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A B S T R A C T

Managed pastures are strong sources for the greenhouse gas nitrous oxide (N2O) through various nitrogen (N)
inputs. So far, chamber measurements have been used to quantify N2O emissions and emissions factors of specific
emissions sources like grazing cattle excreta. This study presents a three-year dataset of N2O emissions from a
grazed and fertilized pasture measured by eddy covariance (EC) in eastern Switzerland. N2O fluxes were gap-
filled and disaggregated into the emission sources (flux partitioning) by using random forest. The excreta N
deposition in the pasture was estimated based on a cattle nitrogen budget approach using observed milk yield,
body weight and feed intake of the cattle herd. Furthermore, a driver analysis was performed to quantify the
relationship between N2O emissions and predictor variables. The observed annual N2O emissions amounted to
5.3 ± 0.8, 3.1 ± 0.5 and 4.4 ± 0.7 kg N2O-N ha-1 yr-1 and were disaggregated into background, fertilizer and
excreta related N2O emissions with contributions of 27–46 %, 15–40 % and 30–51 %, respectively. Combining
the excreta N2O fluxes with the excreta N inputs resulted in an average emission factor (EF) for cattle excreta of
1.1 ± 0.5 %, that tends to be higher than the IPCC default value of 0.6 % for wet climates. While maximum N2O
emissions usually were observed after fertilizer application and under optimum soil moisture conditions as ex-
pected, distinct N2O emission peaks also occurred during a longer drought period in summer and could be
parametrised as a function of precipitation and previous grazing activity. Moreover, peak N2O emissions
occurred during the cold season at low temperatures and should be considered in future studies. Overall, we
suggest that EC measurements under pasture conditions with subsequent flux partitioning by random forest are
suitable for quantifying pasture N2O emissions of different sources.

1. Introduction

Nitrous oxide (N2O) is a powerful greenhouse gas (GHG) with a
global warming potential ~300 times higher than carbon dioxide (CO2)
and is an ozone depleting molecule. Agricultural systems emit sub-
stantial amounts of N2O, accounting for more than 50 % of global
anthropogenic N2O emissions (Kroeze et al. 1999; IPCC 2006). Nitrogen
(N) input from N-fertilizers and excreta of grazing cattle is the main
culprit for these emissions (Russelle 1992; Zheng et al. 2023). However,
N inputs via harvest residues, atmospheric deposition (Ackermann et al.
2019; Du et al. 2021) and biological fixation (Reinsch et al. 2020) need
to be taken into account too.

Pasture systems are particularly vulnerable to N2O emissions,
through excreta of grazing cattle containing essential amounts of N up to
2000 kg N ha-1 (Selbie et al. 2015). For the calculation and reporting of

N2O emissions (F(N2O)) from pasture systems at the national scale
following the IPCC guidelines, annual average emission factors (EF) are
used, i.e., the fraction of N inputs (IN) emitted as N2O. In the default
IPCC methodology of Tier 1, a common emission factor (EF1) of 1 % is
used for fertilization (fertil), atmospheric N deposition (dep) and harvest
residues (resid). The default value (EF3) for cattle excreta is 0.4 %,
disaggregated into 0.6 % for wet climates and 0.2 % for dry climates
(IPCC 2006; IPCC 2019). Hence, the total F(N2O) is calculated as:

F(N2O) = EF1⋅
(
IN− fertil + IN− dep + IN− resid

)
+ EF3⋅IN− excreta (1)

However, the global default EF3 value is based on limited experi-
mental studies, mainly from New Zealand and the United Kingdom
(Beltran et al. 2021), and may not reflect regional conditions. The data
availability for EF1 is greater though. However, reported observed
values for both EF3 and EF1 show large variabilities (Luo et al. 2019;
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Walling et al. 2020). This is also why it is recommended to adopt higher
Tiers, e.g. country-specific EFs, to improve the quantification of N2O
emissions at the national scale. Emissions resulting from IN-resid and
IN-dep are, like the respective inputs, assumed to occur continuously over
the entire growing season or year. Therefore, they are often considered
as ‘background’ fluxes F(N2O)bg, on which fertilizer and excreta related
emissions are superimposed.

Chamber measurements have been used in most cases to measure
N2O emissions as they are ideal to observe individual emission sources
(like urine/dung patches or fertilizer applications) on small spatial areas
(typically < 1m2) together with respective background or control
measurements. Therefore, chamber measurements enable the calcula-
tion of EF values and the comparison of different treatments (Barczyk
et al., 2023; Singh et al., 2021; van Groeningen et al., 2005a,b). How-
ever, chambers may alter the microclimate and soil conditions, when
inserting frames into the soil, which can affect N2O production and
consumption processes (Duchicela et al. 2021). The spatial heteroge-
neity of soils (Shi et al. 2021) require many chamber replicates for a
precise evaluation of N2O fluxes which is not feasible in many studies (e.
g. for cost reasons or due to time constraints). Furthermore, it is advised
to measure with high time resolution (e.g. every two hours) to capture
the temporal variability of N2O fluxes, in particular after N applications
and precipitation (van der Weerden et al. 2013; Grace et al. 2020).
Automated chamber systems can measure at higher frequencies than
manual chambers (Savage et al. 2014; Wang et al. 2016). However,
manual chambers are used more often than automated chambers
because they require less technical expertise to operate and are less
expensive (O’Connell et al. 2022).

Micrometeorological methods like the eddy covariance (EC) method
offer several advantages over the chamber method. They measure on
scales from several hundred m2 to several hectares and in a high tem-
poral resolution (commonly at half-hourly time intervals). Thus, they
are able to integrate over the spatial heterogeneity of soils, and to
encompass multiple emission sources. However, the EC holds limitations
like the requirement for homogenous turbulent atmospheric conditions
and flat terrain (Nemitz et al. 2018), or the susceptibility to high fre-
quency damping errors (Moncrieff et al. 1996). Furthermore, EC mea-
surements yield a total flux, thus a partitioning is necessary to quantify
the contribution of individual N sources. Currently, a combined
approach of EC measurements and chambers is considered as the best
solution to identify N2O flux sources (and sinks) and to quantify the
contribution of different flux sources (Jones et al. 2011; Voglmeier et al.
2019; Wecking et al. 2020; Murphy et al. 2022). In agricultural eco-
systems without grazing, significant N inputs only occur a few times per
year through fertilizer applications that are separated by longer time
intervals (typically > 1 month). Thus the fertilizer effects can be parti-
tioned from background emissions relatively easily by relatively few
simultaneous chambermeasurements (e.g. Jones et al. 2011). For grazed
systems, however, it is not possible to simulate every single grazing day
due to time constraints, thus single chamber experiments on artificially
applied excreta patches were performed in Wecking et al. (2020) and
Murphy et al. (2022). The results were integrated over the whole grazing
season, thereby not accounting for seasonal variabilities linked to
changes in soil moisture or temperature. Voglmeier et al. (2019)
measured mainly during dry conditions on real urine and dung patches
within a three-month measurement campaign, though parameterized
urine and dung fluxes as a function of environmental drivers.

One important issue of EC N2O fluxes is, however, the filling of gaps
in the flux time series. Fuchs et al. (2018), for instance, evaluated the
effect of fertilization by quantifying N2O emissions of two differently
managed parcels with one EC tower based on the wind direction.
Consequently, the flux time series was split into two separate flux time
series (for each parcel) causing low data coverages of < 50 %.
Furthermore, there is yet no standard gap-filling approach for N2O
fluxes measured by EC. Less complex approaches like linear interpola-
tion, running average or multiple linear regression have been widely

used for N2O gap-filling (Levy et al. 2017; Vinzent et al. 2017; Liang
et al. 2018; Voglmeier et al. 2019) and can be appropriate for smaller
gaps (e.g. < 1 day). Non-linear, non-parametric approaches like general
additive models (GAM) or machine learning (ML) algorithms like arti-
ficial neural networks (ANNs) or random forest (RF) appear more
appropriate to capture the dynamic character of N2O, especially when
the dataset has larger gaps e.g. up to several weeks (Kim et al. 2019; Taki
et al. 2019; Cowan et al. 2020; Goodrich et al. 2021). GAM and ML al-
gorithms can handle large datasets easily and assumptions of classical
statistical techniques as normality or constant-variance do not need to
be considered. Taki et al. (2019) and Bigaignon et al. (2020) compared
linear interpolation and ANN as gap-filling techniques for N2O, showing
a better statistical score and a better prediction of flux variability for
ANN.

So far, only a few studies applied RF to gap-fill EC N2O flux time
series (none of these for a grazed pasture) showing a high predictive
ability of the RF (Goodrich et al. 2021; Maier et al. 2022; Feigenwinter
et al. 2023). Furthermore, Kim et al. (2019) compared three ML algo-
rithms (ANN, RF, and support vector machine) for the gap-filling of EC
methane (CH4) fluxes (like N2O nonlinearly depending on multiple
drivers) showing the best performance for RF. In other research fields,
such as modelling ground water nitrate concentrations (He et al. 2022),
classification in ecology (Cutler et al. 2007) or in modelling global N2O
emissions from agricultural soils (Perlman et al. 2014), RF generally
testified a high accuracy. The RF algorithm constructs a multitude of
random decision trees (Rokach et al. 2005) by using a subset of the
observations through bootstrapping. To get the final prediction, the
predictions of all individual trees are averaged. RF is faster and less
prone to overfitting than other ML algorithms like ANN and provides
insights into the importance of single predictors (Breimann 2001).

In this study, we conducted EC N2O measurements over three years
at a Swiss pasture site. To our knowledge, this the first study that applied
RF for the gap-filling and partitioning of EC N2O fluxes from a grazed
and fertilized pasture. In this way, the contribution of different N2O
emission sources and EF3 values were quantified from EC fluxes without
using the chamber methodology. EF3 values have been rarely deter-
mined by experiments in Central Europe, thus forcing the countries to
use IPCC default EF3 values. Hence, we discuss the suitability of RF for
EC flux partitioning and for quantifying reliable EF3 values.

2. Methods

2.1. Site and experiment description

This study was conducted from April 2020 to April 2023 on a dairy
farm at the research station Agroscope Tänikon located in North-Eastern
Switzerland (47◦29′26.7″N, 8◦55′12.1″E; 517 m elevation). The climate
is temperate with a mean annual temperature of 9.5 ◦C andmean annual
precipitation of 1124 mm (2009–2019) (MeteoSwiss 2022). The
experimental site has been a permanent pasture since 2013. More
detailed information about the pasture and soil properties can be found
in Barczyk et al. (2023).

The pasture of 2.8 ha (Fig. 1) was divided into four parcels (P1-P4)
considering the two main wind directions North-East (NE) and South-
West (SW). An EC system was located at the border between P1 and
P3 for monitoring N2O fluxes over three years (2020–2023) from April
to April in each year originating from P1 and P3. In addition, a weather
station recorded meteorological variables including precipitation.
Volumetric soil moisture content (VMC) and soil temperature were
measured continuously at four locations in 50 mm depth located in the
vicinity of the EC tower (horizontal distances between 1.5 m and 10 m)
by using GS3 (Decagon Devices Inc.) and ML3 (Delta-T Devices Ltd.)
probes. Water-filled pore space (WFPS) was derived based on VWC and
total pore volume determined from soil samples taken at the site.
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2.2. Pasture management

During the grazing season (April to the end of October), pasture
parcels P1-P4 were grazed alternatingly by two mixed herds of Brown
Swiss and Red Holstein dairy cattle. The number of cows per herd ranged
from 15 to 20, implying typical stocking densities during grazing of
17–22 cows ha-1 for P1 and 25–33 cows ha-1 for P3 with parcel sizes of
0.9 ha and 0.6 ha, respectively. The cows only spent part of the day on
the pasture, on average about six hours, the remaining time in the barn.
However, grazing lengths per day varied considerably (between 1 and
12 h), for instance because of the acclimatization of the cattle to grazing
in spring or possible heat stress in the summer months. For the latter
reason, cattle grazed during the night at some days in the summer of
year 2 and year 3. At some shorter periods of heavy rainfall and/or very
wet soil conditions, no grazing took place. In year 1, another research
project was performed in the cattle barn for which the cattle stayed in
the barn more often and the number of grazing days was lower
compared to year 2 and year 3 (Table 2). Hence, the pasture was used for
forage production by three harvests and more slurry was applied in year
1 (Table 1). In year 2 and year 3, slurry was applied once in spring and
once in autumn. Moreover, synthetic fertilizer applications (Urea,
ENTEC26, Ammonium-Nitrate) occurred in year 2 and year 3. In each of
the three years, the pasture was mulched at the end of the grazing season
(beginning of November), and additionally in late spring to early sum-
mer in year 2 and year 3, to remove older vegetation (avoided by the
cows) and to stipulate new growth and optimize pasture productivity.
Pasture parcels P1 and P3 were managed very similarly, yet grazing was
not fully simultaneous but often alternating between the two parcels in
year 1 and year 2. Furthermore, P1 received one slurry application more
in year 1, and in year 2, the urea application on P3 occurred one week
later than on P1. The grazing on P1 and P3 was predominantly

alternating in year 1 and year 2, whereas predominantly simultaneous in
year 3.

2.3. EC measurements of N2O fluxes

EC measurements were conducted at a height of 1.8 m and a fre-
quency of 10 Hz from the mid of May 2020 to the end of March 2023.
The EC setup consisted of a fast response sonic anemometer (Gill In-
struments Ltd., UK) to record wind speed components and sonic tem-
perature and a closed-path quantum cascade laser analyser (QLC,
Aerodyne Research Inc., USA) to measure atmospheric N2O concentra-
tions. N2O air samples were drawn through a polyamide tube of 3.5 mm
inner diameter and 10 m length by a vacuum pump (flow rate around 12
L min-1) to the QCL placed in a temperature-controlled trailer. A
customized LabView (National Instruments, US) program was used to
combine (synchronize) the data streams of sonic anemometer and QCL
in real time, and store them as binary raw data. N2O fluxes F(N2O) were
calculated as the covariance between the N2O mixing ratio (x) and the
vertical component of the wind speed (w) as

F(N2O) = ρ⋅ xʹwʹ (2)

over 30 min averaging intervals using EddyPro 7.0.9 (LI-COR Inc.,
Lincoln, Nebraska, USA). The symbol ρ denotes the average air density.
Measurements were initially processed for spikes, amplitude resolution,
drop-outs, skewness and kurtosis. The sampling of N2O through the
sampling tube to the QCL caused a time lag between wind components
and N2O air concentrations. In the first step the maximum covariance
was searched in a relatively wide lag range (± 20 s). Then the true lag
was identified from the distribution of lag values for larger fluxes. It was
found that the lags were relatively constant around 1.4 s in the long-term
showing minor variations within a range of ± 0.6 s. Therefore, the
covariance maximization procedure with default (minimum: 0.8 s;
maximum: 2 s; default: 1.4 s) was chosen in EddyPro for compensating
the time lag. A linear detrending in the raw (high-frequency) time series
was performed to remove possible trend contributions to the flux. For
anemometer tilt correction, double wind vector rotation was used. For
spectral damping corrections, we used the analytic approach of Mon-
crieff et al. (2004) in the low-frequency range and the in situ/analytic
approach of Fratini et al. (2012) in the high-frequency range. The

Fig. 1. Map showing the pasture field divided into four parcels with the eddy
covariance (EC) tower (blue triangle) and the measurement container (black
rectangle) located in the centre. Based on the main wind directions NE and SW,
EC fluxes represent parcels P1 and P3.

Table 1
Overview of the pasture management including fertilizer applications, harvest
and mulching dates for parcels P1 and P3 in the three years (April-April) of the
experiment.

Fertilization
date

Fertilizer N
applied
[kg ha-1]

Fertilizer
type

Cutting
Date

Cutting
type

P1 P3 P1/P3

Before 24.02. ​ ​ Slurry ​ ​
​ ​ ​ ​ ​ ​ ​
Year 1 22.05. 45 31 Slurry 18.05./28.05. Harvest
​ 06.07. 31 53 Slurry 30.06. Harvest
​ 22.09. 53 ​ Slurry 06.08. Harvest
​ 12.11. 65 65 Slurry 10.11. Mulching
​ 13.11 ​ 57 Slurry ​ ​
​ 24.02. 57 ​ Slurry ​ ​
​ ​ ​ ​ ​ ​ ​
Year 2 22.06. 20 ​ Urea 16.06./02.07. Mulching
​ 03.07. ​ 23 Urea 22.10./5.11. Mulching
​ 09.11. 69 69 Slurry ​ ​
​ 01.03. 62 62 Slurry ​ ​
​ 07.03. 21 21 ENTEC26 ​ ​
​ ​ ​ ​ ​ ​ ​
Year 3 03.06. 30 30 Urea 20.05. Mulching
​ 08.11. 53 53 Slurry 08.11. Mulching
​ 08.03. 31 31 NH₄NO₃ ​ ​
​ 21.03. 35 35 Slurry ​ ​
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quality flag system of Mauder and Foken (2004) was used to rank the
quality of calculated fluxes in three classes (qc0: best quality e.g. suit-
able for driver analysis; qc1: medium quality suitable for annual budget
calculations; qc2: bad quality). Furthermore, fluxes were filtered for
sufficient turbulent mixing using a friction velocity (u*) threshold of
0.07 m s-1 (Voglmeier et al. 2019), for acceptable tilt angle beta (− 2◦ to
6◦) and for the wind direction (SW sector: 170–270◦ and NE sector:
0–100◦) to observe N2O emissions derived from P1 and P3. Footprint
calculations were performed according to Kormann and Meixner (2001)
using the calculation procedure described in Neftel et al. (2008). The
average footprint contribution of the parcels P1 for south-westerly wind
directions and P3 for north-easterly wind directions (see Fig. 1) was 80
% and 84 %, respectively.

2.4. Flux gap filling using random forest

The EC flux quality filtering induced gaps in the F(N2O) time series.
Most of these gaps were relatively short (few hours) and caused by non-
stationarity and low turbulence. Besides a six weeks data gap in the
beginning of the experiment, the largest gap of four days occurred due to
an electrical blackout. Because of the slightly differing pasture man-
agement of P1 and P3 (mainly alternating grazing and one additional
slurry application on P1), N2O flux time series were gap filled separately
for P1 (SW wind sector) and P3 (NE wind sector). Overall, SW wind
directions were slightly more frequent than NE wind directions with 60
% and 40 %, respectively.

Random forest (RF), a non-parametric machine-learning algorithm,
was used to gap-fill the flux data time series. Soil water-filled pore space
WFPS [%] in 50 mm depth, soil temperature Ts [◦C] in 50 mm depth and
precipitation P [mm] cumulated over the last 2, 6, 24, 48, 72, 96, 120 h
were tested as environmental predictor variables. To account for the N
excreted by the grazing cattle, the time since the last grazing event tgraz
[days] and the density of cattle in the parcel Dcow [cows ha-1] averaged
over the last 2, 5, 10, 15, 20, 25, 30 days were tested as predictor var-
iables. For taking into account the influence of slurry and synthetic
fertilizer applications, we used categorical variables by attributing time
windows of 20, 25, 30, 40, 50-day length after slurry application (Slu)
and 10, 15, 20-day length after synthetic fertilizer application (SynF).
Pearson correlations identified no high correlations (≥ 0.7) among
numeric predictor variables.

For model fitting and validation, our dataset was separated into a
training dataset (75 % of data) and a test dataset (25 % of data). This
data splitting and the following RF model tuning was performed 10
times for each predictor configuration. The RF algorithm was run via the
train function (with method rf) in the R package caret. In this process, the
effect of the tuning parameter mtry (number of randomly selected pre-
dictors at each cut in the tree) was evaluated and the optimal value of 4
was chosen. Accounting for the computation time, we selected a five-
fold cross-validation with five repetitions as resampling procedure.

The train function chose the model with the best performance based on
the coefficient of determination (R2), root mean squared error (RMSE)
and mean absolute error (MAE). Different RF models were trained by
testing various predictor variable combinations and by using various
time intervals for variables P, Dcow, Slu and SynF (see above). RF models
were validated by the testing dataset to examine the predictive ability
using RMSE and R2.

The relative importance of predictor variables in the final RF model
was derived via the varImp function of the caret package. Furthermore,
we used partial dependence plots (R package pdp) to visualize the
relationship between the outcome and single predictors while account-
ing for the average effect of the other predictors.

2.5. Flux partitioning

In addition to the gap-filling of measured N2O fluxes, the final
trained RF model was used to disaggregate the gap-filled fluxes F
(N2O)total into three different emission sources: background F(N2O)bg,
fertilizer F(N2O)fertil and excreta F(N2O)excreta:

F(N2O)total ≡ F(N2O)bg + F(N2O)fertil + F(N2O)excreta (3)

This was done stepwise in the following way:

1. F(N2O)bg is defined as the flux not affected by N applications via
fertilizer or cattle excreta. Thus, it was calculated with the RF model
by setting the management related predictor variables tgraz = 150 d,
Dcow = 0 and categorical variables Slu and SynF to “no”
management.

2. The sum F(N2O)bg + F(N2O)excreta not affected by fertilizer applica-
tions was calculated for tgraz ≤ 60 d by setting categorical variables
Slu and SynF to “no” management. Consequently, F(N2O)excreta was
obtained by subtracting the background flux.

3. F(N2O)fertil was calculated for respective time windows after fertil-
isation by rearranging Eq. (3).

F(N2O)excreta was calculated from the first grazing event in spring to
60 days after the last grazing event in autumn (around the end of
December). Literature has shown that average F(N2O)excreta decrease
with time after excreta deposition, e.g. exponentially for cattle urine
emissions as found in Voglmeier et al. (2019). For our flux partitioning,
we assume that no F(N2O)excreta occur after 60 days of the last grazing
event. In the remaining part of the dormant season (January to March),
fluxes arising through the subtraction of F(N2Obg) were assigned as
“non-attributed” fluxes.

2.6. N input to pasture and calculation of EFs

N input mainly occurred via excreta of grazing cattle during the
grazing season and via several fertilizer applications (slurry and

Table 2
Overview of grazing related parameters (average ± standard deviation) used to calculate the excreta N deposited on the investigated pasture parcels P1 and P3 during
grazing periods.

Parameter Year 1 Year 2 Year 3

Number of grazing days [d yr-1] 45 (P1); 48 (P3) 66 89 (P1); 85 (P3)
Total grazing time [h yr-1] 240 (P1); 271 (P3) 346 (P1); 399 (P3) 734 (P1); 707 (P3)
Grazing time [h d-1] 5 ± 1 5 ± 2 8 ± 3
Number of cattle per grazing parcel 20 ± 1 17 ± 2 16 ± 0
Milk N yield [g cow-1d-1] 164 ± 7 153 ± 11 165 ± 13
Cattle live weight [kg] 695 ± 62 725 ± 61 737 ± 79
Net energy demand [MJ cow-1d-1] 131 ± 4 129 ± 5 130 ± 5
Energy fed in barn 80 ± 18 93 ± 20 107 ± 16
Energy fed in pasture 51 ± 17 37 ± 19 23 ± 16

N intake [g cow-1d-1] 564 ± 57 531 ± 52 506 ± 63
In barn 298 ± 69 350 ± 89 386 ± 46
On pasture 266 ± 84 180 ± 82 120 ± 80

Excreta N [g cow-1d-1] 391 ± 53 369 ± 42 335 ± 54
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synthetic fertilizers). Slurry and synthetic fertilizer application rates of N
ranged from 31 to 69 kg ha-1 and 20 to 30 kg ha-1, respectively (Table 1).

For calculating the amount of N excreted by grazing cattle, a cattle N
budget approach was used (Table 2). The net energy requirement per
cow and day was calculated based on the Swiss feeding recommenda-
tions and nutrient tables for ruminants described by Arrigo et al. (1999)
as a function of body weight and the energy corrected milk (ECM). To
calculate ECM, the milk yield was measured continuously, while the
milk was analysed for fat, protein, and lactose content once per month.
The cattle body weights were measured 2–6 times per season. The fod-
der in the barn mainly consisted of hay, maize silage and grass silage,
whose characteristics, like dry matter content, energy and crude protein
contents, were measured annually while feed intakes in the barn were
recorded per herd and day. The N content of the pasture grass was
measured every two weeks. The feed intake during grazing was calcu-
lated as the difference between the net energy requirement of the cattle
and fed energy in the barn. Subsequently, the excreta N [kg cow-1d-1]
could be estimated by subtracting the total milk N and N in live weight
growth from the total fodder N uptake. The excreta N deposited on the
pasture [kg cow-1d-1] was calculated proportional to the length of
grazing recorded through webcams at the pasture side.

The N2O emission factor EF3 for cattle excreta was calculated for
each year by cumulating all related emissions

∑
F(N2O)excreta divided by

the total amount of N applied via cattle excreta
∑

IN− excreta (both in units
of kg N ha-1 yr-1).

EF3 =
∑

F(N2O)excreta∑
IN− excreta

(4)

2.7. Uncertainty estimation of yearly emissions and EF3

Assuming that the data gaps and their filling represents the main
error source, the uncertainty of the yearly cumulative emissions for F
(N2O)total and F(N2O)excreta was estimated from the differences between
yearly sums derived by RF using high quality (qc0) fluxes and the
respective results including fluxes of the medium quality flag (qc0 plus
qc1) with different gap fractions.

The uncertainty of EF3 was calculated by combining the uncertainty
of yearly excreta fluxes, the uncertainty of the cattle N budget approach
(15 % according to Voglmeier et al. 2018), and the uncertainty linked to
the assumption of a uniform temporal deposition of excreta during the
day (40 %; obtained from Draganova et al. (2016) and Aland et al.
(2002)) using Gaussian error propagation.

2.8. Driver analysis

The RF algorithm applied in this study provides partial dependence
plots (PDPs), which display the effect of single predictor (driver) vari-
ables on measured F(N2O) while holding all other predictor variables
constant. They can provide a good general survey of the influence of the
individual predictors. However, they do not provide suitable functional
relationships nor interpretable insights in the potential interactions
between the drivers and their effect on specific source related fluxes. We
therefore performed regression analyses to quantify the relationship of F
(N2O) with environmental predictor variables. In a first step, PDPs of the
trained RF model were inspected and generalized additive models
(GAM; mgcv package in R) were fitted. GAMs offer a high flexibility by
combining multiple smooth functions of predictor variables and offer
restrictive interpretability like the dimension of the basis, p-values of
predictors and R2, but in a non-parametric way. Linear and non-linear
models were fitted for various predictor combinations and without
specifying a particular shape a-priori. For selecting the final optimum
regression model, model outputs were compared by the Akaike infor-
mation criterion (AIC) and R2. Furthermore, all predictor coefficients
had to be significant.

2.9. Ancillary chamber flux measurements

Chamber flux measurements were performed from July 2020 to
September 2022 (during the grazing season) in ten experiments on
grazing and fertilization exclusion areas on the same field site as pub-
lished in Barczyk et al. (2023). An opaque manual chamber of 0.8 m ×

0.8 m × 0.5 m was placed on artificially applied urine patches and un-
treated control areas for 120–130 s. The fluxes were calculated by the
‘Hutchinson and Mosier regression (HMR)’ according to Pedersen et al.
(2010). A more detailed description on the chamber experiments can be
found in Barczyk et al. (2023). Only background chamber fluxes were
used in this study for validation purposes.

3. Results

3.1. Environmental conditions and measured ec fluxes

During the experiment (April 2020 to April 2023), the soil temper-
ature in 50 mm depth ranged from 0 to 28 ◦C (Fig. 2). In the winter
months (December to February), the average soil temperature was be-
tween 2.5 and 4 ◦C. The total precipitation per year was between 1008
mm and 1351 mm, close to the long-term average (2009–2019) of 1124
mm (MeteoSwiss 2022). On average, the precipitation sum of the sum-
mer trimester (437–740 mm) tended to be higher than for winter
(257–526 mm), spring (105–419 mm) and autumn (138–363 mm). The
monthly precipitation sum was lowest in March 2022 and February
2023 with just 23 mm and 29 mm. The highest monthly precipitation of
373 mmwas observed in July 2021, whereas in July 2020 and July 2022
it was only 77 mm and 79 mm. Hence, WFPS of the soil at 5 cm depth
stayed below 0.4 in summer 2022 for over one month. In spring, summer
and autumn, the WFPS generally showed large variations, ranging from
0.3 to 1.0 while it stayed more stable during the winter (0.72–1.0).

The majority of measured EC N2O fluxes (87 %) were smaller than 1
g N2O-N ha-1 h-1. Higher N2O emissions (up to 19 g N2O-N ha-1 h-1) were
measured after slurry application, and during the grazing season (April
to October) following precipitation events. However, N2O fluxes > 1 g
N2O-N ha-1 h-1 also occurred during the winter periods when air tem-
peratures were smaller 0 ◦C.

3.2. Quality filtering of flux data and performance of RF

Two quality filters for measured N2O flux data were tested for
training the RF model: (i) using only high quality data with flag qc0 and
(ii) using high and medium quality data with flags qc0 and qc1. For this
comparison, the same training and test data were used. The data
coverage of qc01 data (60 %) was considerably higher than using solely
qc0 data (38 %). However, the performance of the RF (based on the R2

and RMSE between predicted and observed values of the training and
test data) was better for the qc0 data (Table 3). In addition, the RF
trained by qc01 data and consequent flux partitioning yielded unreal-
istically high F(N2O)bg in winter that were twice as high as the observed
F(N2O)total. We therefore decided to use only qc0 data for the evaluation
of N2O flux data in this study.

Secondly, we had to decide whether to use two separately trained RF
models for the fluxes of the two grazing parcels P1 and P3 or to train
only one combined RF model for both parcels. A separate RF training for
P1 and P3 implied a very low data availability of 23 % and 15 % (qc0),
and the corresponding RF model performance was worse compared to
the combined RF training. In periods with frequent wind change (SW to
NE and vice versa), the separately trained RFs showed similar pre-
dictions like the combined RF training (not shown here). In periods with
one dominant wind direction, however, visual inspections of the data
showed a better performance of the combined RF training. Therefore,
the combined RF model was used for further data analysis in this study.

According to the error statistics (R2 and RSME), the overall perfor-
mance of RF was the best when using the following predictor variable
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combination: WFPS, Ts (soil temperature), P (precipitation cumulated
over the last 6 h), tgraz (days since the last grazing), Dcow (density of
cattle in the pasture averaged over the past 20 days), Slu (categorical:
0–50 days after slurry application) and SynF (categorical: 0–15 days
after synthetic fertilizer application). The frequency distributions of the
observed data of these predictor variables are shown in Supplementary
Fig. S1. The average R2 and RMSE (± standard deviation) of the final

trained RF model were 0.96 (± 0.01) and 0.19 g N2O-N ha-1 h-1 (± 0.01)
for the whole dataset, whereas 0.88 (± 0.01) and 0.27 g N2O-N ha-1 h-1

(± 0.05) for the 25 % test data, respectively (Table 3).
The RF identified WFPS and Ts as the most important variables (>55

% %IncMSE: decrease of model accuracy when leaving a variable out)
for predicting N2O fluxes, whereas the importance of predictor variables
P, tgraz and Slu was 40–50 %, and importance of variables SynF and Dcow
was 15–30 % (Supplementary Fig. S2). The partial dependence plots
(PDPs) of the RF, showing the relationship between the N2O fluxes and
single predictors while keeping a constant average effect of the other
predictors, can be found in the Supplementary Fig. S3.

3.3. Cumulative fluxes and contribution of individual emission sources

The cumulative N2O emissions resulting from the gap-filled EC fluxes
of the three study years were similar for the two parcels P1 and P3
(Fig. 2d). Total annual fluxes (± 95 % confidence interval) were
approximately 5.3 ± 0.8 kg N2O-N ha-1 yr-1 in year 1, 3.1 ± 0.5 kg N2O-
N ha-1 yr-1 in year 2 and 4.4 ± 0.7 kg N2O-N ha-1 yr-1 in year 3. Also, the
temporal evolution of the cumulative emissions was similar for both
parcels in year 2 and year 3. In May to September of year 1, though, the

Fig. 2. Environmental conditions, management and N2O emissions for the tree study years (1 April – 31 May each): (a) soil temperature at 50 mm depth; (b) water-
filled pore space at 50 mm soil depth; (c) timing of grazing and other management operations on pasture parcels P1 and P3; (d) cumulative N2O emissions of the
parcels P1 and P3 for the three years.

Table 3
Performance of the random forest (RF) model trained by qc0 and qc01 flux data
in predicting measured fluxes of the 25 % test set and in predicting all measured
fluxes. Average coefficient of determination (R2) in percentage and root mean
square error (RMSE) in g N2O-N ha-1 h-1 plus standard deviation of ten repeti-
tions are shown.

Data used
for RF
training

Predicted vs 25 % test set Predicted vs all data
qc0 qc01 qc0 qc01

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

qc0 88
± 1

0.27
± 0.05

73
± 1

0.38
± 0.02

96
± 1

0.19
± 0.01

83
± 0

0.33
± 0.00

qc01 88
± 2

0.29
± 0.03

75
± 2

0.36
± 0.02

95
± 1

0.18
± 0.04

91
± 2

0.24
± 0.03
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temporal evolution was different due to high fluxes after an additional
slurry application on P1. In September after another slurry application
(conducted on both parcels), the fluxes were higher for P3 so that the
cumulative curves of the two parcels were harmonized for the remaining
time of year 1.

The partitioning of F(N2O)total into the emission sources (back-
ground, cattle excreta and fertilizer), as explained in the Methodology
section, is illustrated for an exemplary five-week period in Fig. 3. F
(N2O)bg values were generally identical for the two parcels because of
the use of a combined RF model and the identical values of the envi-
ronmental predictor variables (WFPS, Ts, P); for the entire experiment,
they ranged from 0 to 0.9 g N2O-N ha-1 h-1. For F(N2O)excreta and F

(N2O)fertil also 95 % of data were between 0.0 and 1.0 g N2O-N ha-1 h-1,
but the rest ranged up to 13 and 19 g N2O-N ha-1 h-1, respectively
(Fig. 4).

Fig. 5 shows the contribution of individual emissions sources to F
(N2O)total over the whole time series.

The contribution of F(N2O)bg to the cumulative yearly N2O emissions
was similar over the years (Fig. 6) with 1.3 to 1.5 kg N2O-N ha-1 yr-1

(27–46 % of total yearly emissions). In year 1, 40 % of the emissions
were attributed to the application of fertilizers, and 30 % to the excreta
of grazing cattle. In year 2 and year 3, the contribution of fertilizers was
smaller with 15 %− 19 %. Instead, cattle excreta accounted for 43 %− 51
% of the total emissions. In all three years, cumulative F(N2O)excreta were
slightly higher for P3 than for P1. About 3–5 % of the total yearly
emissions (derived in the non-grazing period starting six weeks after the
last grazing event in autumn to the first grazing event in spring) could
not be attributed to one of the emission sources: background, cattle
excreta or fertilizer applications (see Methodology).

Yearly cumulative F(N2O)excreta (± 95 % confidence interval) ranged
from 1.3 ± 0.4 kg N2O-N ha-1 yr-1 to 2.3 ± 0.7 kg N2O-N ha-1 yr-1.
Excreta N inputs ranged from 70± 27 kg ha-1 yr-1 to 210± 80 kg ha-1 yr-
1 giving an average EF3 of 1.1 ± 0.5 % (Fig. 7). EF3 values were highest
in year 1 with 2.1 ± 1.0 % and 1.5 ± 0.7 %, followed by year 3 with 1.3
± 0.6 % and 1.1 ± 0.5 %, and year 2 with 1.2 ± 0.6 % and 0.8 ± 0.4 %
for parcels P1 and P3, respectively.

3.4. Functional relationships with driver variables

In order to estimate the effect of driver variables on total or parti-
tioned fluxes, analytical regression functions were parametrised as
described in Section 2.7. In a first step, PDPs of the RF model (Supple-
mentary Fig. S3) were inspected displaying the effect of single predictor
(driver) variables on measured F(N2O)total, while holding all other pre-
dictor variables constant. According to the variable importance plot
(Supplementary Fig. S2), WFPS and Ts were the most important pre-
dictor variables in our RF model. For predictor variable WFPS (at values
> 0.4), the PDP shows an optimum curve giving highest outcome at
around 0.7. For low WFPS < 0.4, the effect on measured F(N2O)total
increased again in an unexpected way. The PDP for predictor variable Ts
(> 3 ◦C) shows a continuous increase of the measured F(N2O)total with Ts
until reaching a plateau at 25 ◦C. At Ts≤ 3 ◦C, another steep increase of F
(N2O)total is shown, which indicates a different process dominating in
this temperature range.

For the main environmental parameter range Ts > 3 ◦C and WFPS >

0.4 (81 % of data), F(N2O)bg could be described as a combined poly-
nomial function of WFPS [ %] and a linear function of Ts [ ◦C] (Table 4,
Eq. (5a)). The function shows smallest values close to zero at Ts close to 3
◦C and WFPS of 0.4 or 1, and highest values around 0.3 g N2O-N ha-1 h-1

at Ts = 26 ◦C and WFPS = 0.7. We found no suitable regression model
that could parametrize the dependency of F(N2O)fertil and F(N2O)excreta.
For all tested regression models, the R2 was < 0.15. For very complex
models (e.g. with multiple interactions) R2 was up to 0.30, however
prone to overfitting and more difficult to interpret.

Since the inspection of the RF PDPs (Supplementary Fig. S3) showed
an unexpected behaviour for low soil temperatures (cold season: Ts ≤ 3
◦C and WFPS > 0.7) and very dry conditions (summer drought: WFPS <

0.4 and Ts > 15 ◦C), the data in these parameter ranges were analysed in
more detail and parameterised separately (Table 4). The summer
drought during six weeks in year 3 with WFPS < 0.4 and Ts > 15 ◦C
(Fig. 2a,b) is unique within our dataset, while conditions with low soil
temperatures (Ts ≤ 3 ◦C and WFPS > 0.7) occurred sporadically or
sometimes frequent (one month in year 1) in winter. Due to a compa-
rably low data availability of measured fluxes during these special
environmental conditions (n = 1556 in the cold season; n = 571 in the
summer drought), we assume that the disaggregation of F(N2O)total into
the individual emission sources by RF is less confident. Therefore, the
driver analysis was performed by using measured F(N2O)total.

Fig. 3. Exemplary time series of the partitioning of gap-filled fluxes into the
emission sources background, grazing related emissions and slurry emissions
for the parcels P1 (a) and P3 (b) for a 5-week period in summer 2020. The black
points indicate the measured fluxes, the green points the grazing events and the
brown triangle shows the timing of slurry application.

Fig. 4. Frequency distribution of positive half-hourly N2O fluxes in different
categories (background, cattle excreta, fertilizer and non-attributed) obtained
by RF flux partitioning for parcels P1 and P3 for the three study years (total
data points: 105,120, bin width: 0.5 g N2O-N ha-1 h-1).
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In the cold season (Ts ≤ 3 ◦C and WFPS> 0.7), peak F(N2O)total up to
3.9 g N2O-N ha-1 h-1 (Supplementary Figure S4) occurred that were
parametrised as an exponential decay function of Ts (Eq. 5b). Since Ts at
50mm depth generally did not show negative values indicating freezing,
the air temperature was included in the analysis to better represent the
conditions at the soil surface. In the period of highest cold season
emission values (Fig. 8) in February 2023, diurnal peaks occur when the
air temperature gets positive after nights with clearly negative values.

For the summer drought period (WFPS < 0.4 and Ts > 15 ◦C) dis-
played in Fig. 9, measured F(N2O)total peaked up to 13.9 g N2O-N ha-1 h-
1, while WFPS showed almost no variations. However, N2O emissions
exhibited a linear dependence on the cumulative precipitation over the
last six hours (P) and the time in days since the last grazing (tgraz).

4. Discussion

4.1. Gap-filling and annual emissions

After gap-filling, the cumulative N2O emissions were determined to
be 5.3 ± 0.8, 3.1 ± 0.5 and 4.4 ± 0.7 kg N2O-N ha-1 yr-1 (Fig. 6), which
are lower than the global IPCC default value of 8 kg N2O-N ha-1 yr-1 for
grazed pasture (de Klein et al. 2006), and in the lower range of reported
values of 2 to 15 kg N2O-N ha-1 yr-1 (Luo et al. 2008; de Klein et al. 2010;

Fig. 5. Contribution of individual emission sources (Background, excreta and fertilizer) to the total N2O emissions over the three years of experiment for parcels P1
(a) and P3 (b). Emissions are averaged over two weeks.

Fig. 6. Contribution of the different emission sources (background, grazing and
fertilizer) to the yearly cumulative N2O emissions as obtained by the RF flux
partitioning for the three study years and the two pasture parcels P1 and P3.

Fig. 7. Yearly excreta N2O emissions plotted against yearly excreta N inputs of
the two parcels (P1 and P3). Resulting EF3 values and average EF3 (linear
regression slope by setting y-intercept to zero) are shown in the plot.
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Luo et al. 2019). Voglmeier et al. (2020) found similar emissions of
3.7–3.8 kg N2O-N ha-1 yr-1 at a dairy pasture in Western Switzerland.

In consistency with previous studies that used RF for the gap-filling
of EC F(N2O), our results showed a good performance of the RF model
in F(N2O) gap-filling (Table 3, Fig. 3); it was able to capture the highly
variable temporal evolution of F(N2O) from low fluxes (close to zero) up
to pulse fluxes as large as 19 g N2O-N ha-1 h-1.

Due to a separate flux gap-filling for parcels 1 and 3, and thus longer
gaps of up to two weeks, linear interpolation or running average were
not able to capture the temporal development of N2O fluxes comparably
to the RF (not shown here). Similarly, Taki et al. (2019) and Bigaignon
et al. (2020) showed a better statistical score and a better prediction of
the N2O flux variability for ANN compared to linear interpolation for
cropland. However, in our study yearly cumulated fluxes were similar
(maximum deviation of 10 %) when applying a running average (with
adaptive window size to always include 12 data points) to gap-fill the F
(N2O) time series.

Besides Goodrich et al. (2021), there are no reports in literature
comparing different ML algorithms for EC N2O gap-filling. Kim et al.
(2019), however, compared three ML algorithms (ANN, RF, and support
vector machine) for the gap-filling of CH4 fluxes showing the best scores
for RF gap-filling. Kim et al. (2019) even suggested using RF as standard
gap-filling method for CH4 fluxes, because RF not only showed the best
performance among different ML algorithms, but it was also found to be
more straightforward to use and less sensitive to overfitting compared to
ANN, for instance.

In our study, the RF was trained by best-quality data (qc0: 38 %
coverage), but test calculations with less strict quality filtering (qc01: 60
% coverage) were also made. Interestingly, for both input datasets, the
trained RF models were better in predicting qc0 data than in predicting
qc01 data (Table 3). In addition, the predictions of qc0 trained RF and

qc01 trained RF were highly correlated (R2 = 0.95) in spite of different
data availabilities. Thus, a higher data availability (by including qc1
data) did not yield a better performance of the RF. Thus, we conclude
that qc1 data were too noisy and thus not useful for the RF training. The
0–1–2 quality flag approach of Mauder and Foken (2004) has often been
used for GHG fluxes, and typically quality flags 0 and 1 are applied for
the analysis (Fuchs et al. 2018; Wecking et al. 2020; Goodrich et al.
2021; Xie et al. 2022). For our dataset, the average (systematic) differ-
ence between cumulative yearly emissions derived by RF gap-filling
using solely qc0 data and using qc01 was 16 % on average. Yet, the
choice of acceptable quality flag values for data filtering might have
stronger effects on the results, e.g. when using regression methods that,
in contrast to the RF, react more sensitive to noisy data.

4.2. Flux partitioning by random forest

Flux partitioning, i.e. the disaggregation of gap-filled EC fluxes into
the emissions sources (background, cattle excreta, fertilizer) is necessary
to calculate EFs of different emission sources. The EC flux partitioning
by RF does not require additional chamber experiments with artificially
applied excreta patches, but merely relies on observed field-scale fluxes
of the real pasture. Yet, chamber measurements conducted at the same
site and in the same time period (Barczyk et al. 2023) support the results
of the partitioning showing background fluxes in a similar range as
derived from EC measurements (Fig. 10). The obtained results for F
(N2O)bg, F(N2O)fertil and F(N2O)excreta also were comparable to available
literature reports using chambers (Voglmeier et al. 2020; Wecking et al.
2020; Murphy et al. 2022). Cumulative F(N2O)bg of 1.3 to 1.5 kg N2O-N
ha-1 yr-1 were close to the global mean of 1.8 kg N2O-N ha-1 yr-1 quan-
tified in a meta-analysis by Kim et al. (2013). The cumulative F(N2O)fertil
corresponds to an average EF for fertilizer applications of 0.7 ± 0.4 %

Table 4
Equations to parametrize background and measured N2O emissions (F(N2O)bg and F(N2O)total in units of g N2O-N ha-1 h-1) at different environmental conditions. The
following predictor variables were used: water-filled pore space (WFPS), soil temperature (Ts), time in days since the last grazing (tgraz) and cumulated precipitation
over the last six hours (P).

Parameterized flux Environmental conditions Equation

F(N2O)bg Ts > 3; WFPS > 0.4 (growing season) 1.10 WFPS2 − 1.01 WFPS3 + 0.012 Ts − 0.15 (R2 = 0.45, p < 0.0001) (Eq. 5a)
F(N2O)total Ts ≤ 3; WFPS > 0.7 (cold season) 1.54 exp(− 1.88 Ts) + 0.14 (R2 = 0.84, p < 0.0001) (Eq. 5b)
F(N2O)total WFPS ≤ 0.4; Ts > 15 ◦C (summer drought) 0.36 P − 0.088 tgraz + 0.82 (R2 = 0.30, p < 0.0001) (Eq. 5c)

Fig. 8. Exemplary N2O flux time series (a) with peak emissions during winter together with air temperature (b), and vertical lines at midday. Measured and pre-
dicted/partitioned N2O fluxes are shown combined for the two parcels P1 and P3. The air temperature measured in 2 m height is plotted together with the soil
temperature in 50 mm depth.
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(mean ± standard deviation) and is reasonably close to the global
default EF1 of 1 % suggested by the IPCC (IPCC 2019). The contributions
of cumulative F(N2O)fertil and F(N2O)excreta can vary significantly
depending on the grazing system and management practices, as seen in
our study comparing year 1 with more slurry applications and less
grazing to year 2 and year 3 with less slurry applications and more
grazing events.

However, it is important to note that for the flux gap-filling and
partitioning by RF in the present study, assumptions had to be made. N
inputs via atmospheric deposition, harvest residues and biological fix-
ation (as suggested by the IPCC) were not explicitly considered in our
study and are expected to be small compared to cattle excreta and

fertilizer N inputs (Kosonen et al. 2019; Schmid et al. 2001). Related
N2O emissions are included in F(N2O)bg. Furthermore, by using cate-
gorical variables for the time periods possibly affected by fertilizer ap-
plications (differentiated between synthetic fertilizer and slurry), the
effect of the N application rate for each individual fertilizer application
was not considered as a predictor variable in the RF model set up,
although a direct (linear) effect on the N2O emission is generally
assumed (van Groeningen et al. 2004). In our study, the N application
rate (Table 1) was generally higher and more variable for slurry (35–69
kg N ha-1) than for synthetic fertilizer (20–30 kg N ha-1) because, ac-
cording to the Swiss guidelines for integratedmanagement, 67%more N
can be applied as slurry compared to synthetic fertilizers. We set the
time span of possible slurry and synthetic fertilizer emissions to 0–50
and 0–15 days after application, respectively, based on visual inspection
of our data and promoted by a better performance of the RF compared to
other time spans (see Methodology section). Many studies showed a
major portion of cumulative fertilizer emissions occurring within the
first two weeks, typically instantaneously after application and in a
distinct peak (e.g. van Groeningen et al. 2004; Schils et al. 2008).
Nevertheless, the persistence of fertilizer related emissions can vary
greatly, e.g. up to 150 days (van Groeningen et al. 2004) for slurry. On
the other hand, some studies even recorded no distinct increase of
emissions after fertilizer application (Schils et al. 2008). For our study,
we cannot fully rule out the possibility that F(N2O)fertil lasted longer
than the used time spans, e.g. into the spring, as high emission occurred
at low temperatures (especially in year 1) in January and February
assigned as “non-attributable”.

Non-attributed fluxes were calculated like F(N2O)excreta (Sect. 2.5)
for winter/spring periods presumably not affected by grazing (tgraz > 60

Fig. 9. Time series of measured and partitioned N2O fluxes during the drought period in year 3 with peak N2O emissions in parcel P1 (a) and P3 (b) occurring after
precipitation (c). The parameter P represents precipitation cumulated over the past six hours.

Fig. 10. Boxplots including arithmetic mean (red circle) of background fluxes
measured by a manual chamber and calculated from partitioning of eddy
covariance (EC) derived fluxes per month of the year.
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d) nor fertilizer applications by subtracting F(N2O)bg from F(N2O)total.
Since their annual contribution was relatively small, we did not assign
them to one of the other flux categories. They may be regarded as part of
the partitioning uncertainty.

4.3. Reliability of EF3 values

The average EF3 value of 1.1± 0.5 %, derived in our study (Fig. 7), is
between the new IPCC EF3 value for wet climates of 0.6 % and the old
one of 2.0 %. Furthermore, it is higher than the estimated value of about
0.5 % quantified in ten chamber trials by Barczyk et al. (2023) at the
same field site.

Based on literature reports, EC fluxes generally tend to be higher
than chamber fluxes (Jones et al. 2011; Wang et al. 2013; Wecking et al.
2020). We suppose that the EC technique gives a more reliable picture
on pasture F(N2O)total than chamber measurements as it measures in a
higher temporal resolution and is able to cover the spatial variability of a
pasture. Moreover, it relies on real observations. In chamber trials, urine
(predominantly as synthetic surrogate solution) commonly has been
applied artificially in fenced-out areas of a pasture field (Kool et al.
2006; Murphy et al. 2022; Barczyk et al. 2023), and thus possibly did not
affect soil processes equally to real cattle urine patches. Interactions of
excreta patches with other influencing factors like the trampling of
cattle, fertilizer applications or overlapping excreta patches (Treweek
et al. 2016; Maire et al. 2020) can be hardly reproduced in its entirety in
chamber trials. Moreover, chamber measurement areas are commonly
excluded from grazing and from other N inputs for several months prior
to the treatment application. Lastly, F(N2O)excreta during winter are
usually not considered in chamber trials. In this study, we found
considerable F(N2O)excreta and “non-attributable” N2O fluxes at low soil
temperatures during winter (especially in year 1), which should be
considered in future studies.

However, the EC technique involves other uncertainties like the need
for flux partitioning. Moreover, while excreta N inputs can be controlled
and easily quantified in chamber trials, we suppose that the highest
uncertainty of EC derived EF3 values lies in the calculation of the
excreta-derived N inputs. This is especially the case for partly day
grazing. In our study, the pastoral excreta N input was calculated pro-
portional to the grazing time that was six hours on average. It is unclear
whether there is a diurnal cycle of cattle excretion, e.g. a lower excretion
frequency at night, as literature reports give non-consistent results
(Aland et al. 2002; Draganova et al. 2016). Furthermore, we assume a
homogenously distributed application of excreta in the field. As the
pasture of our study was part-day grazed and there were no trees or
other shadow providing shelters, we assume a low risk of so-called
camping areas (except for areas around the standpipes at high Ts in
summer) in which excreta patch densities can be elevated
(Iyyemperumal et al. 2007; Draganova et al. 2016).

4.4. Dependence on environmental drivers

The temporal variations of F(N2O)bg during the growing season (Ts>
3◦) and outside of drought conditions (WFPS > 0.4) could be predicted
mainly by WFPS and Ts, concurrently found to be the most important
predictors in the RF model. WFPS is known to be a major driver of N2O
emissions as it affects microbial activity by controlling the availability of
oxygen and water (Butterbach-Bahl et al. 2013). Literature proposes an
optimum curve with maximum values of N2O production at 0.6–0.8
WFPS (Davidson et al. 1991; Butterbach-Bahl et al. 2013; Congreves
et al. 2019) that corresponds to our findings in the driver analysis
(Table 4) and to the average effect of WFPS visualized in the PDP of the
RF model for WFPS > 0.4 (Supplementary Fig. S3). F(N2O)bg increased
with Ts (also seen in the PDP) and can be explained by enhanced soil
microbial activity at higher Ts (Butterbach-Bahl et al. 2013).

During the cold season (Ts ≤ 3 ◦C) we observed significant peaks of F
(N2O)total up to 3.9 g N2O-N ha-1 h-1. These peaks might be explained by

so called freeze-thaw effects, occurring when a frozen soil thaws and
trapped gases including N2O can be released (Öquist et al. 2004; Wag-
ner-Riddle et al. 2017). In our study, Ts was measured in 50 mm depth
and observed minimum values between 0 and 1 ◦C would not imply a
frozen soil. However, surface soil (few mm deep) has a much stronger
diurnal variation in temperature than deeper soil layers, and air tem-
perature measured at 2 m height above ground went down to − 9 ◦C
suggesting that the soil surface was temporary frozen. Fig. 8 shows as an
example that peak F(N2O)total fluxes occurred in winter during day-time
at maximum air temperatures after night-time air temperatures clearly
below 0 ◦C. Koponen et al. (2004) moreover observed peak emissions at
Ts close to 0 ◦C and without previous freezing of the soil. They hy-
pothesized that the low Ts leads to a low microbial population towards a
critical point. The decomposition of dead microbial cells would then
lead to a sudden increase of substrate availability used by still existing
microorganisms causing F(N2O) peaks. For our study, we suppose that
both processes, freeze-thaw effect and the effect explained by Koponen
et al. (2004), contributed to peak F(N2O) at low Ts.

During a drought period in the summer of year 3 with WFPS ≤ 0.4
with occasional grazing, we found distinct peaks of F(N2O)total that
correlated with the predictor variable P. N2O peaks after rewetting a dry
soil were documented by other studies (Leitner et al. 2017; Barrat et al.
2021). Though hardly detected by our soil moisture sensors at 50 mm
depth, we suppose that precipitation activated microbial activity in the
surface soil. In addition to precipitation, the deposition of excreta in the
field entailed up to 17 mm liquid per urine patch and the simultaneous
application of excreta N presumably triggered N2O producing microbial
processes (Selbie et al. 2015).

5. Conclusions

We conclude that the RF is a suitable method for the gap-filling and
partitioning of EC derived N2O fluxes. Clearly, a combination of several
environmental and management related predictor variables is needed to
drive RF models and must be measured accordingly. EC based N2O flux
measurements under real pasture conditions with subsequent RF flux
gap-filling and partitioning may particularly improve the quantification
of F(N2O)excreta. Real pasture conditions including possible interactions
of fertilisers with excreta patches cannot be simulated to the full extent
in chamber trials. This may be one reason why the obtained average EF3
of 1.1 % was higher than estimated by chamber experiments with arti-
ficial patches at the same site.

In addition, this study demonstrated that PDPs of a RF model can be
used to investigate the influence of single drivers on F(N2O)total. PDPs
made it possible to recognize that high F(N2O)total unexpectedly
occurred during a drought period in summer and cold periods in winter.
In both cases the soil conditions (drivers) measured at 50 mm depth
were insufficient to explain the emission peaks, but inferred moisture
and temperature conditions directly at the soil surface may provide a
better correlation with the observed N2O emissions. This issue requires
further detailed investigation and suggests temperature and moisture
measurements closer to the soil surface.
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