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Abstract. Hail represents a major threat to agriculture in
Switzerland, and assessments of current and future hail risk
are of paramount importance for decision-making in the in-
surance industry and the agricultural sector. However, re-
lating observational information on hail with crop-specific
damage is challenging. Here, we build and systematically
assess an open-source model to predict hail damage foot-
prints for field crops (wheat, maize, barley, rapeseed) and
grapevine from the operational radar product Maximum Ex-
pected Severe Hail Size (MESHS) at different spatial reso-
lutions. To this end, we combine the radar information with
detailed geospatial information on agricultural land use and
geo-referenced damage data from a crop insurer for 12 re-
cent hail events in Switzerland. We find that for field crops
model skill gradually increases when the spatial resolution is
reduced from 1 km down to 8 km. For even lower resolutions,
the skill is diminished again. In contrast, for grapevine, de-
creasing model resolution below 1 km tends to reduce skill,
which is attributed to the different spatial distribution of
field crops and grapevine in the landscape. It is shown that
identifying a suitable MESHS thresholds to model damage
footprints always involves trade-offs. For the lowest possi-
ble MESHS threshold (20 mm) the model predicts damage
about twice as often as observed (high frequency bias and
false alarm ratio), but it also has a high probability of detec-
tion (80 %). The frequency bias decreases for larger thresh-
olds and reaches an optimal value close to 1 for MESHS
thresholds of 30—40 mm. However, this comes at the cost of

a substantially lower probability of detection (around 50 %),
while overall model skill, as measured by the Heidke skill
score (HSS), remains largely unchanged (0.41-0.44). We ar-
gue that, ultimately, the best threshold therefore depends on
the relative costs of a false alarm versus a missed event. Fi-
nally, the frequency of false alarms is substantially reduced
and skill is improved (HSS =0.54) when only areas with
high cropland density are considered. Results from this sim-
ple, open-source model show that modelling of hail damage
footprints to crops from single-polarization radar in Switzer-
land is skilful and is best done at 8§ km resolution for field
crops and 1 km for grapevine.

1 Introduction

Hail storms frequently cause severe damage to agriculture
and infrastructure in various places across the globe (Bell
et al., 2020; Allen et al., 2020; Gobbo et al., 2021; Rana
et al., 2022). In fact, severe convective storms (which include
hailstorms) are among the costliest perils worldwide (Swis-
sRe, 2021). Switzerland is a particularly hail-prone country
with a nationwide average of 32 hail days during the con-
vective season (April to September) and locally up to 3 or
more hail days in hot-spot regions (Schréer et al., 2022).
The number of hail days varies strongly from year to year.
Summer 2021 was an example of a record hail season, caus-
ing extreme damage in a series of intense and widespread
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thunderstorms (Kopp et al., 2022). The main crop insurer in
Switzerland, Schweizer Hagel (SH), reported around 14 000
damage claims and insured losses of around CHF 110 mil-
lion (approx. USD 117 million; Schweizer Hagel, 2021) for
this year. Hail remains the costliest natural hazard for in-
sured agricultural production in Switzerland, and the events
of summer 2021 demonstrated the need for reliable assess-
ments of hail risk for key stakeholders including insurers,
governments, and farmers.

Compared to other weather-related hazards, reliable data
on hail remain scarce due to the small scale of thunderstorms
and accompanying hail streaks as well as the high costs to
maintain observational networks at a large scale. Therefore,
radar data are frequently used to obtain an estimate of hail
on the ground because they are continuous in space and time
(Kunz and Kugel, 2015; Puskeiler et al., 2016). Recently,
the Swiss Federal Office of Meteorology and Climatology
(MeteoSwiss) has compiled a comprehensive assessment of
hail frequency and hail stone sizes for Switzerland based on
20 years of single-polarization radar data at 1 km spatial reso-
lution, providing an important basis for hail risk assessments
(Schroer et al., 2022; Trefalt et al., 2022). The climatology is
based on two hail products that are computed operationally:
the Maximum Expected Severe Hail Size (MESHS), which
is different from the widely used Maximum Expected Size
of Hail (MESH; Witt et al., 1998), and the Probability of
Hail (POH; Betschart and Hering, 2012). Both are based on a
height difference between the melting level and the height of
a given reflectivity level, a criterion introduced by Waldvogel
et al. (1979). MESHS and POH are physically meaningful
as they relate to the vertical extent of the thunderstorm up-
draught above the melting level, representing the hail growth
zone. A larger vertical extent is associated with a higher like-
lihood of hail as well as an increase in the potential size of
hailstones.

Single-polarization radar products such as MESHS and
POH provide valuable estimates of the occurrence of hail on
the ground as verified with, for example, insurance claims
(Holleman et al., 2000; Kunz and Kugel, 2015; Puskeiler
et al., 2016; Nisi et al., 2016), reports of observers and me-
dia (Cicd et al., 2015), and crowdsourced hail reports (Barras
et al., 2019). Verification based on insurance claims gener-
ally shows a high probability of detection (POD, fraction of
damage events that is predicted, often around 0.8 or larger)
but also a relatively high false alarm ratio (FAR, fraction of
predictions without damage, up to 0.8) (Kunz and Kugel,
2015; Puskeiler et al., 2016; Nisi et al., 2016; Warren et al.,
2020; Schmid et al., 2024). However, these metrics usually
strongly depend on the hail intensity threshold used to iden-
tify damaging hail, the objective selection of which is not
always possible. For example, one can choose the threshold
with the highest skill score (e.g. Puskeiler et al., 2016) or one
can require that frequency of damage prediction equals the
frequency of damage occurrence (i.e. a frequency bias of 1;
Warren et al., 2020). Further, these verification studies usu-
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ally rely on pragmatic choices regarding the scale of spatial
aggregation or the distance between damage claim and radar
signal tolerated. One reason for this is that insurance claims
are often only available at the municipality level, which is
typically much coarser than the resolution of the radar obser-
vations (~ 1 km). A strong dependence of the skill on the spa-
tial scale can be expected, as lowering the spatial resolution
(or increasing the tolerated distance between damage claim
and radar signal) increases the likelihood of overlap between
radar signals and damage (Holleman et al., 2000; Schmid
et al., 2024). The physical reasons for this are the horizon-
tal drift of hail by wind (e.g. Schiesser, 1990) and limita-
tions in the spatial accuracy of radar-based hail observations,
which rely on storm-related proxies to infer hail sizes on the
ground (Betschart and Hering, 2012). Also, information on
the presence and density of exposed assets (e.g. buildings,
cars, cropland) is essential for reliable skill metrics but has
often not been incorporated in previous verification studies.

Early efforts to relate crop damage to radar information
(Omoto and Seino, 1978; Seino, 1980; Schiesser, 1990) or
to hail pad measurements (Changnon, 1971; Morgan, 1976;
Katz and Garcia, 1981) derived crop-specific damage func-
tions based on data pairs of damaged fields and observed
measures of hail intensity. Schiesser (1990) presented dam-
age functions that link harvest loss at the field scale for in-
dividual crop types at various phenological stages to hail ki-
netic energy derived from single-polarization radar. Sanchez
et al. (1996) developed a statistical model to estimate har-
vest loss for barley and wheat based on hail sizes observed
by hail pads and meteorological observers in north-western
Spain. More recent efforts used satellite imagery to estimate
crop damage after a hail event (Bentley et al., 2002; Singh
et al., 2017; Prabhakar et al., 2019; Bell et al., 2020; Sosa
et al., 2021).

Despite past efforts to quantify hail damage to specific
crops, there is (to our knowledge) a lack of openly avail-
able models for assessing crop hail damage. Existing models
have been developed in the insurance industry and are pro-
prietary (AIR Worldwide, 2023). Here, we present an open-
source model to predict hail damage footprints to field crops
and grapevine in Switzerland based on operational radar
data and detailed information on agricultural land use. The
model is verified with geo-referenced damage claims from
SH. To make it accessible to stakeholders, the model is im-
plemented in the open-source natural catastrophe modelling
platform CLIMADA (CLIMate ADAptation) (Aznar-Siguan
and Bresch, 2019).

To extend the CLIMADA platform with a hail damage
footprint detection module, in this study hail intensity mea-
sures from operational, single-polarization radar (MESHS
and POH) are combined with detailed, crop-specific, geo-
referenced cropland information to build simple yes/no dam-
age models for field crops (wheat, corn, barley, rapeseed) and
grapevine at different spatial resolutions. The models are sys-
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tematically verified based on detailed, crop-specific damage
information from SH of 12 recent hail events in Switzerland.
More specifically, the following questions are addressed:

1. What spatial resolution is most suitable to model
hail damage footprints for field crops and grapevine
based on operational, single-polarization radar data in
Switzerland?

2. Is it possible to objectively define the best MESHS and
POH threshold(s) to model hail damage footprints?

3. How sensitive is the model performance to cropland
density?

While most of the study focuses on MESHS, the same
methodology is also applied to POH, and results are com-
pared.

The remainder of this paper is structured as follows. First,
the three main datasets are introduced and the model setup
and verification method described (Sect. 2). Then, how the
model skill depends on spatial resolution (Sect. 3.1) and
MESHS threshold (Sect. 3.2) is discussed. Subsequently,
the combined effect of threshold and resolution is analysed
(Sect. 3.3). The sensitivity of this combined effect to crop-
land density and the use of POH as a hazard variable is then
assessed in Sect. 3.4. Finally, the key results are discussed,
including how the use of alternative verification approaches
might affect them (Sect. 3.5). The paper ends with a sum-
mary of the key conclusions in Sect. 4.

2 Data and methods
2.1 Hail hazard data

In this study, single-polarization radar data products on a
1 km x 1 km regular grid are used to quantify hail intensity.
The Swiss radar network consists of five dual-polarization
Doppler C-band radars (black dots in Fig. 1) and has been
in place in this form since 2016 (Germann et al., 2016). The
two products used here, the Maximum Expected Severe Hail
Size (MESHS) and the Probability of Hail (POH), are com-
puted operationally by MeteoSwiss (Betschart and Hering,
2012; Trefalt et al., 2022; Germann et al., 2022). The under-
lying reflectivity data are mapped to a regular 1 km x 1 km
grid using a pre-calculated projection table relating polar to
Cartesian coordinates. Reflectivity is calibrated with multi-
ple independent sources of information, including various
types of weather echoes, ground clutter, signals from the sun,
and others (Germann et al., 2015). Radar signal attenuation
can lead to a bias in individual hail cells, but we expect this
bias to be small compared to the known inherent uncertainty
of hail detection from radar data, which is due to the in-
direct estimation of hail size. Note that direct hail size es-
timation is limited by resonance scattering effects in large
hail stones (e.g. Kaltenboeck and Ryzhkov, 2013). MESHS
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Figure 1. Study region showing exposed field crops (orange),
grapevine (purple), and both of the two categories (green), at
1 km resolution with at least one field per square kilometre, and the
five radar locations (black dots). Regions and lakes appearing in the
discussion of the results are named in blue.

describes the empirical relationship between the size of the
largest hailstone and the difference between the top of the
50dBZ echo and the freezing level height. It is computed
from the so-called “Treloar nomogram” of Joe et al. (2004),
which is based on Treloar (1998). MESHS ranges from a
minimum value of 20 mm to, theoretically, no upper limit.
Note that MESHS is designed to indicate the size of the
largest hailstone within 1km? and does not represent a spa-
tial average. Although it is not explicitly connected to ac-
tual hail size, positive relationships between MESHS and
crowdsourced hail sizes have been reported by Barras et al.
(2019). Here, daily (06:00-06:00 UTC) maximum MESHS
values are used to define a hail day (or hail event). We use
06:00 UTC (08:00 local time) to define a hail day because
it represents the minimum of the average daily hail activity
(Schroer et al., 2022). This minimizes the risk of splitting a
single hail event into 2 consecutive hail days.

POH is based on an empirical relationship between the
likelihood of hail at the ground and, similar to MESHS, the
height difference between the top of the 45 dBZ echo and the
environmental freezing level. It was originally introduced by
Waldvogel et al. (1979) and further developed by Witt et al.
(1998) and Foote et al. (2005). The form of the relationship
by Foote et al. (2005) has been used operationally by Me-
teoSwiss since 2008 (Trefalt et al., 2022). As for MESHS,
daily (06:00-06:00 UTC) maximum values are used.

To investigate how the model skill changes with reduced
spatial resolution, the radar data (MESHS and POH) are ag-
gregated at 2, 4, 8, 16, and 32 km spatial resolution using the
maximum value within each grid cell. The maximum is pre-
ferred over the mean because it largely conserves the value
range of MESHS and POH. Further, this approach is consis-
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tent with the assumption that the maximum intensity value
determines the occurrence of damage.

2.2 Agricultural exposure data

Detailed geospatial information on agricultural production
was obtained from official Swiss land use data (geodien-
ste.ch, 2022). The data are available only starting from 2021,
which we use here as a reference. The original data con-
tain polygons of each agricultural field and information on
its type of use and cultivated crop. For this study, the data
are aggregated to the number of fields and the total crop area
within a 1 km x 1 km grid for winter wheat, maize (includ-
ing silage and forage maize), winter barley, rapeseed, and
grapevine, based on the centre point of each field. Further,
an aggregate category called field crops is defined that incor-
porates winter wheat, maize, winter barley, and rapeseed. To
model hail damage footprints at the grid scale, these expo-
sure data are converted into a binary field depending on the
number of fields n within a grid cell.

0 7 < hresh
exposure = (H
I n > nipresh

If not specified otherwise, npyresh is set to 1. This means
that a grid cell is included as exposure if it contains at least
one field of the considered crop type (shown for field crops
and grapevine in Fig. 1). Because it is expected that the prob-
ability of damage increases with nypesh, the sensitivity of
the model skill to different choices of nresh 1S €xamined in
Sect. 3.4. Cropland density can be expressed as the num-
ber of fields per square kilometre (cropland number den-
sity, shown in Fig. Al) or, since the area of each field is
known, as the fraction of land area covered by a specific crop
(cropland area fraction). For nesh = 1 and 1 km spatial res-
olution, the average cropland densities (in grid cells where
the crops are present) are 36.7 (grapevine), 9.7 (field crops),
4.6 (wheat), 4.3 (corn), 2.5 (barley), and 2.4 (rapeseed). The
corresponding cropland area fractions are 7.3 % (grapevine),
14.4 % (field crops), 5.7 % (corn), 3.5 % (barley), and 4.2 %
(rapeseed). The gridded cropland data (number of fields, total
area) are provided open-source via the CLIMADA applica-
tion programming interface (API).

2.3 Model formulation

The model formulation evaluated here follows the risk frame-
work of the IPCC (IPCC, 2022) implemented in CLIMADA
(Aznar-Siguan and Bresch, 2019) and defines a hazard, expo-
sure, and an impact function. The impact function describes
the vulnerability of exposed assets to the hazard. Here, the
exposure consists of a binary field and the hazard consists
of the radar data (MESHS). The impact function is defined
by one threshold parameter s and represents a step function,
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which is 0 below s and 1 above s.

0 MESHS < s
fimp = 2

1 MESHS >

The impact, i.e. the damage footprint, is then computed as
the product of exposure and impact function.

impact = exposure - fimp 3)

The resulting impact is a binary field with 1 for grid cells
where there is modelled damage and 0 where there is not.

2.4 Damage claims

To evaluate the skill of this model, damage information is
obtained from claims data provided by the Swiss Hail In-
surance Company (SH) for 10 hail events between 2017 and
2021. Damage information includes the event date, location,
crop type, and harvest loss as estimated by employees of SH
in the field. Roughly a quarter of all claims indicated zero
harvest loss and were removed. This resulted in a total of
26292 crop-specific damage claims used for this study, out
of which 21 % are winter wheat, 26.5 % maize, 10 % rape-
seed, 8.5 % winter barley, and 34 % grapevine. About 76 %
of these claims contain explicit coordinates of the affected
fields, while the remaining claims are only provided at the
municipality level. To still be able to consider them in our
analysis, these remaining claims are randomly distributed on
all farmland (wheat, maize, barley, rapeseed) or all vineyards
(grapevine) of that community. This procedure was repeated
1000 times for wheat and grapevine to assess the uncertainty
associated with this random placement. It was found that the
95 % confidence interval for the skill metrics considered in
this study at 1km spatial resolution is below 1 % for wheat
and below 2 % for grapevine. Therefore, the uncertainty in-
troduced by the random placement is considered small.
Based on a careful comparison with radar data and
the Swiss Severe Weather Database (sturmarchiv.ch, 2024),
some damage claims related to nocturnal hailstorms were
re-dated to the previous day to match the time window of
the radar data (06:00-06:00 UTC). This resulted in a total of
12 hail days (see Table 1) instead of the 10 hail days provided
in the original data by SH. Two of the hail events (8 July
2017 and 1 August 2017) occurred when at least one of
the crops had already been completely or largely harvested.
These dates were identified by comparing the number of re-
porter damage claims for the various crops (no or only a few
claims for a crop but many claims for the other crops) (see
fourth column in Table 1). These dates were further verified
based on information on indicative starting dates for harvests
(wheat: end of July; barley: end of June; rapeseed: mid-July;
maize: October) (Schweizer Bauerinnen und Bauern, 2023).
Finally, to allow damage to be compared directly to expo-
sures and modelled damage footprints, damage claims were
gridded to the same 1 km x 1km grid as the exposure data.
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Table 1. Overview of the 12 investigated hail events.

2545

Date Number of Damaged crops Harvested crops Comment
claims
27 Jun 2017 2192  wheat, maize, barley, rapeseed, grapevine -
8 Jul 2017 2824  wheat, maize, barley, rapeseed, grapevine, apples  barley
1 Aug 2017 1267  wheat, maize, rapeseed, grapevine, apples wheat, barley, rapeseed  nocturnal hailstorm
15 Jun 2019 2185 wheat, maize, barley, rapeseed, grapevine, apples —
30 Jun 2019 632  wheat, maize, barley, rapeseed, grapevine - nocturnal hailstorm
1 Jul 2019 549  wheat, maize, barley, rapeseed, grapevine, apples —
20 Jun 2021 558  wheat, maize, barley, rapeseed, grapevine, apples —
21 Jun 2021 2228  wheat, maize, barley, rapeseed, grapevine, apples —
28 Jun 2021 7383  wheat, maize, barley, rapeseed, grapevine, apples -
12 Jul 2021 2109  wheat, maize, barley, rapeseed, grapevine, apples — nocturnal hailstorm
13 Jul 2021 96  maize, grapevine - weak hail event
24 Jul 2021 4269  wheat, maize, barley, rapeseed, grapevine, apples —

This gridded dataset indicates the number of damaged fields
separately for each crop type as well as the aggregate field
crops category. It is important to note that, in Switzerland,
average insurance coverage is 69 % for field crops and 43 %
for grapevine (SH, personal communication), indicating that,
in our study, the total number of damaged fields is probably
underestimated. This is expected to negatively affect model
skill, mainly via a larger number of false alarms.

Damage and exposure data are from different sources, and
therefore whether damage actually occurs where exposure
is identified is checked. The fraction of claims that are in
a 1km x 1km grid cell without exposure is small (wheat:
3 %; corn: 2 %; barley: 7 %; rapeseed: 11 %; field crops:
0.5 %; grapevine: 0.4 %) and decreases strongly for coarser
resolutions. For the aggregate category field crops, the mis-
match is significantly lower than for the individual crops. The
more relevant number for our study is the fraction of grid
cells with damage that have zero exposure because such grid
cells would artificially reduce model skill. This fraction is
larger but remains in the range of a few percent (wheat: 5 %;
corn: 4 %; barley: 9 %; rapeseed 13 %; field crops: 1.5 %;
grapevine: 4 %) and also decreases for coarser resolutions,
reaching almost zero at 8 km for all field crops and about
2 % for grapevine. Hence, a coarser resolution can efficiently
reduce the mismatch between damage and exposure, in par-
ticular for field crops. Note that the exposure used here is
in principle only valid for 2021. However, there are only
small differences in the mismatch between events in 2021
and events prior to 2021, indicating that this is not a major
source of uncertainty. To avoid artificially reducing the skill
of the model due to the (albeit small) mismatches, grid cells
with damage but no exposure are excluded from the verifica-
tion process. The gridded damage data (number of fields) are
provided open-source via the CLIMADA data APL
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2.5 Verification based on contingency table

To measure the model skill at different spatial resolutions and
for different MESHS or POH thresholds, we use a 2 x 2 con-
tingency table computed based on the joint distribution of
predictions and observations on all grid cells with non-zero
exposure (Table 2; cf. Wilks, 2019). According to the model
formulation, grid points with non-zero exposure that coincide
with a hail intensity larger than a threshold s are considered
damage predictions (a + b in Table 2). Grid points with non-
zero damage and non-zero exposure are considered damage
observations (a + ¢ in Table 2). From the four numbers of the
contingency table (a is hits; b is false alarms; ¢ is misses;
d is correct negatives), a range of scalar attributes and skill
metrics are computed (Wilks, 2019).

b a
FAR = POD =
a+b a+c
FB_a+b_ POD _ a+d
" a+c¢ 1—FAR Ca+b+c+d
a 1
CSI = =— :
(@a+b)a+c)+b+d)(c+d)
Pcrand= B
(@a+b+c+d)
HSS — PC — PCiand . 2(ad — bc)

1 —PCrnd (@t )c+d)+ (@+b)(b+d)

Here FAR denotes the false alarm ratio, POD the probability
of detection or hit rate, FB the frequency bias, PC the pro-
portion correct (also called accuracy), CSI the critical suc-
cess index (also known as threat score), and HSS the Heidke
skill score. For a perfect model, FAR is 0 and all other met-
rics 1, with an FB > 1 indicating over-forecasting and FB < 1
under-forecasting. PC and CSI are both measures of fore-
cast accuracy, but CSI has the advantage that it is a simple
measure to account for the trade-off between high POD and
low FAR (Roebber, 2009). However, PC has the advantage
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Table 2. The 2 x 2 contingency table.

Observation

yes no

b (false alarms)
d (correct negatives)

Prediction yes a (hits)
no ¢ (misses)

over CSI in that it takes into account the ability of the model
to correctly predict non-events (correct negatives, d in Ta-
ble 2). The HSS is a classical forecast skill score and quan-
tifies the PC of the forecast compared to the PC of a random
forecast, PCrang (perfect model: HSS = 1; no skill: HSS =0;
Heidke, 1926). The overall model performance in this study
is assessed based on the HSS. For comparison, prior stud-
ies achieved an HSS of radar-based hail detection around
0.3-0.5 (e.g. Kunz and Kugel, 2015; Ortega, 2018; Warren
et al., 2020), with Warren et al. (2020) regarding their values
around 0.5 as “moderate skill”.

3 Results
3.1 The effect of resolution on model skill

First, average model skill as measured by HSS across all
events and its dependence on spatial resolution is investi-
gated for each crop type individually for a MESHS threshold
of s =20mm (Fig. 2). For wheat, maize, rapeseed, and bar-
ley, model skill substantially increases with decreasing spa-
tial resolution up to 8 km and decreases or remains constant
for coarser resolutions. Aggregating them to one crop type
(field crops) conserves this behaviour but increases overall
skill. For grapevine, the behaviour is opposite: skill reduces
with decreasing resolution up to 8km and increases again
thereafter. The increased skill when verifying hail damage
on a larger scale is well known for neighbourhood-based ap-
proaches (Warren et al., 2020; Schwartz, 2017; Schmid et al.,
2024), even if these approaches have substantial method-
ological differences from our resolution-based approach. It
can essentially be explained by the reduced penalization of
forecasts due to spatial displacement from the observation
(hereafter referred to as the scale effect). However, the re-
duced skill with coarser resolution for grapevine cannot be
explained with the scale effect.

To further explore this contrasting behaviour, the effect
of resolution on model skill is considered for individual
events for both wheat (Fig. 3) and grapevine (Fig. 4) with
s =20 mm. Focusing on wheat at 1 km (Fig. 3a, c, e, and g),
high average POD and FAR (both around 0.8) are found,
with considerable differences between events. We discuss
three representative examples (a shifted forecast, an over-
forecast, and a good forecast) in more detail. An event with
low skill (HSS =0.16, POD =0.47, FAR =0.89) occurred
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Figure 2. Skill (HSS) of the prediction of hail damage footprints
with MESHS (20 mm threshold) for wheat (blue), maize (orange),
rapeseed (green), barley (red), and grapevine (dotted grey), as well
as the aggregate class field crops (dashed black, includes wheat,
maize, rapeseed, barley), as a function of spatial resolution.

on 15 June 2019 over western Switzerland (Fig. 3a). In this
case, the observed damage footprint (grey and blue grid cells)
is shifted to the east relative to the predicted damage footprint
(red and blue grid cells), resulting in many misses and false
alarms and few hits. Then, 28 June 2021 (Fig. 3c) was an
extreme hail event with an exceptionally large spatial extent
(Kopp et al., 2022) (HSS =0.21, POD =0.91, FAR =0.81).
It is characterized by many false alarms, notably over north-
eastern Switzerland. This results in low skill despite the
high POD. With a large frequency bias (FB =4.8) this fore-
cast can be characterized as over-forecast. Finally, the event
on 12 July 2021 (Fig. 3e) has the best skill (HSS=0.51,
POD =0.61, FAR =0.53). The main damage footprint over
north-eastern Switzerland was captured very well, but a num-
ber of misses at the edges of the damage footprint and scat-
tered over the Swiss Plateau leads to a lower POD compared
to the previous example.

Reducing the resolution to 8 km affects the verification
statistics for the three cases differently (Fig. 3b, d, f, and g).
The shifted forecast (15 June 2019; Fig. 3b) greatly improves
(HSS = 0.42) due to a substantially higher POD (0.93) and a
lower FAR (0.67). This is mainly because the coarser res-
olution compensates for the spatial shift of a few kilome-
tres, which turns misses and false alarms into hits. The over-
forecast (28 June 2021; Fig. 3d) also improves (HSS = 0.38)
but mostly because of a lower FAR (0.57), while POD re-
mains unchanged. The coarser resolution effectively elimi-
nates the red “holes” of false alarms that occur between the
blue areas of hits. However, its impact on misses is limited,
considering they were already minimal at the 1 km resolu-
tion. Similarly, the more cohesive damage footprint at 8 km,
in comparison to 1 km, contributes to a reduced FAR (0.38)
for the good forecast (12 July 2021; Fig. 3f). However, the
overall skill remains largely unchanged due to the increased
significance of individual scattered damage reports over the
Swiss Plateau, resulting in a lower POD (0.55; without these
reports, POD would be 0.73). HSS increases for all 10 con-
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Figure 3. (a, ¢, ) 1 km x 1 km and (b, d, f) 8 km x 8 km grid cells classified as false alarms (red), hits (blue), and misses (grey) for damage
to wheat based on MESHS > 20 mm. Dates shown are (a,b) 15 June 2019, (c,d) 28 June 2021, and (e,f) 12 July 2021. Unshaded cells
indicate grid cells without exposure. (g) FAR, POD, and HSS for all 10 recorded events and for (filled symbols) 1 km spatial resolution and
(empty symbols) 8 km spatial resolution. Black boxes in panel (g) indicate the events shown in panels (a—f).

sidered events if spatial resolution is reduced from 1 to 8 km
(Fig. 3g). However, there are substantial differences in the
magnitude of the increase between events. The FAR reduces
with lower resolution for all events, and POD increases for 7
out of 10 events. POD does not increase for events where it
is already very high (e.g. the over-forecast) or where many
misses are located far away from the modelled damage foot-
print (e.g. the good forecast).

https://doi.org/10.5194/nhess-24-2541-2024

For grapevine, the story is different (Fig. 4), as illustrated
with the 15 June 2019 event. At 1km, the model predicts
damage footprints for grapevine well (HSS =0.47; Fig. 4a
and g). Reducing the resolution to 8 km in this case increases
the FAR from 0.65 to 0.78 and reduces HSS to 0.30 despite a
higher POD (Fig. 4b and g). A similar behaviour is observed
for the 24 July 2021 event (Fig. 4e, f, and g), while for the
28 June 2021 event, the skill remains unchanged (Fig. 4c,
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Figure 4. As Fig. 3 but for grapevine on (a,b) 15 June 2019, (c,d) 28 June 2021, and (e, f) 12 July 2021 and (g) FAR, POD, and HSS for all
12 recorded events. Grey hatched boxes in panel (g) show events with a modelled damage footprint below 80 km?.

d, and g). Considering all events, the following overall pat-
tern emerges (Fig. 4g): reducing the resolution reduces HSS
or does at least not increase it significantly despite a higher
POD. This is in contrast to the behaviour for wheat. The dif-
ference mostly arises because FAR generally increases for
grapevine but consistently decreases for wheat. A key differ-
ence between the two considered crops is that the damage
footprints for grapevine are more heterogeneous and scat-
tered than for wheat due to the very localized distribution
of grapevine in the landscape compared to the spatially more

Nat. Hazards Earth Syst. Sci., 24, 2541-2558, 2024

even distribution of wheat. Many false alarms appear in the
regions with a low density of grapevine, while hits popu-
late the regions with high grapevine density, notably at the
shores of Lake Geneva and the Three Lakes Region in west-
ern Switzerland and Lake Zurich in the north-east. Reduc-
ing the resolution mainly increases the fraction of these false
alarms, leading to lower skill (Fig. 4e—g).

It is clear that the scale effect tends to reduce FAR with
coarser resolution, irrespective of the crop’s spatial distri-
bution. To understand the behaviour for grapevine, an addi-
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tional effect of a coarser resolution on FAR has to be consid-
ered: the chance of a false alarm also depends on cropland
density (hereafter referred to as the density effect). The main
reason for this is the enormous variability in hail within a
storm at the scales of a few hundred metres (Morgan and
Towery, 1975; Ortega et al., 2009) combined with insured
fractions of fields well below 100 %. Hence, the average
FAR at 1km grid points with 1 field is higher (wheat: 82 %;
grapevine: 79 %) than at grid points with 10 fields (wheat:
74 %; grapevine: 60 %). In conclusion, if cropland density
strongly decreases with coarser resolution, FAR will increase
accordingly. For a crop that is widespread across the domain,
average cropland density within a grid cell is less dependent
on the resolution (even if density within individual 1 km grid
cells varies). However, the more a crop occurs fragmented
in distinct parts of the domain, the stronger cropland den-
sity decreases with coarser resolution. Hence, this density
effect contributes to an increase in FAR. For wheat, the aver-
age cropland density within a grid cell decreases by slightly
more than a factor of 2 from 4.6 fields per square kilome-
tre at 1km to 1.9 fields per square kilometre at 8 km reso-
lution. For grapevine, however, it decreases from 36.7 fields
per square kilometre to 4.2 fields per square kilometre which
is about a factor of 9 (note that the results are almost iden-
tical if cropland area fraction is used). The reason for these
differences can also be expressed in terms of an areal infla-
tion factor, i.e. the area covered by all exposure grid cells
at a given spatial resolution divided by the area covered by
all exposure grid cells at 1 km resolution. By this definition,
the inflation factor is 1 at 1 km resolution and increases for
coarser resolutions (Fig. A2). At all resolutions, these infla-
tion factors are much larger for grapevine than for wheat.

In conclusion, the scale effect dominates over the density
effect for wheat, and the density effect dominates over the
scale effect for grapevine. Hence, to achieve a good skill
when modelling hail damage footprints it is beneficial to re-
duce the resolution from the original 1 km to about 8 km for
field crops, while 1 km provides the best skill for grapevine.

3.2 The effect of MESHS threshold on model skill

Next, we aim to identify suitable MESHS threshold(s) to
model hail damage footprints for field crops and grapevine.
An often used method to determine an ideal hail intensity
threshold is to evaluate a skill metric (e.g. HSS or CSI) as a
function of threshold and determine the location of the max-
imum (e.g. Puskeiler et al., 2016; Kunz and Kugel, 2015).
However, for wheat and grapevine at 1 km resolution, CSI
and HSS do not exhibit a clear maximum. They remain
largely unchanged up to 40 mm for field crops and 35 mm
for grapevine and decline at higher thresholds (Fig. 5). Note
that the sample size for grapevine is substantially smaller,
especially at large MESHS thresholds (grey bars in Fig. 5),
leading to larger uncertainty of the exact skill values. War-
ren et al. (2020) suggest to additionally constrain the op-
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Figure 5. POD (blue), FAR (red), HSS (dotted black), and CSI
(dashed black) as a function of MESHS threshold for (a) field
crops and (b) grapevine at 1 km resolution. Vertical green bars show
thresholds with frequency biases (FB) of approximately 1 and 2, and
grey bars show the total number of hail damage predictions (hits and
false alarms) at each threshold, as indicated by the vertical axis on
the right. The total number of predictions for a MESHS threshold
of 20 mm is indicated at the top of each panel.

timal threshold with the condition that FB is close to 1 to
avoid over-forecasting. Here, this would result in an optimal
threshold above 40 mm for wheat and 45 mm for grapevine.
Conversely, a MESHS threshold of 30 mm for field crops
would result in a frequency bias of 2; i.e. it results in twice as
many forecasts than observations. Hence, selecting a thresh-
old comes with a trade-off between (i) a high POD (blue line
in Fig. 5) and (ii) a low FAR (red line in Fig. 5) and FB closer
to 1.

3.3 Combined effects of resolution and threshold on
model skill

To provide an overview of the combined effects of resolu-
tion and threshold on model skill, the performance diagram
is used (Fig. 6; Roebber, 2009; Wilks, 2019). The perfor-
mance diagram shows the relationship between POD and 1-
FAR (i.e., one minus the false alarm ratio, also known as
the success ratio) for spatial resolutions of 1, 4, and 8 km
and MESHS thresholds of 20, 30, and 40 mm. A perfect
model is located in the top right of the diagram. For field
crops (Fig. 6a) it becomes evident that, for all three resolu-
tions, an increase in the threshold strongly reduces POD but
also reduces FAR and FB (dashed diagonal lines), leaving its
skill, as measured by CSI, practically unchanged (shading).
Reducing the model resolution shifts the points in the dia-
gram towards the top right, i.e. increases the skill by strongly
decreasing FAR and increasing POD. Note that the more
favourable skill measure, HSS, can not be shown in the per-
formance diagram directly, as, unlike CSI, it also depends on
the number of correct non-events, d. However, CSI behaves
similar to HSS for resolutions below 8 km.

The diagram also reveals the key differences between
grapevine and field crops (Fig. 6b). Consistent with the re-
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Figure 6. Performance diagrams showing POD versus 1-FAR, CSI (shading), and frequency bias (dashed lines) for (a) field crops and
(b) grapevine for MESHS thresholds of 20, 30, and 40 mm and spatial resolutions of 1, 4, and 8 km.

sults from Sect. 3.1, the main difference is that, for grapevine,
the FAR is not reduced with coarser resolution but even
slightly increased for a given threshold (i.e. the “threshold—
resolution web” is squeezed together in the horizontal direc-
tion). This results in a tendency for lower skill despite the
small increase in POD. An exception is the slight increase in
CSI for the 40 mm threshold from 1 to 8 km resolution due to
a substantial increase in POD and an almost unchanged FAR.
This is because in this region of the phase space, CSI is more
sensitive to changes in POD than changes in FAR.

3.4 Sensitivity to cropland density and hazard variable

Here, the sensitivities of the model performance to cropland
density (via npresh) and the selection of an alternative radar
product (POH) are discussed.

The sensitivity to cropland density is substantial. An in-
crease in ngpresh leads to a decrease in FAR for all crops
(Fig. 7), while POD remains largely unaffected (not shown).
For npresh values up to around 20 for field crops (8 km res-
olution) and 10 for grapevine (at 1 km resolution), the FAR
decreases strongly by about 10 percent points for field crops
and about 20 percent points for grapevine. Beyond these
thresholds, the curve tends to flatten out. Increasing nresh
comes with the cost that the fraction of fields included is re-
duced (Fig. A3). Hence, an optimal value of ngpyesh reduces
FAR as much as possible but keeps the included fraction of
fields or crop area high. Here, a pragmatic choice for all field
crops at 8 km resolution is nresh = 20, which maintains 95 %
of fields for rapeseed, 96 % for barley, 98 % for wheat and
maize, and 99 % for the combined field crops (Fig. 7a). Note
that, for certain crops, even higher nqresh values are justi-
fied (e.g. wheat, maize, field crops; see Fig. A3a). For the
aggregate crop class field crops, nyresh = 100 (or larger) still
preserves 96 % of fields; however, the associated reduction
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in FAR is rather modest (approx. 5 percentage points). Very
similar numbers are the result when crop area is considered
instead of field number. For grapevine at 1 km resolution,
a suitable choice is nresh = 10, which reduces FAR by al-
most 0.2 and still preserves 95 % of the number of vineyards
(Figs. 7b and A3b). However, it conserves only 86 % of vine-
yard area, which would also justify a lower threshold.

The effect of nresh = 20 for field crops on model perfor-
mance is illustrated using a performance diagram (Fig. 8a).
For all resolutions, the threshold-resolution web shifts to the
right in the diagram compared to the original ngpesh = 1.
Hence, FAR is substantially reduced, and POD remains
nearly constant, leading to higher skill. Note, however, that
the choice of the optimal ngyesh heavily depends on the cho-
sen spatial resolution. In other words, an nresh =20 pre-
serves 99 % of field crops at 8 km resolution but less than
30 % at 1 km resolution.

Finally, the sensitivity of model performance to the selec-
tion of POH instead of MESHS is tested (Fig. 8b). The model
is tested for POH thresholds of 70 %, 85 %, and 100 % at spa-
tial resolutions of 1 4, and 8 km and with nyesp = 1. Com-
pared to MESHS, the threshold-resolution web is shifted to-
wards the top left in the performance diagram. This indi-
cates higher POD but also a higher FAR and lower overall
skill. These results are consistent with previous studies (Nisi
et al., 2016; Schmid et al., 2024). Further, the highest pos-
sible threshold (100 %) still exhibits a large frequency bias
(> 1.5), limiting POH-based models to applications where
over-forecasting is not a problem.

3.5 Discussion
The optimal resolution was found to differ for field crops

(8 km) and grapevine (1 km). It was argued that two compet-
ing effects play a role: first, the scale effect tends to increase
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Figure 7. Change in FAR as a function of nesh (number of fields per grid cell) for (a) wheat (blue), maize (orange), rapeseed (green),
barley (red), and field crops (black, dashed) at 8 km resolution and for (b) grapevine at 1 km resolution. The vertical bars denote pragmatic
choices of nyregh that limit FAR but still retain a large fraction (> 95 %) of the total exposed crop area and number of fields.
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Figure 8. Performance diagrams for field crops for (a) alternative exposure with nesh =20 and (b) an alternative radar product (POH at
thresholds of 70 %, 85 %, and 100 %). The values indicated with the red shape correspond to those shown in Fig. 6a (MESHS, n¢resh = 1)-

skill for coarser resolutions because larger distances between
forecast and observed damage are tolerated (Warren et al.,
2020; Schwartz, 2017; Schmid et al., 2024). Second, the fact
that the area covered by the exposure grid cells is artificially
inflated with coarser resolution leads to lower cropland den-
sities and hence higher chances of false alarms, which re-
duces skill (density effect). The effect of a changing cropland
density is particularly relevant because hail storms are very
localized phenomena with a high within-storm spatial vari-
ability (Morgan and Towery, 1975; Ortega et al., 2009). The
density effect strongly depends on the spatial distribution of
crops: it is larger for crops that are scattered unevenly (like
grapevine) and smaller for crops that occur more homoge-
neously distributed across the domain (like wheat and other
field crops). Hence, reducing the spatial resolution is only
beneficial for crops that are sufficiently evenly distributed in
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the landscape. We acknowledge that it remains open what
“sufficiently” means in this context. The dependence of crop-
land density on spatial resolution has also been discussed
by Griffith et al. (2000). In fact, it is a property that can be
found for the aggregation of any spatially heterogeneously
distributed feature. For example, Baker et al. (2007) found
that the density of drainage channels per unit area strongly
decreased with coarser resolution.

Considering the MESHS threshold, the identified trade-off
between achieving either a high POD or a low FAR and an
FB close to 1 signifies that the optimal threshold depends on
user needs and the relative costs of a false alarm versus a
missed event. For example, if an insurance company wants
to use this model to verify damage claims, it will prioritize
a low threshold with a high POD. On the other hand, if sci-
entists or governments use this model to communicate the
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damaged crop area after a hail event, they may want to avoid
a systematic overestimation of the damage extent and choose
a higher threshold. To incorporate the costs of false alarms
and missed events in decision-making with this model, user-
tailored cost-loss models would have to be developed (de
Elia, 2022). It is important to note that the best threshold for
end users is not necessarily the one with the highest skill but
depends on their specific cost functions (Manzato, 2007).

The strongly reduced FAR with a larger minimum num-
ber of fields within a grid cell (ngyresh) 1S again related to
the large within-storm spatial variability in hail. The lower
the cropland density, the higher the chances that a hail event
does not lead to damage; i.e. a false alarm occurs despite the
presence of hail. Hence, hail damage footprints can be bet-
ter modelled within the main crop production areas. These
results are comparable to Tian et al. (2018), who found that
the FAR of satellite-based detection of rainfall decreases with
increased rain gauge density.

Finally, it is noted that other verification procedures exist
than the ones used in this study. Two alternatives and their
effect on our results are briefly discussed. First, Ebert and
Milne (2022) suggest the use of the Pierce skill score (PSS;
Peirce, 1884) as an alternative to HSS for rare and severe
events. One of their arguments in favour of PSS is that it is
the only skill measure taking into account that, for rare and
severe events, misses tend to be more problematic than false
alarms. For more details on this discussion, the reader is re-
ferred to Ebert (2008). PSS favours a high POD and hence, in
our case, a MESHS threshold of 20 mm. Because of its high
POD, a POH-based model therefore outperforms a MESHS-
based model when evaluated using PSS instead of HSS. PSS
of the MESHS-based model for field crops remains nearly
constant with coarser resolution until 8 km but decreases for
even coarser resolutions, which corroborates the meaningful-
ness of the selection of an 8 km resolution.

Second, the use of fuzzy forecast verification has been pro-
posed as an alternative to point-based techniques to verify
precipitation forecasts (Ebert, 2008). An often-used fuzzy
verification metric is the fraction skill score (FSS), which
measures the fractional coverage of events in windows of
different length scales around observations and forecasts
(Roberts and Lean, 2008). It can be used to identify the scale
at which a forecast should be believed. Using nyresh = 20 we
find that models for field crops are skilful (FSS > 0.5) be-
yond a scale of 4 km and for MESHS thresholds between 20—
30 mm. In general, the skill increases with larger scales and
lower model resolutions. However, the 8 km model does not
have a larger FSS than the 4 km model. This perspective con-
firms that modelling hail damage footprints is not skilful at
the 1km scale but suggests that a 4 km resolution could also
be a suitable choice. Considering grapevine (7hresh = 10),
the lowest scale at which skilful prediction is possible is 6 km
at a threshold of 20 mm. The FSS confirms that the skill does
not improve with coarser spatial resolution except for very
large scales beyond 64 km.
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4 Conclusions

This study presents an open-source model implemented in
the open-source natural catastrophe modelling platform CLI-
MADA (Aznar-Siguan and Bresch, 2019) to predict hail
damage footprints (occurrence of hail damage) for individ-
ual crops after the passage of a hailstorm based on the
operational single-polarization meteorological radar product
MESHS and detailed agricultural land use data. Damage in-
formation from a crop insurer was used to quantify the skill
of the model with different skill metrics. The main goal was
to assess the model performance for different choices of spa-
tial resolution (aggregation), MESHS threshold, and thresh-
old of the minimum number of fields used to define exposure
(cropland density).

For field crops (wheat, maize, rapeseed, barley) the model
performance improves substantially when coarsening spatial
resolution from 1 to 8 km, mainly because it relaxes the re-
quirement for exact spatial overlap of modelled and observed
damage footprints (scale effect). Beyond 8 km, model skill
tends to reduce again. In contrast, for grapevine, coarser res-
olution tends to lower model skill. We conclude that this dif-
ference between field crops and grapevine is mainly related
to the different spatial distribution of these crops in the land-
scape (scattered for grapevine versus more homogeneous for
field crops), which determines how strongly cropland density
decreases with coarser resolution. A lower cropland density
leads to a higher chance of a false alarm (density effect). For
wheat, the scale effect dominates, while for grapevine the
density effect dominates.

Increasing the MESHS threshold from 20 to 40 mm
strongly decreases the probability of detection (POD) for hail
damage but also reduces false alarm ratio (FAR) and fre-
quency bias (FB). The overall skill (HSS) is only moderately
affected by the threshold selection due to the trade-off be-
tween POD and FAR that has to be aligned with user needs
and their specific cost functions.

Model performance can be substantially improved at all
resolutions by selecting a higher minimum cropland density
(nthresh) for the exposure definition mainly due to a reduction
in FAR. Considering an alternative radar-based hail product
(POH) reveals higher POD, higher FAR, and lower skill com-
pared to MESHS, confirming previous studies (Nisi et al.,
2016; Schmid et al., 2024).

Finally, the key skill metrics of selected representative
model setups for the best resolution (8 km for field crops,
1km for grapevine) are shown in Table 3. For all crops,
MESHS thresholds of 20 and 30 mm outperform a MESHS
threshold of 40 mm, in particular for higher npresh. In gen-
eral, a larger ngresn Will yield results closer to the “true”
skill of MESHS, i.e. the skill it would have given a gap-
less hail detection network on the ground, but comes at the
cost of a reduced number of data points for verification.
The best-performing setups (HSS~0.53) for field crops are
achieved at 8 km resolution and reach a POD of about 0.8
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Table 3. Most suitable model setups (resolution, MESHS threshold s, cropland number density threshold nesp) for field crops (aggregate
crop class including wheat, maize, rapeseed, and barley) and grapevine with the associated skill metrics, including the probability of detection
(POD), the false alarm ratio (FAR), the Heidke skill score (HSS), and the frequency bias (FB).

Crop type Parameters ‘ Skill metrics
Resolution (km) s (mm)  ngpresh ‘ POD FAR HSS FB
Field crops 8 20 100 | 0.80 0.48 0.53% 1.54
Field crops 8 20 20 | 081 054 049 1.79
Field crops 8 20 1] 082 064 041 2.27
Field crops 8 30 100 | 0.67 042 0.54% 1.13
Field crops 8 30 20 | 0.68 049 051 1.33
Field crops 8 30 1] 068 060 044 1.69
Field crops 8 34 100 | 059 040 052 0.99°
Field crops 8 34 20 | 0.61 047 049 1.15
Field crops 8 40 100 | 048 035 047 074
Field crops 8 40 20 | 0.50 043 0.47 0.88
Field crops 8 40 1| 050 054 042 1.09
Grapevine 1 20 10 | 070 0.61 0.48* 1.78
Grapevine 1 20 1| 075 079 030 3.54
Grapevine 1 30 10 | 054 056 047 1.23
Grapevine 1 30 1] 057 076 032 241
Grapevine 1 34 10 | 044 0.55 042  0.99°

2 Highest skill for this crop type. b Frequency bias closest to 1 for this crop type. Note that n,esh = 100 is only a
sensible choice for the aggregate field crops class due to its high cropland density. For individual crop types, lower

values like nyegnh =20 are to be preferred.

combined with a FAR of about 0.5 (for MESHS > 20 mm)
or a POD around 0.7 combined with a FAR of about 0.4
(for MESHS > 30 mm). For grapevine, the best performance
(HSS ~ 0.48) is achieved at 1km and reaches either a POD
of around 0.7 and a FAR of 0.6 (for MESHS > 20 mm) or a
POD and FAR of around 0.55 (for MESHS > 30 mm). We
note again that the suitable threshold depends on the purpose
for which the model is used. For climatological purposes, it is
important that the frequency bias is close to 1. While thresh-
olds of 20-30 mm strongly overpredict damage occurrence
(FB > 1), a threshold of 40 mm underpredicts it (FB < 1).
The MESHS threshold with FB closest to 1 is 34 mm for both
field crops at 8 km and grapevine at 1 km and is hence rec-
ommended to derive accurate climatological frequencies of
crop hail damage occurrence.

These results are comparable to previous verification ef-
forts of MESHS (Nisi et al., 2016) or the original Waldvo-
gel et al. (1979) criterion (Puskeiler et al., 2016), as well
as MESH (Cintineo et al., 2012; Skripnikova and Rez4dova,
2014; Kunz and Kugel, 2015; Warren et al., 2020), although
methodological verification approaches substantially differ
from ours. Traditionally, verification of radar-based hail de-
tection has focused on the dependence of the skill on the hail
intensity threshold. Our work highlights that it is crucial to
also consider the dependence on spatial scale and the density
of the verification data.
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The model presented here provides a first step towards
the (operational) modelling of hail damage as well as hail
risk assessments for crops in Switzerland. It is important to
note that larger damage datasets would substantially increase
the robustness of the results due to the large event-to-event
variability. Gridded exposure and damage information is pro-
vided open-source via the CLIMADA data API to facilitate
its use for operational purposes as well as the further devel-
opment and validation of (hail) damage models for crops in
Switzerland.
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Appendix A
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Figure Al. Cropland number density at 1km spatial resolution for (a) wheat, (b) maize, (c) rapeseed, (d) barley, (e) field crops, and
(f) grapevine.
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Figure A2. Total area covered by all exposure grid cells at a given spatial resolution divided by the area covered by all exposure grid cells at
1 km resolution (inflation factor) for wheat (blue) and grapevine (grey, dashed).
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Figure A3. Change in the fraction of total number of fields included in the exposure as a function of nyen for (a) wheat (blue), maize
(orange), rapeseed (green), barley (red), and field crops (black, dashed) at 8 km resolution and for (b) grapevine at 1 km resolution. In (b) the
fraction of cropland area is also shown (dashed) because it deviates substantially from the fraction of fields for grapevine but not crops shown
in panel (a). The vertical bars denote the pragmatic choices of ngesy (panel a: 20; panel b: 10) that avoids FAR that is too high but still
includes a large fraction (> 95 %) of total exposed crop area and number of fields (see Fig. 7).

Code and data availability. The code (Python 3.9) to produce
the figures in this paper and run the model is available at
https://doi.org/10.5281/zenodo.12784190 (Portmann et al., 2024d).
Gridded exposure, damage, and hazard information is avail-
able via the CLIMADA data API at https://climada.ethz.ch/
data-types/ (ETH Zurich, 2024) as well as Zenodo (exposure:
https://doi.org/10.5281/zenodo.11064756, Portmann et al., 2024a;
damage: https://doi.org/10.5281/zenodo.11064767, Portmann et
al., 2024b; hazard: https://doi.org/10.5281/zenodo.11064781, Port-
mann et al., 2024c). CLIMADA is open-source and open-access
software (https://doi.org/10.5281/zenodo.7691855, Aznar Siguan et
al., 2023) and can be used with any user-provided portfolio under
the General Public Licence gpl-3.0.
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