
Citation: Haegeman, A.; Foucart, Y.;

De Jonghe, K.; Goedefroit, T.; Al

Rwahnih, M.; Boonham, N.;

Candresse, T.; Gaafar, Y.Z.A.;

Hurtado-Gonzales, O.P.; Kogej

Zwitter, Z.; et al. Looking beyond

Virus Detection in RNA Sequencing

Data: Lessons Learned from a

Community-Based Effort to Detect

Cellular Plant Pathogens and Pests.

Plants 2023, 12, 2139. https://

doi.org/10.3390/plants12112139

Academic Editor: Sergey Morozov

Received: 10 May 2023

Revised: 26 May 2023

Accepted: 27 May 2023

Published: 29 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Article

Looking beyond Virus Detection in RNA Sequencing Data:
Lessons Learned from a Community-Based Effort to Detect
Cellular Plant Pathogens and Pests
Annelies Haegeman 1,* , Yoika Foucart 1, Kris De Jonghe 1 , Thomas Goedefroit 1, Maher Al Rwahnih 2 ,
Neil Boonham 3, Thierry Candresse 4 , Yahya Z. A. Gaafar 5 , Oscar P. Hurtado-Gonzales 6 ,
Zala Kogej Zwitter 7,8 , Denis Kutnjak 7 , Janja Lamovšek 9, Marie Lefebvre 4, Martha Malapi 10,
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Inge van Duivenbode 16, David W. Waite 17 , Xiaojun Hu 6, Heiko Ziebell 18 and Sébastien Massart 19,*

1 Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO),
9820 Merelbeke, Belgium

2 Foundation Plant Services, Department of Plant Pathology, University of California, Davis, CA 95616, USA
3 School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
4 UMR 1332 Biologie du Fruit et Pathologie, Institut National de Recherche pour l’Agriculture,

l’Alimentation et l’Environnement (INRAE), Université de Bordeaux, 33882 Villenave-d’Ornon, France
5 Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Road,

North Saanich, BC V8L 1H3, Canada
6 Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States

Department of Agriculture (USDA-APHIS), Beltsville, ML 20705, USA
7 Department of Biotechnology and Systems Biology, National Institute of Biology (NIB),

1000 Ljubljana, Slovenia
8 Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
9 Plant Protection Department, Agricultural Institute of Slovenia (KIS), 1000 Ljubljana, Slovenia
10 Biotechnology Risk Analysis Program, Animal and Plant Health Inspection Service, United States

Department of Agriculture (USDA-APHIS), Riverdale, ML 20737, USA
11 Department of Plant Protection, Faculty of Agriculture, Eskişehir Osmangazi University, Odunpazarı,
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Abstract: High-throughput sequencing (HTS), more specifically RNA sequencing of plant tissues,
has become an indispensable tool for plant virologists to detect and identify plant viruses. During
the data analysis step, plant virologists typically compare the obtained sequences to reference virus
databases. In this way, they are neglecting sequences without homologies to viruses, which usually
represent the majority of sequencing reads. We hypothesized that traces of other pathogens might be
detected in this unused sequence data. In the present study, our goal was to investigate whether total
RNA-seq data, as generated for plant virus detection, is also suitable for the detection of other plant
pathogens and pests. As proof of concept, we first analyzed RNA-seq datasets of plant materials with
confirmed infections by cellular pathogens in order to check whether these non-viral pathogens could
be easily detected in the data. Next, we set up a community effort to re-analyze existing Illumina
RNA-seq datasets used for virus detection to check for the potential presence of non-viral pathogens
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or pests. In total, 101 datasets from 15 participants derived from 51 different plant species were
re-analyzed, of which 37 were selected for subsequent in-depth analyses. In 29 of the 37 selected
samples (78%), we found convincing traces of non-viral plant pathogens or pests. The organisms
most frequently detected in this way were fungi (15/37 datasets), followed by insects (13/37) and
mites (9/37). The presence of some of the detected pathogens was confirmed by independent (q)PCRs
analyses. After communicating the results, 6 out of the 15 participants indicated that they were
unaware of the possible presence of these pathogens in their sample(s). All participants indicated
that they would broaden the scope of their bioinformatic analyses in future studies and thus check
for the presence of non-viral pathogens. In conclusion, we show that it is possible to detect non-viral
pathogens or pests from total RNA-seq datasets, in this case primarily fungi, insects, and mites. With
this study, we hope to raise awareness among plant virologists that their data might be useful for
fellow plant pathologists in other disciplines (mycology, entomology, bacteriology) as well.

Keywords: plant pathogen; diagnostics; high-throughput sequencing; metagenomics; metatranscriptomics;
RNA-seq

1. Introduction

The concept of metagenomics, i.e., studying the genetic material of (environmental)
organisms without the need to first culture or isolate them, was first introduced in 1998 [1],
and its application in research grew exponentially with the introduction of high-throughput
sequencing (HTS) in 2005, when the sequencing of millions of DNA molecules in parallel at
a relatively low cost became available. Many different applications of metagenomics exist,
and, not surprisingly, its potential for diagnostic applications increased tremendously [2,3],
especially when traditional targeted diagnostic tests fail. Metagenomics relies on the ran-
dom sequencing of (in some cases sheared) extracted nucleic acids using HTS technologies,
allowing the investigation of the taxonomic composition of nucleic acids of mixed origin.
Notably, HTS technologies can also be applied for taxonomic purpose using a second strat-
egy, called metabarcoding, that relies on the amplification by PCR of a small genomic region
(typically with limited taxonomic information) of the targeted species prior to HTS [4].

Using metagenomics, all genetic material in a sample is analyzed; in traditional
targeted molecular testing, only molecules specific for the pathogen are targeted. This
makes metagenomics very much suited for difficult cases of infections with uncommon,
unexpected, or new pathogens. HTS can deliver a full qualitative and quantitative analysis
of the DNA or RNA sequences within a sample in a single test, and thereby promises next
level diagnostics [5]. Clinical application of metagenomics can not only identify pathogens
but can also yield additional genomic information of the pathogen that can, for example,
be used to select an effective antibiotic or antiviral treatment [6].

In plant pathology, the potential of HTS for virus detection was recognized early
by some pioneering studies [7–10], and, further on, several different protocols have been
developed, each with their own benefits and drawbacks [11]. Small RNA sequencing
can be used to detect viruses via the small RNAs produced by the plant RNAi defense
machinery [7]. Other methods were introduced to enrich viral RNA in the extract. such as
dsRNA sequencing and VANA (Virion-Associated Nucleic Acid) sequencing. Total RNA
sequencing (RNA-seq) has recently become increasingly popular because of its ease of use
and broad detection spectrum, although it has the drawback that more sequencing reads are
needed to detect viral RNA against the background of plant RNA [12]. To increase RNA-seq
sensitivity, plant ribosomal RNA (rRNA) is often removed prior to library preparation,
which can lead to a 10-fold enrichment of viral RNA [13]. This RNA-seq approach is
now relatively common among plant virologists to detect and identify viruses in research
and, progressively, also in official diagnostic applications such as post-entry quarantine or
certification [4,14].
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As in metagenomics applications, RNA-sequencing of plant materials will not only
include viral RNA sequences, but also RNA derived from other microorganisms living
on the plant sample surface (phyllosphere) or in the endosphere of the plant, as well as
environmental RNA (from, for example, insects physically associated with the sample).
Mining the HTS data can give a complete overview of the organisms present in/on the
sample, among which are potentially pathogenic agents. However, for several reasons,
the technique has never really been used for true untargeted detection of non-viral plant
pathogens (reviewed by [15]). The interest in metagenomics as a diagnostic tool has gained
popularity in the last few years with the rise of long read sequencing techniques [16,17]. Al-
ternatively, specific sequences or e-probes can be used to mine metagenomics and RNA-seq
datasets for the presence of certain pathogens [18,19]. Finally, mitochondrial metagenomics,
where samples are enriched in mitochondrial fragments prior to library preparation, also
seems promising when sufficient data is present in reference databases [20].

As explained above, RNA-seq has become an essential tool for the detection and
identification of plant viruses but has received little attention for the diagnosis of other
pathogens and pests. Consequently, plant virologists generate numerous RNA-seq datasets
but typically only investigate these datasets for the presence of viruses, being unaware of
the possible presence of other plant pathogens or pests. In this study, we hypothesized that
RNA-seq data generated by virologists could be used to detect non-viral pathogens and
pests as well. To check this hypothesis, we first analyzed RNA-seq data of plant materials
known to be infected by cellular pathogens to see if these pathogens could be detected and
correctly identified from the sequencing data. This was performed using both publicly
available datasets and newly generated data. Next, we organized an “RNA-seq community
effort”, in which existing RNA-seq datasets from different diagnostic laboratories generated
for the detection of viruses were revisited and checked for the potential presence of non-
viral plant pathogens and pests. Participants were actively involved in the re-analysis of
their data, and were asked to give feedback on the results, including the experimental
confirmation of the presence of the detected cellular pathogens by (q)PCR. The goal of
this effort was two-fold: (1) to provide a broad vision of the type of pathogens that are
typically detected in these RNA-seq datasets as well as on the relative proportion of rRNA
and mRNA derived from each organism group (host plant, viruses, bacteria, phytoplasmas,
fungi, insects, mites) in a broad range of plant materials and (2) to raise awareness among
plant virologists that their data might be useful for other plant pathologists as well, which
hopefully will stimulate collaboration with bacteriologists, mycologists, and entomologists.

2. Results
2.1. Various Non-Viral Pathogens Can Be Detected and Identified in Plant RNA-Seq Data

As proof of principle, 22 total RNA-seq datasets derived from plant materials with
known cellular pathogen infections were analyzed to see whether or not these pathogens
could be detected in the RNA-seq data. These datasets can be regarded as reference samples
(positive controls), since they were obtained from plants with confirmed infections. An
overview of the datasets, of the detected pathogens, and of the observed number of reads
per million (rpm) (defined as the number of pathogen reads (pairs, in the case of paired-end
sequencing) per million of total reads) is provided in Table 1.

The results show that, for 19 of the 22 datasets, we were able to detect the pathogen in
the RNA-seq data with more than 10 rpm. The relative abundance of the pathogen varies
greatly (in this case, from 1 to 51,974 rpm) depending on the pathogen and the host tissue.
In some cases, the numbers are extremely high, for example Plasmopara viticola in grapevine
leaves has 51,974 rpm assigned, corresponding to >5.2% of the total number of reads. In
other cases, for example, for Xylella fastidiosa in willow leaves, the observed numbers are
very low (35 rpm); thus, the sensitivity of detection can be limited.



Plants 2023, 12, 2139 4 of 20

Table 1. Overview of samples with confirmed pathogen infection used for RNA-seq analysis and
of datasets downloaded from public sequence databases. The number of reads per million (rpm)
together with the most likely species assignment based on the Kraken2 analysis is given. The latter
was based on the species that had the majority of the reads assigned to them. In case there were
multiple related species with a similar number of assigned reads, the taxon is reported at genus level.
Likewise, in case of a low relative occurrence of the species (<20 rpm), the taxon is reported at genus
level to avoid species assignments supported by a small number of reads.

Sample
ID/Accession Number of Reads Host Plant Tissue Confirmed

Pathogen Infection
Taxon Observed
in Kraken2

Kraken2 rpm for
Relevant Taxon

ILVO_Cpnnyn 5,274,766 (2 × 150 bp)
Chrysanthemum ×
morifolium
(florist’s daisy)

Leaves Puccinia horiana Puccinia graminis 257

ILVO_Salix 5,774,434 (2 × 150 bp) Salix alba
(white willow) Leaves Xylella fastidiosa Xylella taiwanensis 34

ILVO_Daucu 5,169,125 (2 × 150 bp) Daucus carota
(carrot) Leaves ‘Ca. Phytoplasma

asteris’
‘Ca. Phytoplasma
asteris’ 877

AGS_feve 6,680,182 (2 × 150 bp) Vicia faba
(broad bean) Leaves

‘Ca. Phytoplasma
sp.’ Flavescence
dorée

‘Ca. Phytoplasma
sp.’ 339

AGS_vigne 4,051,638 (2 × 150 bp) Vitis vinifera
(grapevine) Leaves downy mildew Plasmopara viticola 51,974

KIS_V3417 6,592,979 (2 × 150 bp) Daucus carota
(carrot) Leaves Alternaria sp. Alternaria solani 11,805

KIS_V3418 7,310,393 (2 × 150 bp) Solanum tuberosum
(potato) Leaves Alternaria sp. Alternaria solani 1191

KIS_V3408 5,891,895 (2 × 150 bp)
Solanum
lycopersicum
(tomato)

Leaves Phytophthora
infestans Phytophthora sp. 4831

KIS_V3408dup 8,616,508 (2 × 150 bp)
Solanum
lycopersicum
(tomato)

Leaves Phytophthora
infestans

Phytophthora
infestans 5288

SRR5100668 26,727,692 (1 × 150 bp) Solanum tuberosum
(potato) Leaves ‘Ca. Liberibacter

solanacearum’
‘Ca. Liberibacter
sp.’ 1

SRR10148792 17,431,858 (2 × 100 bp) Citrus sinensis
(orange) Leaves ‘Ca. Liberibacter

asiaticus’
‘Ca. Liberibac-
terasiaticus’ 35

SRR8295844 16,912,818 (1 × 75 bp) Citrus sinensis
(orange) Phloem ‘Ca. Liberibacter

asiaticus’
‘Ca. Liberibacter
asiaticus’ 292

SRR9225242 98,809,288 (1 × 75 bp) Solanum lycopersicum
(tomato) Leaves ‘Ca. Phytoplasma

solani’
‘Ca. Phytoplasma
solani’ 8082

SRR7186379 61,339,166 (2 × 100 bp) Glycine max
(soybean)

Flower
buds

‘Ca. Phytoplasma
sp.’

‘Ca. Phytoplasma
sp.’ 1055

SRR17253894 43,453,018 (2 × 150 bp) Prunus pseudocerasus
(Chinese cherry) Fruits ‘Ca. Phytoplasma

sp.’
‘Ca. Phytoplasma
sp.’ 26

SRR8003868 50,653,038 (2 × 150 bp) Solanum sisymbriifolium
(sticky nightshade) Roots Verticillium dahliae Verticillium dahliae 12,784

SRR6760520 88,633,716 (2 × 100 bp) Olea europaea (olive) Roots Verticillium dahliae Verticillium dahliae 34,880

SRR1525437 73,799,968 (2 × 100 bp) Olea europaea (olive) Leaves Verticillium dahliae Verticillium dahliae 40

SRR6053344 61,546,620 (2 × 125 bp) Gossypium hirsutum
(upland cotton) Roots Verticillium dahliae Verticillium dahliae 12,610

SRR7814393 11,481,479 (1 × 100 bp) Malus domestica
(apple) Leaves Erwinia amylovora Erwinia sp. 4

SRR13488408 46,302,968 (2 × 150 bp) Capsicum annuum
(pepper) Leaves

Xanthomonas
campestris pv.
vesicatoria

Xanthomonas sp. 13

ERR2036424 38,196,926 (1 × 100 bp) Triticum aestivum
(wheat) Roots Xanthomonas

translucens Xanthomonas sp. 4
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Another observation that can be made is that pathogen species assignment by Kraken2
is sometimes unclear and can even be incorrect (see, for example, Puccinia horiana, which
was reported as P. graminis or A. solani, which is most likely not the Alternaria species
occurring in carrot). This is well illustrated in samples KIS_V3408 and KIS_V3408dup,
which are independent samples from the same plant processed in parallel. Both samples
showed a lot of reads attributed to the Phytophthora genus, but the species assignment was
unclear in one of the samples.

After confirming that it is indeed possible to detect non-viral pathogens in total RNA-
seq datasets, we set up an “RNA-seq community effort”, with the goal to re-analyze existing
RNA-seq datasets available in the plant virology community for the presence of other—
possibly unnoticed—pathogens (Figure 1). This community effort consisted of three phases.
In Phase I, the participants analyzed the data themselves by mapping the generated reads
against the SILVA ribosomal RNA database to obtain a first evaluation of the fraction of
non-plant reads that might be present in the data. SILVA provides comprehensive, quality
checked, and regularly updated datasets of aligned small (16S/18S, SSU) and large subunit
(23S/28S, LSU) ribosomal RNA (rRNA) sequences for all three domains of life (Bacteria,
Archaea, and Eukarya). In Phase II, performed by a bioinformatics expert, some selected
datasets (showing a substantial amount of non-plant rRNA reads) were selected for a
more thorough taxonomic classification of all RNA reads (instead of only the rRNA reads)
using Kraken2. Finally, in Phase III, the presence of pathogens and pests detected in Phase
II was evaluated by participants and, in some cases, subjected to experimental (q)PCR
confirmatory efforts. Finally, participants answered a survey designed to evaluate the
usefulness of this approach to detect pathogens and pests.

2.2. RNA-Seq Community Effort PHASE I
2.2.1. A Total of 101 RNA-Seq Datasets Were Re-Analyzed by 15 Participants

An overview of all datasets that were entered in the “RNA-seq community effort” can
be found in File S1. In total, 15 participants from 10 countries participated. One participant
worked exclusively in a diagnostic lab, while 13 were from labs doing both research and
diagnostics, and 1 was from a research-only lab. In total, 101 datasets were analyzed, with
individual participants providing between 1 and 20 datasets. An overview of the datasets
per participant is shown in Figure S1. The datasets were derived from 51 different plant
species belonging to 29 different families. Most species were food crops (74), but there
were also some industrial (5) and ornamental crops (11), as well as some wild species
(11). The most frequent species was grapevine (10 datasets), followed by potato (6) and
several fruits, such as apple (5), blackberry (4), and pear (4), as well as rose (4) and tomato
(4). Four samples represented pools of different plant species. The vast majority of the
datasets were derived from leaf material (69), branches (1), petioles (10), or combined
leaves + petioles/branches (9), while only a minority of them were derived from other
plant parts, such as tubers/rootstocks (10) or pollen (2). At least 9 different RNA extraction
methods/kits were used (File S1). About half of the samples (45) were treated with DNase
during RNA extraction, and the majority of the samples underwent an rRNA depletion
step (70) prior to HTS. Interestingly, one participant entered the same sample twice, once
processed with and once without an rRNA depletion step. Most samples were paired-end
sequenced (70), with 2 × 150 bp being the most popular read length (40), while, for the
single-end datasets, 1 × 75 bp occurred the most often (25). The number of reads ranged
from 1.2 M to 142.0 M per dataset, with an average of 22 M.



Plants 2023, 12, 2139 6 of 20Plants 2023, 12, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 1. Overview of the different phases in the “RNA-seq community effort”, in which total RNA-
seq datasets previously analyzed for the presence of viruses were re-analyzed in order to find pos-
sible traces of non-viral pathogens and pests. 

2.2. RNA-Seq Community Effort PHASE I 
2.2.1. A Total of 101 RNA-Seq Datasets Were Re-Analyzed by 15 Participants 

An overview of all datasets that were entered in the “RNA-seq community effort” 
can be found in File S1. In total, 15 participants from 10 countries participated. One par-
ticipant worked exclusively in a diagnostic lab, while 13 were from labs doing both re-
search and diagnostics, and 1 was from a research-only lab. In total, 101 datasets were 
analyzed, with individual participants providing between 1 and 20 datasets. An overview 
of the datasets per participant is shown in Figure S1. The datasets were derived from 51 
different plant species belonging to 29 different families. Most species were food crops 
(74), but there were also some industrial (5) and ornamental crops (11), as well as some 
wild species (11). The most frequent species was grapevine (10 datasets), followed by po-
tato (6) and several fruits, such as apple (5), blackberry (4), and pear (4), as well as rose (4) 
and tomato (4). Four samples represented pools of different plant species. The vast major-
ity of the datasets were derived from leaf material (69), branches (1), petioles (10), or com-
bined leaves + petioles/branches (9), while only a minority of them were derived from 
other plant parts, such as tubers/rootstocks (10) or pollen (2). At least 9 different RNA 
extraction methods/kits were used (File S1). About half of the samples (45) were treated 
with DNase during RNA extraction, and the majority of the samples underwent an rRNA 
depletion step (70) prior to HTS. Interestingly, one participant entered the same sample 
twice, once processed with and once without an rRNA depletion step. Most samples were 
paired-end sequenced (70), with 2 × 150 bp being the most popular read length (40), while, 
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possible traces of non-viral pathogens and pests.

2.2.2. rRNA Depletion during Library Prep Reduced the Amount of Plant rRNA with Very
Variable Efficiencies

The participants mapped their datasets against the SILVA Large Subunit (LSU) database
and reported the number of mapped reads per database entry. Since each participant inde-
pendently performed the mapping, data processing steps differed slightly between them
(File S1). Most datasets underwent some basic preprocessing in the form of quality filtering
(99) and/or adapter removal (92), in some cases followed by merging of forward and
reverse reads (35) and/or duplicate removal (12). Of the 101 datasets, 79 were mapped
using BWA, 18 using Geneious, and 4 using CLC Genomics Workbench. The percentage of
reads that mapped against the rRNA database is shown in Figure 2A. On average, 95 ± 5%
(standard deviation) of the reads mapped in case no rRNA depletion step was performed,
while only 42 ± 29% of the reads mapped in case an rRNA depletion step was included
during library preparation. This difference proves that rRNA removal kits are useful to
boost the number of non rRNA reads, although results are very variable (Figure 2A). This
was also well reflected in the sample from which two datasets were available, one prepared
with and one prepared without an rRNA depletion step. In the dataset derived from the
library without rRNA depletion, 94% of the reads mapped to the rRNA database, while
this was only 3% in the case of the dataset derived from the library with rRNA depletion.
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and colors indicate if rRNA depletion was applied during library preparation. Some outliers are not
visible on the graph.

The sequences that mapped against the rRNA database were assigned to broad cate-
gories of organisms in order to study the global composition of the rRNA of all samples.
An overview of this rRNA composition is shown in Figure 2B. The vast majority of the
mapped rRNA reads belonged to the plants category (on average, 94.53 ± 1.03%), followed
by bacteria (on average, 2.33 ± 0.53%), fungi (on average, 1.57 ± 0.58%), insects (on average,
0.66 ± 0.22%) and spiders and mites (on average, 0.24 ± 0.06%). In some datasets, the
rRNA levels for bacteria, fungi, or insects reached levels higher than 3% of the total reads.
Other categories (phytoplasmas, oomycetes, and nematodes) all had an average percentage
of mapped reads below 0.1%.

2.3. RNA-Seq Community Effort Phase II
2.3.1. The Reads from the RNA-Seq Datasets Analyzed in Detail in Phase II Are Primarily
Assigned to Fungi and Bacteria, but also to Insects and Mites

Based on the results of Phase I, 37 of the 101 datasets were selected to be analyzed in
more detail by classifying the reads taxonomically using Kraken2, a k-mer based lowest
common ancestor method. Resulting Krona plots showing the taxonomic diversity resulting
from these annotation steps are available for all datasets on https://gitlab.com/ilvo/PHBN-
WP4-RNAseq_Community_Screening. Figure 3 shows the relative number of reads (in
rpm) that were assigned to the following organism categories: fungi, insects, bacteria,
spiders and mites, oomycetes, phytoplasmas, and nematodes. The total number of rpm
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assigned to one of these categories ranged from 4549 to 322,901 rpm, corresponding to
0.45–32% of the reads, with a median of 2.4%. The reads assigned to plants ranged from
30 to 92% (File S1). Similar to the results of Phase I, fungi and bacteria were the categories
showing the highest representation, while phytoplasmas and oomycetes were detected only
in some samples and at relatively low levels. Nematode sequences seemed to be present as
low-level background in almost all samples. Surprisingly, in almost all samples, insect or
mite reads were also found, even up to 25% of the total number of reads for one sample.
When these results were compared to those from Phase I, a weak but significant correlation
was found between the fraction of non-plant reads identified during the rRNA mapping
and the level of non-plant reads identified in the Kraken2 analysis (Pearson correlation
coefficient (PCC) = 0.38, p = 0.021). When the same was performed separately for each
broad organismal category, a significant correlation (p < 0.05) was found for phytoplasmas
(PCC = 0.94, p < 2.2 × 10−16, insects (PCC = 0.90, p = 2.982 × 10−14), fungi (PCC = 0.76,
p = 3.558 × 10−8), and spiders and mites (PCC = 0.34, p = 0.038). After the removal of one
outlier, the bacteria group also showed a significant correlation (PCC = 0.45, p = 0.006).
Only the nematode and oomycete categories did not show significant correlations between
Phase I and Phase II results, probably due to the low number of reads attributed to these
categories in both analyses.
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2.3.2. Several Non-Viral Pathogens/Pests Were Detected, Mainly Fungi and Insects

The Krona plots were carefully examined by participants for the presence of reads
assigned to (non-viral) pathogens. Based on the feedback from participants on pathogens
that might be present in the datasets, we set a global relative occurrence threshold of at
least 100 rpm (i.e., >0.01%) in the Kraken2 analyses to consider a pathogen or pest to
be present. This threshold was deliberately set relatively high to avoid false positives.
Indeed, in our previous analysis of datasets derived from leaves with known infections
(see Section 2.1 and Table 1), we noticed that several pathogens were observed at lower
abundances. Hence, by using the threshold of 100 rpm, we can expect some false negative
results, i.e., unnoticed pathogens. Nevertheless, we decided to continue with this relatively
conservative threshold in order to avoid false positives. An overview of the datasets in
which pathogens were thus identified is shown in Table 2.

Table 2. Overview of the 37 selected datasets used in the detailed analysis showing the Sample
ID, host plant, tissue, and observed pathogens/pests. Pathogens/pests shown in the table have
≥100 rpm in the datasets according to the Kraken2 analysis, as mentioned between brackets.

Sample ID Host Plant Tissue Pathogens/Pests as Identified
by Kraken2 (rpm) Pathogen/Pest Group(s)

Agroscope_OS_Solanum_S1 Solanum tuberosum
(potato) tubers

Rhizoctonia solani (1494),
Fusarium sp. (430),
Colletotrichum sp. (238)

fungi

BAEM_Vitis_S1 Vitis vinifera (grapevine) leaves

Alternaria sp. (996), Puccinia sp.
(565), Drosophila sp. (305),
Agrobacterium tumefaciens (now
Rhizobium vitis) (155)

fungi, insects, bacteria

ILVO_Capsicum_S11 Capsicuum annuum (sweet
pepper) leaves

Acyrthosiphon pisum (835),
Thrips tabaci (476),
Tetranychidae (430), Myzus
persicae (216), Frankliniella
occidentalis (203)

insects, mites

ILVO_Capsicum_S8 Capsicuum annuum
(pepper) leaves

Myzus persicae (87,467),
Acyrthosiphon pisum (32,131),
Alternaria sp. (127)

insects, fungi

ILVO_Citrus_S2 Citrus sinensis (orange) leaves Fusarium sp. (205), Alternaria
sp. (169), Botrytis cinerea (131) fungi

ILVO_Ipomea_S13 Ipomea batatas
(sweet potato) tubers

Frankliniella occidentalis (667),
Fusarium sp. (581),
Botrytis cinerea (201)

insects, fungi

ILVO_Ipomea_S4 Ipomea batatas
(sweet potato) leaves Alternaria sp. (261) fungi

ILVO_Oxalis_S14 Oxalis tuberosa (oca) tubers
Drosophila sp. (566),
Aphis gossypii (320),
Tetranychus urticae (105)

insects, mites

ILVO_Solanum_S10 Solanum lycopersicum
(tomato) leaves Eriophyidae (2760),

Erysiphaceae (443) mites, fungi

ILVO_Solanum_S5 Solanum lycopersicum
(tomato) leaves Drosophila melanogaster (2808) insects

ILVO_Solanum_S7 Solanum lycopersicum
(tomato) leaves Botrytis cinerea (6442), Passalora

fulva (446), Erysiphaceae (322) fungi

ILVO_Solanum_S9 Solanum melongena
(eggplant) leaves

Myzus persicae (104,861),
Acyrthosiphon pisum (23,004),
Albugo sp. (1086), Botrytis
cinerea (923), Alternaria sp.
(119)

insects, oomycetes,
fungi

ILVO_Stachys_S1 Stachys affinis (crosne) leaves

Alternaria sp. (317), Tetranychus
urticae (760), Frankliniella
occidentalis (186), Botrytis
cinerea (131)

insects, mites, fungi
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Table 2. Cont.

Sample ID Host Plant Tissue Pathogens/Pests as Identified
by Kraken2 (rpm) Pathogen/Pest Group(s)

INRAE_Vitis_S2 Vitis vinifera (grapevine) rootstock Botrytis cinerea (84,898) fungi

INRAE_Vitis_S3 Vitis vinifera (grapevine) rootstock Botrytis cinerea (24,342) fungi

JKI_Beta_S1 Beta vulgaris subsp.
Vulgaris (beet) leaves

Pantoea agglomerans (12,325),
Alternaria sp. (907), Fusarium
sp. (679), Verticillium sp. (170),
Stemphylium sp. (101)

bacteria, fungi

KIS_Allium_S6 Allium sativum (garlic) leaves Fusarium sp. (726) fungi

KIS_Glycine_S1 Glycine max (soybean) leaves Phytophthora sp. (276) oomycetes

KIS_Glycine_S2 Glycine max (soybean) leaves Tetranychus urticae (345),
Phytophthora sp. (295) mites, oomycetes

KIS_Rubus_S8 Rubus sp. (blackberry) leaves Aphis gossypii (3063) insects

NAK_Solanum_S1 Solanum tuberosum
(potato) tubers Rhizoctonia solani (352),

Pectobacterium sp. (145) fungi, bacteria

NCL_Poaceae-pool_S1 Pool of Apiaceae leaves

Albugo sp. (107,450),
Erysiphaceae (11,581),
Acyrthosiphon pisum (588),
Alternaria sp. (267),
Puccinia sp. (110)

oomycetes, fungi,
insects

UCDavis_Fragaria_S13 Fragaria × ananassa
(strawberry) leaves and petioles Frankliniella occidentalis (313) insects

UCDavis_Prunus_S7 Prunus cerasus (cherry) petioles ‘Ca. Phytoplasma pruni’ (310) phytoplasma

UCDavis_Rosa_S10 Rosa sp. (rose) leaves and petioles Tetranychus urticae (2728) mites

UCDavis_Rosa_S11 Rosa sp. (rose) leaves and petioles Drosophila sp. (165) insects

ULG_Musa_S2 Musa sp. (banana) leaves Tetranychus urticae (100) mites

USDA_Pyrus_S6 Pyrus communis (pear) leaves Tetranychus urticae (1680),
Pseudococcidae (351) mites, insects

USDA_Pyrus_S7 Pyrus communis (pear) leaves Tetranychus urticae (4244) mites

INRAE_Prunus_S4 Prunus domestica (plum) leaves none

MPI_CP_Macropiper_S5 Macropiper excelsum
(kawakawa) leaves none

MPI_CP_Melicytus_S3 Melicytus sp. leaves none

MPI_DW_Allium_S2 Allium triquetrum (onion
weed) leaves none

MPI_DW_Clematis_S3 Clematis paniculata leaves none

MPI_DW_Melicytus_S7 Melicytus ramiflorus leaves none

NIB_Pool_S1 Pool of plants from
Solanaceae family leaves none

USDA_Saccharum_S8 Saccharum sp. (sugarcane) leaves none

Considering the 37 selected datasets, in total 67 pathogens (39 different taxa) were
detected (≥100 rpm) from 29 of the datasets (78%), with an abundance ranging from
100 to 107,450 rpm. Fungal pathogens were the most abundant, with 31 detections (in
16/37 datasets, 43%), with the most common taxa being Alternaria sp. (found in eight
datasets), Botrytis cinerea (found in seven datasets), and Fusarium sp. (found in five datasets).
Insect pests were detected 19 times (in 13/37 datasets, 35%): 9 aphids (3 different species),
5 thrips, 4 fruit flies, and 1 mealybug. Mites were detected 9 times (in 9/37 datasets, 24%),
followed by oomycetes (in 4/37 datasets, 11%), plant pathogenic bacteria (in 3/37 datasets,
8%), and phytoplasma (in 1/37 dataset, 3%) (Figure 4).
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2.4. RNA-Seq Community Effort Phase III
2.4.1. About Half of the Participants Were Unaware of the Presence of Reads from
Non-Viral Pathogens in Their Dataset(s)

The participants completed a questionnaire (File S2) that asked their opinion about the
usefulness of and previous experience(s) with these analyses. The questionnaire answers
(File S3) revealed that only 6/15 participants were aware that their sample had indications
of the presence of non-viral pathogen(s), while, for 11/15 participants, at least one non-viral
pathogen was detected in at least one of their datasets. A total of 14/15 participants were
aware of the existence of metagenomics techniques applicable to RNA-seq datasets, but only
6/15 had previously used similar approaches to taxonomically classify all reads or contigs
against databases that contained cellular organisms and not only viruses. These were
almost exclusively participants with an expert bioinformatics level. Most participants also
compared the viruses found with their previous analyses and found a good correspondence,
although five participants identified more viruses than previously identified by their own
pipeline. Regardless of their proficiency in bioinformatic analyses, all participants indicated
that they will probably use these metagenomics methods in the future.

2.4.2. (q)PCR Confirmation of Pathogen Detection

Since a relatively high number of pathogens were found, we decided to try to confirm
some of these presumed infections. To have a representative view on different organisms, a
bacterium (Pectobacterium sp.), a phytoplasma (‘Ca. Phytoplasma pruni’), and two fungi
(Botrytis cinerea and Alternaria sp.) were selected and tested by (q)PCR on DNA extracted
from the same biological material from which the RNA-seq data was derived. Since the
two fungi were observed in multiple samples (Table 2), we selected a few samples with
variable read numbers. Results are shown in Table 3. Both the presence of the bacterium
and the phytoplasma were confirmed by the independent assays. Interestingly, for Botrytis
cinerea, the samples where a very high rpm was observed in the Kraken2 analyses were
PCR positive, but when the abundance was lower (≤131 rpm), the presence could not be
confirmed. This can have several reasons, one being that the reads may have been assigned
to the wrong species (false positive of Kraken2 analysis); another reason could be that the
fungus may have been present at a level below the PCR assay detection limit (false negative
of PCR). For Alternaria sp., the threshold at which the fungus could still be detected was
lower; a sample with 30 rpm still tested positive by PCR, while another sample, with only
17 rpm, tested negative.
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Table 3. Overview of confirmation assays. The sample ID and host plant are shown, together with
the tested pathogen, the observed reads in the Kraken2 analysis (in rpm), and the result of the
molecular test.

Sample ID Sample Origin Pathogen Kraken2 (rpm) (q)PCR Result

NAK_Solanum_S1 Potato tuber (pool of
12 samples) Pectobacterium sp. 145

Positive for P. brasiliense in
9/12 individual samples
(Ct range: 29.9–38.7)

UCDAVIS_Prunus_S7 Cherry leaf ‘Ca. Phytoplasma pruni’ 310 Positive (Ct = 19.189)

INRAE_Vitis_S3 Grapevine rootstock Botrytis cinerea 24,342 Positive

ILVO_Solanum_S7 Tomato leaf Botrytis cinerea 6442 Positive

ILVO_Stachys_S1 Crosne leaf Botrytis cinerea 131 Negative

ILVO_Capsicum_S8 Pepper leaf Botrytis cinerea 78 Negative

ILVO_Solanum_S10 Tomato leaf Botrytis cinerea 51 Negative

ILVO_Stachys_S1 Crosne leaf Alternaria sp. 1366 Positive

ILVO_Capsicum_S8 Pepper leaf Alternaria sp. 127 Positive

ILVO_Solanum_S7 Tomato leaf Alternaria sp. 30 Positive

ILVO_Solanum_S10 Tomato leaf Alternaria sp. 17 Negative

3. Discussion

The identification and monitoring of pathogens and pests are crucial to the health and
productivity of agricultural systems. Several methods, from microscopic observation over
Enzyme Linked Immunosorbent Assay (ELISA) to nucleic acid-based techniques, e.g., PCR,
have been developed over time to improve the detection of plant pathogens and pests.
In recent years, the advent of HTS technologies has provided a promising new approach
for the detection of plant pathogens and pests in an untargeted way. One of the most
frequent applications of HTS technologies in plant pest diagnostics is the identification
of viral or cellular pathogens causing novel diseases or diseases of unknown etiology [4].
HTS technologies are already applied in certification schemes, post-quarantine testing,
disease surveillance, and outbreak tracing, and the generated data can be the basis for, e.g.,
designing primers with improved analytical specificity and inclusiveness [21].

In plant virology, shotgun-based protocols have become the standard for complete
virome scanning or for diagnosing difficult samples in case targeted tests fail. Although
different types of library preparations exist [22], one of the more popular methods is
total RNA sequencing because it allows researchers to detect RNA viruses, DNA viruses,
and viroids present in a sample. RNA is extracted from the plant tissue, plant rRNA is
optionally depleted using specific probes, and the remaining RNA sequenced. To detect
viruses, the resulting reads (or contigs, if an assembly is performed) are subsequently
compared to a virus reference database [23]. In other plant pathology disciplines, this
method is much less popular since the more traditional detection methods are often quicker
and cheaper. Indeed, Tedersoo et al. [15] observed that metagenomics and RNA-seq
studies specifically targeting non-viral plant pathogens are rare. Nevertheless, RNA-
seq had already been used in 2015, for example, to identify not only viruses but also
bacterial and fungal pathogens in mosquitoes [24]. In plants, most RNA-seq studies
are investigating the plants’ responses after pathogen infection and/or the expression of
pathogen effectors [25–27] rather than trying to detect pathogens. Recently, however, RNA-
seq from the rhizosphere or phyllosphere has been used to study the complex ecological
interactions between plants and plant-associated (micro-)organisms [28,29]. Moreover,
nanopore sequencing using the handheld MinION sequencer has seen renewed interest in
disease detection using metagenomics or RNA-seq, and it has been successfully used to
detect fungi and bacteria, sometimes with identification down to the strain level [30–34].
In addition, (meta)genomics is being progressively adopted for the efficient tracing of the
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origin(s) of outbreaks or for high resolution phylogeographic studies of pathogens, such as
Xylella fastidiosa [35] or Fusarium graminearum [36].

In the present study, we demonstrated that it is indeed possible to detect and identify
reads from cellular organisms in datasets prepared for plant virus detection. In all datasets
examined with confirmed pathogen infections, reads from the pathogen could be retrieved.
In total, 101 datasets without information on the possible presence of cellular organisms
were also analyzed by mapping the reads against an rRNA database. In this way, by
determining the number of reads presumably derived from rRNA, we could evaluate the
effectiveness of the ribodepletion step. Including an rRNA depletion step was generally
able to greatly decrease the rRNA fraction of the dataset, from an average of 95 to 42%.
However, its efficiency proved highly variable across datasets. This variable efficiency
could be due to various factors, such as the biological material (different tissues, different
plant species), the use of different kits, or the experience of the laboratories. The (remaining)
rRNA fraction also showed that bacteria and fungi were among the most prevalent non-
plant sequences. Thirty-seven datasets that showed a substantial amount of non-plant
rRNA were selected for more detailed analysis using Kraken2. Overall, the number of
non-plant sequences (especially fungal and insect ones) correlated well with the number of
mapped rRNA sequences against the SILVA database, making the latter method suitable for
a fast first analysis on the (r)RNA composition. The amount of reads that were not assigned
to plants varied greatly between the 37 selected datasets, ranging from 1 to >30% of the
total number of reads. In general, bacteria were present in all samples at a relatively stable
fraction, presumably representing the plants’ endophytic microbiome. Fungi were also
represented in all samples, but, in some samples, they reached a relatively high abundance.
The same was true for insects (Figure 3). When trying to identify plant pathogens, plant
pathogenic bacteria were detected much less frequently than fungi. Indeed, they were
found in only 4 cases (of which 1 was phytoplasma), while plant pathogenic fungi were
detected in 31 of the 37 datasets. Nevertheless, some bacterial pathogens were detected
at high abundance, such as ‘Ca. Phytoplasma pruni.’ and Pantoea agglomerans, with 8815
and 12,325 rpm, respectively. On the other hand, for Pectobacterium sp., for example, a
relatively low abundance of pathogen reads among all sequencing reads was observed
(145 rpm). Nevertheless, that level was high enough to lead to a positive PCR diagnostic,
triggering retrospective phytosanitary measures for this sample. In the case of fungal
pathogens, we observed very high abundances of pathogen reads (up to 84,898 rpm) in
some cases, of which some were also confirmed by PCR (Table 3). Nevertheless, detection
at low abundance levels could also be confirmed by PCR, as low as 30 rpm for Alternaria
sp., for example. However, Botrytis cinerea could not be confirmed in a sample in which
it was observed at 131 rpm. This variability in relative abundance of reads derived from
the pathogen is most likely dependent on the specific sample, pathogen species, and
detection assays used. Globally, 29 of the 37 selected datasets (78%) showed evidence of
plant pathogens or pests, which were mostly fungi, insects, or mites (Figure 4). The latter
categories were rather surprising, since the presence of pests were, in many cases, not
expected and were not thought to leave so many traces of RNA in and on plant tissues.
This is especially interesting for virologists, since many viruses are transmitted by insects
or mites. Using the same RNA-seq datasets they use for virus detection, virologists could
thus potentially look for a vector, or even use the dataset to identify a vector candidate in
case none is known yet.

Even though it is clear that pathogen and pest reads can be identified in the RNA-seq
datasets, the relative number of reads derived from the pathogen (compared to the total
amount of reads) was sometimes very low in samples with validated infections. Several
factors can explain low pathogen read numbers and inter-sample variability. There can
be technical reasons that limit the chance of detecting pathogen reads, for example, the
application and/or efficiency of a ribodepletion step as described above, or a limited
number of reads generated. Raising the sequencing depth might be a solution to generate
more pathogen reads. However, this can be limited by the cross-contamination background
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between samples, as this was previously observed to lead to inconclusive results when
validating HTS technologies for virus indexing [37]. Next to technical reasons, there can
also be biological reasons. First of all, most viruses infecting plants tend to have a systemic
distribution, although this depends on the host plant and season. The situation for cellular
pathogens is different, as some of them are restricted to specific tissues. Therefore, if the
pathogen does not primarily reside in the sampled tissue, the chances for its detection
are low. This was the case, for example, for Xylella fastidiosa, ‘Ca. Liberibacter sp.’, some
‘Ca. Phytoplasma sp.’, Erwinia amylovora, and Xanthomonas campestris in leaves, which
were observed in sometimes very low read numbers. The second factor is the temporal
dynamics of the pathogen in the host, more particularly during the latent phase when its
concentration can be very low. For example, reads from Erwinia amylovora and Xanthomonas
campestris were detected only at a low frequency in both leaf and root tissues (<10 rpm).
Both pathogens are known to infect specific cell types and different tissues in different
stages of their life cycle [38,39], hence the time of sampling since first infection can have
an influence on the number of reads observed. On the contrary, when the sampled tissue
presents primary symptoms of infection, the concentration of the same pathogen can be
very high, as observed, for example, for Verticillium dahliae (37,732 rpm). Finally, the
bacterial microbiome always corresponds to the most abundant non-plant sequences in
the samples. This confirms that a complex community of microorganisms is present inside
or at the surface of plant tissues. The composition and diversity of this community can
impact the plant pathogen by limiting its development [40,41] and therefore reducing the
proportion of reads in the dataset despite its presence.

A last observation was that the species assignment by Kraken2 was not always correct.
Technical reasons might cause these misassignments, for example, the algorithm used
or the incompleteness, biases, or mistakes in the used sequence database. This was also
observed by Yang et al. [34], who were only able to identify a boxwood blight pathogen in
metagenomic data after customizing the database. On the other hand, sequence information
in nucleotide databases may be biased towards pathogens, possibly leading to wrong
conclusions about a pathogen presence when only a non-pathogenic relative, for which
there is no sequence information in the database, is present. Indeed, metagenomic classifiers
tend to perform very well when closely related sequences are present in the database, but
less so in the case that this information is lacking [42]. This phenomenon can be reinforced
by a low number of generated reads, which limit the coverage and representation of the
pathogen genome.

The preliminary results of this study have shown the potential of metatranscriptomics
as a universal plant pathogen and pest detection method, allowing the detection of all
expected pathogens from samples with confirmed infections, although sometimes as a very
small proportion of sequencing reads. Nevertheless, RNA-seq as a stand-alone test for the
detection of cellular pathogens is not likely to become a standard diagnostic tool due to
some of the drawbacks discussed above. Moreover, it presents other drawbacks, such as the
cost and complexity of library preparation, the huge number of reads generated (despite
the continuous reduction of sequencing prices), the complex bioinformatics infrastructure
needed, and the expected longer turnaround time of this method as compared to targeted
methods. Some of these drawbacks could be potentially alleviated by the development of
quick(er) sequencing platforms and the availability of easy-to-use data analysis platforms
such as CZID (formerly IDseq) [43] and Kaiju [44].

In conclusion, we recommend that plant virologists generating RNA-seq data should
also process their data using a metagenomic classifier in order to have an idea of the global
composition of the sample and the eventual presence of cellular pathogens. A questionnaire
that was distributed across the virologists that participated in this study revealed that all
of them planned to use the technique in the future. This may stimulate collaboration and
communication between plant virologists and bacteriologists, mycologists, and entomol-
ogists. Rather than working with fixed thresholds to decide whether or not a pathogen
is present, we recommend the use of proper controls, such as spiking the sample with
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genetic material from a known pathogen as a positive control or including negative controls
to obtain an idea on the cross-over contamination (see also [4]). Nevertheless, in case of
finding a pathogen, there should always be an interpretation by the plant pathologist to
check if the detected pathogen species matches the host plant and geographical origin, and
an independent confirmation assay is recommended.

4. Materials and Methods
4.1. Analysis of Published and Newly Generated Plant-Derived RNA-Seq Data for
Expected Pathogens

We first checked whether different types of non-viral plant pathogens could be detected
and identified from plant total RNA-seq data, a method commonly used to detect plant
viruses. The datasets used were selected in order to cover a broad range of pathogens
(bacteria, fungi, oomycetes) and host plant tissues (leaves, fruits, phloem, flower buds). To
do this, we downloaded 13 publicly available datasets from NCBI’s Sequence Read Archive
(SRA). These datasets were plant-derived RNA-seq datasets with confirmed infection
of a plant pathogen. We selected datasets with the following pathogens: the vascular
bacteria ‘Candidatus Liberibacter sp.’ (SRR5100668: potato leaves, SRR10148792: orange
leaves, SRR8295844: orange phloem) and ‘Candidatus Phytoplasma sp.’ (SRR9225242:
tomato leaves, SRR7186379: soybean flower bud, SRR17253894: Chinese cherry fruit);
the fungus Verticillium dahliae (SRR8003868: sticky nightshade roots, SRR6760520: olive
roots, SRR6053344: upland cotton roots, SRR1525437: olive leaves); the bacterium Erwinia
amylovora (SRR7814393: apple leaves); and the bacterium Xanthomonas sp. (SRR13488408:
pepper leaves, ERR2036424: wheat roots). In addition to the downloaded datasets, we
also generated 9 new RNA-seq datasets from plants with known and confirmed infections
from different types of pathogens (bacteria, phytoplasmas, fungi, and oomycetes). Leaves
were collected from Xylella fastidiosa infected goat willow; ‘Candidatus Phytoplasma sp.’
infected carrot and faba bean; Puccinia horiana infected Chrysanthemum sp.; Alternaria sp.
infected Daucus carota and potato; and Phytophthora infestans and tomato and grapevine
infected with an unidentified downy mildew. RNA was extracted using the RNeasy Plant
Mini kit (Qiagen, Venlo, The Netherlands) and DNase treated following the manufacturer’s
recommendations (ThermoFisher Scientific, Antwerp, Belgium). Ribosomal RNAs were
removed using a RiboMinus Plant Kit for RNA-Seq (ThermoFisher Scientific) before cDNA
library synthesis with the Illumina TruSeq Stranded RNA library prep kit (Illumina Inc., San
Diego, CA, USA) and sequenced on an Illumina NextSeq500 (2 × 150 nt) in a multiplexed
format (GIGA-Genomics Facility, Université de Liège, Liège, Belgium). Raw data was
submitted to SRA under BioProject number PRJNA961939. Data from both the SRA-
derived datasets, as well as the newly generated datasets, were further processed as
follows. Adapters were removed from the sequencing data using cutadapt [45]. Next, the
reads were classified taxonomically with the k-mer based Kraken2 software [46], using
the lowest common ancestor method (LCA) for assignments at different taxonomic levels.
For the database for the Kraken2 analysis, a local version of the complete Genbank non-
redundant Nucleotide database converted to a Kraken2 index was used [47]. The results
were visualized using Krona [48], and the rpm of the expected pathogens was calculated.
The taxonomic resolution at which Kraken2 classified the reads was evaluated by visually
checking if the reads from the pathogen genus almost all matched to the same species
(=species level resolution), or to multiple species with similar read numbers. In the latter
case, we decided to report the taxon at the genus level. Moreover, in case of a low relative
occurrence of the species (<20 rpm), the taxon was reported at the genus level to avoid
species assignments supported by a small number of reads.

4.2. RNA-Seq Community Effort

Next, we organized an “RNA-seq community effort” among plant virologists in three
phases in order to evaluate the possible presence of non-viral pathogens and pests in some
of their previously generated datasets. In the first phase, called “prescreening”, participants
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mapped their data against an rRNA database. This was used as a very rough but easy
method to let participants prescreen their own samples for potential presence of non-plant
rRNA. In the second phase, referred to as “in depth analysis”, a selection of datasets from
each participant were transferred to one lab (ILVO) for a detailed taxonomic analysis by a
bioinformatics expert. In the third phase, called “feedback and confirmation”, results of
the detailed analysis were shared with participants for interpretation and further feedback,
and the presence of some pathogens was experimentally checked. A general overview of
our “RNA-seq community effort” is shown in Figure 1, and detailed information on the
different phases is explained below.

4.2.1. Phase I: Prescreening

Since we wanted to involve the participants as much as possible with the data analysis,
we opted for a prescreening phase that participants could perform in-house. The goal
of the prescreening phase was to obtain a general overview of what types of organisms
are present in the datasets in order to make a selection of samples interesting for more
detailed analysis. This prescreening phase needed to be relatively fast and easily accessible
in order to allow participants with minimal experience in bioinformatics to participate as
well. Hence, we opted for a mapping approach because mapping is a basic bioinformatics
method used in virtually every lab dealing with HTS data, and it is relatively fast and
therefore capable of processing many different samples. Participants were allowed to
apply their mapping algorithm of choice on as many of their samples as they wanted. The
only prerequisite was that the samples were plant-derived total RNA (no small RNAs)
and sequenced with Illumina technology. For the mapping database, we opted for the
SILVA LSU rRNA database (v.132) [49] (“SILVA_132_LSURef_tax_silva_trunc.fasta” as
downloaded from the ARB-SILVA archive: https://ftp.arb-silva.de/release_132/Exports/,
accessed on 26 March 2020). This database was chosen because (1) rRNA is typically
very abundant in RNA-seq data (even when rRNA depletion was performed during
library preparation); (2) it has a large sequence diversity across different kingdoms; (3) it
is curated and non-redundant; and (4) it is relatively small and, hence, easy to distribute.
The mapping database was slightly modified to include organism categories (bacteria,
fungi, insects, spiders and mites, plants, nematodes, oomycetes, phytoplasmas, and others)
in the header of each sequence to facilitate downstream processing. These organism
categories were chosen because they include the most important plant pathogens. The
plants category was defined as each sequence which had in its SILVA taxonomy the (partial)
word “Plant”, “Chloroplast”, or “Mitochondr”; the spiders and mites category was assigned
when the taxonomy contained the word “Arachnida”; and the oomycetes category was
defined as the class Peronosporomycetes. The other categories were straightforward
to extract from the SILVA taxonomy. In addition, for each sequence in the SILVA LSU
database, the accession number was extracted, and the corresponding NCBI Taxonomy
identifier and its complete taxonomy was retrieved using NCBI’s E-utilities. The combined
accession number, organism category, and NCBI extracted taxonomy were used as a
sequence header for the final database. With the database ready, a detailed tutorial was
written explaining how to participate to the community effort, including tutorials on how
to perform the mapping using different types of software, such as BWA [50], CLC Genomics
Workbench (https://digitalinsights.qiagen.com, accessed on 26 March 2020), and Geneious
(https://www.geneious.com). These are available on https://gitlab.com/ilvo/PHBN-WP4
-RNAseq_Community_Screening. Invitations to participate were sent to all official and
associated partners of the Euphresco “Plant Health Bioinformatics Network”, a network
of researchers working with HTS data applied to plant pathogen diagnostics. Further
distribution to participate among colleagues was encouraged, and an advertisement was
made on social media (Twitter). Participants were required to complete a simple metadata
file with some basic information on their samples (host plant, host tissue, rRNA removal
step (yes/no), read length, number of reads, number of mapped reads) and upload the
results of their mappings. The latter was supplied in a textual format which specifically

https://ftp.arb-silva.de/release_132/Exports/
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https://gitlab.com/ilvo/PHBN-WP4-RNAseq_Community_Screening
https://gitlab.com/ilvo/PHBN-WP4-RNAseq_Community_Screening
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included the number of mapped reads corresponding to each sequence of the database. This
could be easily exported from graphical software (Geneious, CLC Genomics Workbench),
or from command line tools using the “idxstats” program of SAMtools [51]. Finally, the
results of each participant were combined in one table and unrealistic values due to errors in
reporting were removed (for example, more mapped reads than input reads). Results were
summarized as bar plots representing the percentage of mapped reads for each organism
category (plants, bacteria, fungi, oomycetes, phytoplasmas, insects, spiders and mites, and
others) using the ggplot2 package v.3.3.2 [52] in R v.4.0.3 [53] with RStudio v.1.3.1093 [54].

4.2.2. Phase II: In Depth Analysis

In Phase II, the results of Phase I were used to select samples for more detailed analysis.
The selection was performed quite arbitrarily, based on at least one of the following criteria:
relatively high number of non-viral, non-plant reads; at least one potential plant pathogen
or pest present among the most prevalent rRNA hits per organism category; or overall
high biodiversity of the sample. Typically, we aimed for keeping more or less half of the
datasets, ideally retaining at least one dataset per participant. Next, participants were
invited to transfer the raw data of the selected samples to ILVOThe raw data of each
sample was further processed by a bioinformatics expertand checked for presence of
adapters using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/,
accessed on 2 May 2020). If present, adapters were removed using cutadapt [45]. Next,
direct taxonomic classification of the reads was performed with the k-mer based Kraken2
software [46], using the lowest common ancestor method (LCA) for assignments at different
taxonomic levels. For the database for the Kraken2 analysis, a local version of the complete
Genbank non-redundant Nucleotide database converted to a Kraken2 index was used [47].
The resulting taxonomic classifications were visualized using Krona [48]. All detailed
analyses of selected samples are made available through reports per participant on https:
//gitlab.com/ilvo/PHBN-WP4-RNAseq_Community_Screening. This repository was also
submitted to Zenodo under DOI 10.5281/zenodo.7974743.

4.2.3. Phase III: Feedback and Confirmation

In Phase III, the participants received a report on the detailed analyses including the
Krona plots (to interactively check the detailed taxonomic classification results of their
samples in a web browser) and some suggestions of pathogens or pests that might be
present in their dataset(s). Participants were asked to carefully review the results and give
feedback on which observed non-viral pathogens or pests could potentially be present,
taking into account host plant species, symptoms, sampling location, etc. Next, based on the
feedback from the participants, we set a general cut-off value to classify the presence of non-
viral pathogens per sample. For 7 samples for which material was still available, specific
molecular confirmation tests, as described in literature, were conducted to confirm the
presence of Pectobacterium sp. [55], ‘Candidatus Phytoplasma pruni’ [56], Botrytis cinerea [57],
and/or Alternaria sp. [58]. This was performed on DNA extracted from the same samples
for which the RNA-seq dataset was available. Furthermore, participants were also asked
to complete an online questionnaire where their opinion on the usefulness of the analysis
was evaluated, whether they were aware of such type of analyses, etc. The questions
of the questionnaire can be found in File S2. Overall results were summarized in tables
and downstream statistical tests and visualizations were performed in R v.4.0.3 [53] with
RStudio v.1.3.1093 [54] using dplyr v.1.0.2 [59] and ggplot2 v.3.3.3 [52].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12112139/s1, Figure S1: Overview of the datasets per
participant (101 in total) that entered the “RNA-seq community effort”; File S1: Overview of
the participants and datasets; File S2: Questionnaire sent to the participants at the time they re-
ceived the results of the detailed analysis of their sample(s); File S3: Answers from participants to
the questionnaire.
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