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How to use the power of Al to
reduce the impact of climate
change on Switzerland

Recommendations for the Swiss society and economy to become
more resilient against the impact from a radically changing climate

Make key technologies broadly available and overcome challenges through key methodologies in
climate- and Al-related fields.
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5.3.1 Climate impact assessments

Climate impact assessments can be based on earth observation data from historical natural disasters.
Climate models allow the forecasting of the damage probability of assets considering specific green-
house gas emission scenarios (Section 4.1). Such assessments are most often performed qualitatively
or on a regional level only, due to limited data and automation. However, with the availability of fre-
guent earth observation data, global climate projections, and machine-learning (ML) methods (a sub-
category of artificial intelligence) near real-time, quantitative assessments at global scale have be-
come feasible (Yuan et al., 2020 and Jain et al., 2023).

5.3.2 The history of Al

It can be explained in four phases (Figure 5.2): i) Until the 80’s, Expert Systems with manually-crafted
symbolic representations and rules dominated the domain. These systems turned out to be very lim-
ited and brittle. ii) With the advent of the internet, data driven Machine Learning approaches with
handcrafted features started to dominate. Many of them are still in use, especially in business applica-
tions. iii) In 2012, Deep Learning started to disrupt domains like computer vision and natural language
with fully data driven models, resulting in ever-improving object detection and language translation
models. However, large amounts of annotated data sets are required to train these models. iv) Most
recently (2022), Foundation Models (Sun et al., 2023) emerged (e.g., GPT used for ChatGPT), with un-
precedented performance. They are fully data-driven and trained by self-supervision, meaning that
they learn the underlying characteristics of the data themselves and only need limited labels to be
fine-tuned to various down-stream tasks.
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Figure 5.2: Historic view on Al algorithm paradigms: from hand-crafted and specific, to fully data
driven and general models.
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5.3.3  Application of Al models for climate impact assessments

In this section, we try to provide an example workflow describing Al models to assess flood risks by i)
the observation of past flood events and ii) by predicting future flood and damage risks (Figure 5.3).
This workflow, with some differences, is also applicable for other natural hazard impact assessments,
such as wildfires or droughts. The main steps of the flood impact workflow are:

1.

To assess a past flood event, Sentinel-1 (radar signal) and Sentinel-2 (RGB and NIR signal) imagery
can be used in combination with semantic segmentation models to detect the flood extent
(Muszynski et al., 2022). Such models assign to each pixel of an image a class like water or land-
mass, respectively. In combination with digital elevation maps, the flood depth can be
determined. Historic flood risk maps can be computed from the flood extent observations. Fur-
ther, semantic change detection using Siamese deep-neural-networks with pre- and post-imagery
of the event enables the classification of the damage state of critical infrastructure (e.g., buildings
and streets) (Nitsche, et al. 2023).

To predict future flood events, extreme precipitation patterns need to be generated. This can be
obtained by Al Weather Generators which are trained on observed local weathers and are condi-
tioned on climate change estimated by global climate models. Traditional Markov chain sampling
(Steinschneider et al., 2013) or deep learning models like variational autoencoders (Oliveira et al.,
2022) have been demonstrated to result in synthetic weather, analogous to widely discussed
deep-fakes used to generate faces of non-existing persons. However, the aim in this case is to
provide precipitation time-series, as expected to observer with a one-in 1’000- or 10'000-year re-
turn period, as input to flood models.

Currently, physics-based numerical models solving partial differential equations (e.g., shallow
wave equation for floods) are used to calculate a future flood event (e.g., flood depth and veloc-
ity) based on various topographic and hydrological modalities (e.g., elevation maps, land use, and
soil class) in combination with the synthetic precipitation from the weather generator. High reso-
lution assessments are computationally demanding and thus, are performed infrequently.
Recently, Al models, such as flood susceptibility models (Meuriot et al., 2021) or physics-informed
neural networks (Karniadakis et al., 2021) have demonstrated similar performance, however at
orders of magnitude reduced computational cost. The susceptibility model is a regression model
(e.g., k-nearest neighbors, support vector machine or random forest) and performs a point-wise
assessment of the flood depth based on model training on historic events and topographic and
hydrological modalities. A physics-informed neural network combines a data-driven learning pro-
cess with constraints from the governing physical laws of the process to model. Effectively, a
regularization term is added to the loss-function of the neural network, describing the physical
law by partial differential equation. For all these models, some calibration might be required.
Thus, flood mappings of past events from step 1 (of the Workflow listed here) can be applied to
improve the prediction accuracy.

Impact functions (Aznar-Siguan et al., 2019) can be used to estimate the damage of future flood
events. These relations can be derived from observed hazard variables and damages of specific
infrastructure (step 1) (e.g., flood depth and building damage probability). The predicted flood
depth and velocity from step 3 can then be used to sketch out the damage risk of the infrastruc-
ture in a given region, based on assets indicated on Open Street Map* (free and open geographic
database)

40 https://www.openstreetmap.org
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Figure 5.3: Example workflow of Al methods applied for flood event impact assessments.

Sustainable Al for Climate Impact: Several of the discussed models were borrowed from other disci-
plines, such as the computer vision domain and were adapted to the ideosyncratic nature of Earth
Observation and climate data, which include many more modes (e.g., infrared bands), compared to
the RGB channels of consumer grade cameras and thus, is called multi or hyper-spectral data. Further-
more, the Al model efficiency is of high importance, to result in sustainable applications with minimal
electric energy, as petabytes of data are required to be transferred and analyzed. Thus, approaches
like recursive inference using low resolution data in areas of minimal variation, compared to high-res-
olution satellite images in areas of high class variation (e.g., in case of water detection: lakes and
coastal areas, respectively) were proposed (Brunschwiler et al., 2023). Further shortcomings of Al
models need to be considered as well, including potential biases, limited explainability, and poor abil-
ity to adapt to changing conditions (Yuan et al., 2020). However, the discussed speed-ups from Al
workflows do not only result in near real-time and quantitative assessment of climate risk at scale, but
they also enable to run ensembles of workflows to perform model validation, calibration, and uncer-
tainty estimations, as well as counterfactual assessments (Jones, Anne, et al., 2023). Those
responsible Al features can support decisionmakers and stakeholders to anticipate the impacts of cli-
mate change and plan effective mitigation and adaptation actions*.

The Maturity of Al Models in the climate impact domain varies. Traditional machine learning models
are already operational for a few years to perform natural disaster segmentation (e.g., the Global
Flood Monitoring product of the Copernicus Emergency Management Service (Salamon et al., 2021).
Deep-neural-networks and physics-informed neural networks are currently being tested to perform
hazard assessments and forecasts at scale (e.g., FloodHub, the world-wide fluvial flood forecasting
(Moshe et al., 2020). In comparison, earth observation (Jakubik et al., 2023) and weather foundation
models (Nguyen et al., 2023) just emerged in 2023 and are still in the research state (Mukkavilli et al.,
2023), but first models are being validated at scale and are expected to penetrate the market in
20244,

41 https://gpai.ai/projects/responsible-ai/environment/
42 https://www.ecmwf.int/en/about/media-centre/news/2023/how-ai-models-are-transforming-weather-forecasting-show-
case-data
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