural 
Network  

2017  0.77  0.42  0.95  0.64  12.93  11.57   

2018  0.81  0.77  0.67  0.71  9.75  11.29   
2019  0.77  0.67  0.85  0.75  11.55  10.59   
2020  0.86  0.75  0.63  0.75  7.28  9.33   
2021  0.83  0.87  0.90  0.79  18.44  17.48  

Table 4 
Per-year performance of the Recurrent Neural Network on different sets of 
Sentinel-2 (S2) input data. The ‘regular time series’ contains the S2 data which 
was pre-processed as described in Section 2.2. The ‘4 cloud-free scenes’ corre-
spond to the same data as was used in the ‘four S2 scenes’ method (Section 3.2). 
The ‘cloudy time series’ contains all S2 scenes over the study region, regardless 
of the scene classification layer (SCL) cloud mask. The best score for each metric 
is bold, the 2nd best underlined and the 3rd best in italics.    

R2 RMSE [t/ha] rRMSE [%]  

Data 
set 

CR WW CR WW CR WW 

Input data Year       

regular time 
series  

2017  0.77  0.42  0.95  0.64  12.93  11.57   

2018  0.81  0.77  0.67  0.71  9.75  11.29   
2019  0.77  0.67  0.85  0.75  11.55  10.59   
2020  0.86  0.75  0.63  0.75  7.28  9.33   
2021  0.83  0.87  0.90  0.79  18.44  17.48 

4 cloud-free 
scenes  

2017  0.75  0.41  0.98  0.65  13.33  11.75   

2018  0.77  0.75  0.73  0.74  10.63  11.76   
2019  0.74  0.65  0.92  0.77  12.50  10.88   
2020  0.82  0.75  0.70  0.74  8.09  9.20   
2021  0.81  0.86  0.96  0.83  19.67  18.36 

cloudy time series  2017  0.79  0.52  0.91  0.58  12.38  10.49   
2018  0.82  0.80  0.66  0.67  9.61  10.65   
2019  0.78  0.70  0.84  0.72  11.41  10.17   
2020  0.85  0.78  0.64  0.70  7.40  8.71   
2021  0.83  0.87  0.91  0.77  18.65  17.04  

Table 5 
Model prediction results using training and test set data from all five years 
combined (e.g. ‘all-year’ scenario).   

R2 RMSE [t/ha] rRMSE [%] 

Data set CR WW CR WW CR WW 
Method       

Integral at peak  0.55  0.65  1.35  1.12  19.23  17.80 
Four S2 scenes  0.86  0.88  0.76  0.66  10.82  10.49 
Smoothed NDVI  0.82  0.85  0.86  0.75  12.25  11.92 
Recurrent Neural Network  0.85  0.86  0.79  0.70  11.25  11.13  
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present in these models. The predicted yield map of the integral at peak 
method exhibited the most jagged image, owing to this models’ 
comparatively lower performance (Fig. 6). The yield map obtained from 
the RNN exhibited the most homogeneous map out of all methods 

(Fig. 5). 

Fig. 4. Scatterplot of the relationship between the observed and predicted yields of the full cereal (top) and the winter wheat (bottom) data sets. Predictions were 
obtained from the all-year scenario. The dashed line has slope one. Detailed model fit metrics are given in Table 5. 

Fig. 5. Yield map of field ID 36 (winter barley) for the year 2020 showing the predicted yield and the prediction error as the predicted yield minus true yield. The 
predictions were obtained from the all-year scenario. Coordinates are given in metres (EPSG:32632). 
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4.4. Cross-year performance 

The models trained on four data years were not able to correctly 
predict crop yield of the unseen fifth data year. Negative R2 values were 
obtained for all models for the WW sub set and for most of the CR data 
set (Appendix table A.3). Only the four S2 scenes and the RNN methods 
showed positive, but low R2 values (ranging from 0.17 to 0.42) for the 
holdout years 2017–2019 using the CR data set. For these years, these 

models also exhibit the best-in-class rRMSE values ranging from 16.74 % 
to 23.67 % for the four S2 scenes method and from 20.38 % to 24.35 % 
for the RNN. The used formula for R2 (eq. (5)) can only be negative, if 
the numerator is larger than the denominator, which is the case if the 
residuals ŷi are farther away from the mean of the predicted data y. This 
prevalence of negative R2 values thus indicates, that the models’ pre-
dictions were far from the mean of the test data (e.g., the unseen data 
year). 

Fig. 6. Scatterplot of the relationship between the observed and predicted yields of field ID 36 for all four methods. The predictions were obtained from the all-year 
scenario. The dashed line has slope one. 

Fig. 7. Yield map of the cereal fields from study region for the year 2019 obtained from the prediction of the recurrent neural network trained on data from the all- 
year scenario. Background maps by Google (‘Satellite’ and ‘Terrain’ layers). 
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5. Discussion 

The results show that precise yield modelling - and to a lesser degree 
also prediction - is possible in a relatively small-scaled agricultural 
setting using high-resolution S2 imagery (Fig. 7). This shows that 
satellite-based approaches become usable on smaller scales, and not just 
on regional scales, bringing the technology closer to producers. This 
enables tools to allow farmers to better assess within-field yield poten-
tials and make informed management decisions (e.g., fertiliser input, 
pest control, etc.) more efficient, increasing the sustainability (Finger 
et al., 2019; Walter et al., 2017) and reducing the risk for their enter-
prises (Kantanantha et al., 2010). Policymakers can use yield maps to 
asses yield gaps (Lobell, 2013) and to increase reaction time related to 
food security (Kogan et al., 2019). Also, yield maps enable data-based 
crop insurance products (Kogan, 2019) and agricultural commodity 
trading (Filippi et al., 2019), while making the latter less prone to price 
volatility (Fritz et al., 2019). 

5.1. Data set 

The range of data used in published studies varies greatly, but usu-
ally includes a few thousand pixels: Kamir et al. (2020) used 3011 yield 
pixels (at 250 m resolution of MODIS), Hunt et al. (2019) used yield data 
from 8794 pixels at 10 m S2 resolution, whereas Deines et al. (2021) 
obtained a massive data set of over one million field-level yield maps at 
5 m resolution (resampled to 30 m resolution of Landsat) through a 
collaboration with a large Ag-tech company. The data set used in this 
study is therefore medium-to-large, depending if only one year of data 
(e.g., year 2021 had 4031 pixels, year 2019 had 13,696) is used or all 
years combined (54,098 pixels). The data amounts were sufficient for 
modelling as could be seen in model performance of the per-year and the 
all-year scenarios (Tables 3 and 5). The model performance did, how-
ever, drop in the years with little yield pixels, especially for the WW sub 
set (Table 1). The available data set is unique for Switzerland, as 
combine harvester data is hard to obtain due to the sensible nature of 
this data. 

The observed cereal yields in the data set are representative of the 
Swiss agriculture, where average cereal yields are between 6 and 7 t/ha, 
depending on the quality level (Bundesamt für Landwirtschaft, 2021). 
Combine harvester yields are eventually slightly overestimated, as 
combine harvesters often report slightly lower yield values at the field 
borders compared to the field centre (Khosla and Flynn, 2008) and these 
regions were omitted due to the buffer of 20 m that was deducted when 
rasterising the yield data (Section 2.1). This effect was also observed in 
the data set when comparing the combine yield data with the per-field 
yield data reported by the farmer (see appendix figure A.1) and had to 
be corrected for in this study. This highlights the need to calibrate 
combine harvester data (Kharel et al., 2019) but also offers a simple 
calibration procedure if field-scale yield data is available. 

While the study region is a typical agricultural cropping area of 
western Switzerland, it might differ from other regions due to local 
factors such as the soil composition and the climate. For broad appli-
cation of remote estimation of crop yield, validation studies in other 
regions are therefore needed for a country-wide yield prediction. 

5.2. Modelling crop yield 

The integral at peak method showed overall lower performance than 
the other methods used in this study. This is not surprising, as it only 
uses three variables compared to the other methods, which use up to 31 
variables (smoothed NDVI, Section 3.3). It also uses a very limited 
‘window’ of the available time series (30 days), which makes it unable to 
detect sharp changes in either the early or late growing season. Never-
theless, We obtained slightly better performance in this study as in the 
original work of Deines et al. (2021), who report 0.40 R2 for their ML 
baseline which is run on the equivalent of the all-year scenario in this 

study (Section 3.1). Their RMSE value of ca. 2.45 t/ha is not directly 
comparable, as it is reported for corn and not cereals. Using the average 
corn yield of the USA (for 2018: 12.8 t/ha, USDA NASS data), we 
calculate a rRMSE of 19.14 % which is comparable to our model output 
of the CR data set for both the per-year (Table 3) and the all-year sce-
narios (Table 5). Our crop-specific WW model showed lower rRMSE 
values, but - especially for the per-year scenario – lower R2 values. For 
the all-year scenario, our WW model exhibited better performance (R2 

= 0.65, rRMSE = 17.8 %). 
Hunt et al. (2019) obtained good model performance (R2 = 0.91, 

RMSE = 0.61 t/ha, rRMSE ≈ 6.1 %) for pixel-based yield modelling of 
winter wheat, which our implementation of the method was not able to 
reproduce in the per-year scenario (Table 3). In the all-year scenario, our 
four S2 scenes method showed similar R2 (0.88) and RMSE (0.66 t/ha) 
values, but slightly worse rRMSE values of 10.5 %. The slightly better 
performance reported in Hunt et al. (2019) might be due to the fact, that 
they were able to use a broader range of cloud-free S2 time series 
incorporating December, April, June and July. Our implementation of 
the method only got cloud-free S2 imagery from April to harvest in July 
across all data years used in this study. Using a scene from December can 
be disputed, as the WW has usually only just emerged and should be 
barely discernible from the soil signal in a S2 image. However, it is also a 
good way to ‘force’ the inclusion of a soil or a barely vegetated pixel 
signal, providing the regression algorithm with the data from the start of 
the vegetation curve (also see Fig. 3. A S2 scene from December would 
mean a DAS of around 30–60). 

The smoothed NDVI method cannot be compared as directly as the 
previous two methods, as it is a synthesis of methods from literature 
(Section 3.3). The method described by Kamir et al. (2020) is the most 
directly comparable, as they worked on pixel-based (250 m resolution of 
MODIS) modelling of winter wheat yield maps obtained from farmers. 
They report R2 values of 0.77 and RMSE of 0.55 t/ha (rRMSE of 30.72 % 
with the avg. wheat yield of 1.79 t/ha in their data used). Their model is 
also run on the equivalent of the all-year scenario of this paper. When 
comparing our smoothed NDVI method, we obtain a better model fit (R2 

= 0.84, rRMSE = 14.14 %) for WW. The low resolution of MODIS 
possibly explains part of the worse performance. The method of Battude 
et al. (2016) is less directly comparable, as they performed a point-based 
field sampling campaign on maize (instead of using yield maps) and 
used the Simple Algorithm for Yield Estimates (SAFY) (Duchemin et al., 
2008) in conjunction with the satellite (Landsat, SPOT, and more) data. 
They did, however, perform similar smoothing of the satellite 
time-series data. For their yield estimation at the field-level, they report 
a correlation (not R2!) of 0.81 and a rRMSE of 8.82 %. Skakun et al. 
(2019) also used a similar method as in this paper by smoothing a SI 
curve obtained from the Harmonised Landsat S2 (HLS) product. They 
did, however, not predict on the pixel-level, but rather on the regional 
level. They report R2 values of 0.73 and a rRMSE of 5.4 %. 

There are considerably less papers applying RNNs (or other types of 
NNs) on satellite data time series to estimate crop yield. The few that we 
found, usually model crop yield at very coarse, regional levels such as 
the US county-level using the national agricultural statistics service 
(NASS) data set (Terliksiz and Altýlar, 2019; Ghazaryan et al., 2020). 
Others performed similar, regional-scale analysis in Brazil (Schwalbert 
et al., 2020) or Australia (Cai et al., 2019). Only Khan et al. (Khan et al., 
2020) estimated crop biomass of mint on field-level in India for one data 
year and report a R2 of 0.76 and a RMSE of 2.74 t/ha (rRMSE = 15.58 
%). This small amount of NN approaches to model and predict crop yield 
on the field- or pixel-scale exemplifies the lack of adequate data sets 
where the NNs can be trained and validated on. 

A brief analysis of the all-year models’ variable importances (Ap-
pendix Figs. A.3 for the CR data set and A.4 for the WW data set) showed 
that the weather variables were generally ranked with high importance 
scores across all models. Especially the smoothed NDVI method ranked 
the temperature and the cumulative rainfall from both the early and late 
growth stages as the most influential variables, with two instances of 
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NDVI in the early growth stages being also highly ranked. This is in 
contrast to Kamir et al. (2020), who reported NDVI variables ranking 
highest. The four S2 scenes’ monthly aggregated weather variables, 
especially the cumulative rainfall, were highly ranked. The RNN was an 
exception, as it ranked the S2 bands B05 (Red edge 1) and B03 (Green) 
before the two weather variables. Interestingly, the Near-infra-red bands 
(B08 and B8A), who are often associated with vegetation growth 
(Thenkabail et al., 2013; Gnyp et al., 2014), were not highly ranked at 
all in the RNN and only of medium importance in the four S2 scenes 
method. 

Overall, the per-year and all-year models performed well. This shows 
that the selected methods can be used to model crop yield on the pixel- 
level. This enables their use for farm and field management information 
for farmers (that have large enough fields to make use of the 10 m pixel 
resolution of S2), agricultural statistics for either crop insurance 
schemes or policymakers to better make decisions regarding food safety. 

5.2.1. Using spectral indices and multiple spectral bands 
The yield modelling methods used in this paper can be classified into 

two types: i) using SIs (integral at peak and smoothed NDVI) and ii) 
using S2 reflectance data from multiple bands (four S2 scenes and RNN). 
The latter methods tend to perform better (Tables 3 and 5) as they use 
more of the available spectral information. However, the increase in 
performance is not so large to consider them superior to the SI-based 
methods in every regard. The main advantage of the methods using 
raw reflectance is their reduced need for data pre-processing. This de-
creases the time needed for implementation and operation. The main 
drawback of these methods is that they are more complex to analyse and 
therefore, it is often more difficult to communicate the results to 
stakeholders. The main drawback of the two methods based on SIs is the 
requirement to pre-process the satellite time series data in order to be 
applicable. Such a pre-processing requires a minimum amount of data 
points in the time series (Roy and Yan, 2020; Deines et al., 2021). This 
minimum amount was not always given in our time series due to the 
heavily cloud-contaminated winter and early spring months (Fig. 2). 
Thus, it was not possible to implement a reliable double logistic 
smoothing, which is very often used for NDVI time series (Kamir et al., 
2020; Battude et al., 2016; Beck et al., 2006), for the smoothed NDVI 
method. As some clouds within a S2 scene would only partially cover an 
individual field, the time series length of the different pixels within that 
field would vary greatly. Especially in such cases, the Fourier series 
smoothing performed in the integral at peak method introduced artifacts 
at both ends of the time series due to the sinusoidal form of the Fourier 
series. This could also be observed in the poor average fitting parameters 
of the Fourier series smoothing (for cereals: R2 = 0.44, RMSE = 2.34, for 
WW: R2 = 0.56, RMSE = 1.5, GCVI values ranged from 0.75 to 12.2 with 
a median of 3.5). This did not matter for this study, as the integral at 
peak method, which used Fourier series smoothing, focused on the peak 
region, where the fit was much improved. For the smoothed NDVI 
method, however, such artifacts did seriously impact model perfor-
mance as was shown in prior testing using Fourier series smoothing. 
Additionally, errors may be introduced when smoothing a satellite time 
series using a technique which usually expects an equidistant distribu-
tion of data points in time. So far, there’s little discussion in literature on 
such errors. In this work, B-Splines were used for the smoothed NDVI 
method, as they were able to smooth the NDVI using less data points 
than the double logistic smoothing and handled the NDVI time series 
ends without introducing obvious artifacts. Fitting parameters of the 
B-Splines smoothing were much improved over the Fourier series 
smoothing (for cereals: R2 = 0.99, RMSE = 0.02, and for WW: R2 

= 0.98, RMSE = 0.03, NDVI values ranged from 0.22 to 0.94 with a 
median of 0.81). As just discussed, interpolation is very time consuming 
and requires prior knowledge of the behaviour of the SI curve to select 
an adequate smoothing function. Another promising approach for 
gap-filling the cloud-contaminated S2 time series would be the incor-
poration of Sentinel-1 Synthetic Aperture Radar (SAR) data, which has 

the ability to penetrate clouds. This would however, require the complex 
pre-processing of SAR data and the sensor fusion with the optical S2 
data. Despite the drawbacks of interpolation, using SI-based methods 
have a large benefit: They are easy to interpret and thus to communicate 
to stakeholders. 

5.2.2. Neural networks 
The RNN models’ performance was similar to that of the four S2 

scenes method, which was the best performing model found in this 
study. In addition to the advantages and disadvantages discussed in the 
previous section, the RNN was able to perform well using satellite input 
data of varying data quantity and quality (Table 4). It worked well with 
only very short time series such as the four cloud-free scenes as used in 
the four S2 scenes method as well as with the full, unprocessed S2 time 
series including clouds. This meant that the data cleaning and pre- 
processing could be reduced to a minimum as there was no need for 
time-consuming feature extraction (Sagan et al., 2021), which greatly 
decreased the time required for the method implementation and oper-
ation. The WW subset for 2017, which only included 1638 yield pixels 
(Table 1), even saw an increase in RNN model performance when the 
longer, cloudy S2 time series data was used compared to the 
pre-processed series. RNNs have been shown to be able to deal with 
cloudy time series for crop classification tasks (Metzger et al., 2021), but 
to the best of our knowledge, this is the first time a RNN has been used to 
model crop yield using cloudy satellite time series. Additionally, a ho-
mogenisation effect on the output crop yield map (Fig. 5) could be 
observed. This is very realistic, as the within-field yield is usually 
distributed with a smooth gradient (with the exception of 
externally-induced damages such as hail, floods and damping-off of crop 
seedlings). We conclude that RNNs cannot only be used to model crop 
yield on regional scale, but are also a very promising method for 
high-resolution, pixel-based crop yield modelling. 

5.3. Predicting crop yield 

In this study, we investigated two ways of yield prediction. The first 
is the integral at peak method that can be regarded as a within-season 
forecasting of crop yield as it takes information from the peak GCVI 
curve usually observed at the end of April to mid-May for cereals in the 
study region. The second is the prediction of the held-out, unseen data 
years, which is a more stringently separated cross-year prediction 
method. 

The integral at peak method showed good performance, especially in 
the all-year scenario, where - for WW - 65 % of the yield variation could 
be explained with a rRMSE of 17.8 % (Table 5). Since the integral at 
peak method was developed for corn (Deines et al., 2021), it could likely 
be further optimised for small grain cereals, improving the crop yield 
prediction. Possible approaches to improve the method would be to 
better parameterise the integral width, which is now arbitrarily selected 
to be 30 days after the peak or even to expand the integral to include the 
earlier growth period of the crop and the inclusion of a more refined set 
of weather variables. 

Predicting held-out, unseen data years showed poor model perfor-
mance (Section 4.4). This highlighted the limitation of empirical, data- 
driven ML models to their training data. Unseen patterns in the data, 
originating either from large yearly differences in crop yield (Table 1) or 
from weather events, lead to poor model performance. Especially for the 
years 2020 and 2021, the average crop yields were much higher (2020) 
or lower, respectively (2021, see also Appendix Table A.1 for more de-
tails). This explains the prevalence of negative R2 values especially for 
these two years. The cold and hail events in the early and heavy rainfall 
in the peak growing season of 2021 (Appendix Fig. A.2) also negatively 
impacted the model performance. If the years with more ‘regular’ 
weather patterns were predicted, the models’ performance was better 
(Appendix Table A.3). Five years of data and corresponding weather 
data is not enough to predict crop yield of unseen data years or to 
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extrapolate. It would be interesting to see, if an empirical ML would be 
able to reliably predict held-out years if trained on a massive data set as 
was used in the work of Deines et al. (2021). Therefore, to improve 
empirical ML models, more data needs to be collected to better cover a 
wider variety of both target (yield) and input variables (weather). An 
improved composition of weather variables could also increase predic-
tion performance. With the exception of storms, floods or other extreme 
events, weather usually impacts crops in a delayed manner. Therefore, 
the use of a ‘rolling window’ for weather variables might be better suited 
to capture the influence of the past n days of weather. This may be an 
explanation for the better performance of the four S2 scenes method in 
the cross-year scenario compared to the RNN (appendix table A.3), since 
it uses monthly aggregated weather variables. The inclusion of extreme 
weather events themselves should be considered as well, as they can 
have a massive impact on crop growth. However, completely unknown 
patterns are still impossible to learn for an empirical model. Despite the 
failure to predict the mean crop yield of an unseen data year (equation 
(5)), a mean rRMSE of 37.5 % for predicting unseen cereal yields was 
achieved for the CR data set (Appendix table A.3). This equates to a 
model RMSE of approximately 2.7 t/ha using the mean yield observed 
(Table 1) which nonetheless allows for a rough crop yield estimation. 

To overcome these limitations of empirical ML models, data assim-
ilation techniques (Jin et al., 2018) or mechanistic crop models (Weiss 
et al., 2020) could be used. Such models can be updated within-season as 
new satellite and weather observations become available. This would 
also reduce the dependency on timely satellite (S2 or other) observa-
tions, as the development of the crops could be forecast without access 
to S2 data. Such approaches have already been performed (Battude 
et al., 2016; Azzari et al., 2017; Kang and Özdogan, 2019) and show 
good performance. Therefore, we think that the combination of empir-
ical and mechanistic approaches holds great promise to predict crop 
yield. 

6. Conclusion 

This study has shown that modelling crop yield is possible within- 
field on the 10 m resolution of S2 in a relatively small-scaled agricul-
tural setting by using either methods based on SIs or methods using the 
S2 reflectance directly. The latter methods perform slightly better, but 
are less straightforward to interpret. A downside of SI methods is the 
need to interpolate the cloud-contaminated S2 time series, which is a 
time consuming process that requires high user knowledge. The imple-
mented RNN approach was able to discriminate between cloudy and 
non-cloudy pixels by itself, eliminating the need for any time series pre- 
processing and indicating the high potential of RNNs for crop yield 
modelling and prediction. The main drawback of using a RNN is the 
large amount of training data needed, which explains the low prevalence 
of RNNs in literature for such applications, as pixel-based yield data is 
hard to obtain. The in-season prediction of crop yield is possible, albeit 
at reduced performance (R2 up to 0.65, rRMSE up to 17.8 %) compared 
to analyzing the full time series from sowing until harvest (R2 up to 0.88, 
rRMSE up to 10.49 %). The empirical methods used in this study 
exhibited low performance when predicting the crop yield of unseen 
data years due to the lack of information on unseen data patterns caused 
mostly by the weather. An alternative would be the use of mechanistic 
models to model the crop growth and the accumulation of biomass for 
crop yield along the crop development to make the prediction more 
robust to unseen data points. In general, more data, e.g. more data years 
and different locations to enable better model calibration and validation 
is paramount for further model development to enable robust yield 
mapping and timely yield forecasting for a multitude of uses and 
stakeholders in the agricultural system. 
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