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Abstract Biological invasions, driven mainly by human 
activities, pose significant threats to global ecosystems and 
economies, with fungi and fungal-like oomycetes playing a 
pivotal role. Ink disease, caused by Phytophthora cinnamomi 
and P. × cambivora, is a growing concern for sweet chestnut 
stands (Castanea sativa) in Europe. Since both pathogens 
are thermophilic organisms, ongoing climate change will 
likely exacerbate their impact. In this study, we applied 
species distribution modeling techniques to identify poten-
tial substitutive species for sweet chestnut in the light of 
future climate scenarios SSP126 and SSP370 in southern 
Switzerland. Using the presence-only machine learning 
algorithm MaxEnt and leveraging occurrence data from the 
global dataset GBIF, we delineated the current and projected 
(2070–2100) distribution of 28 tree species. Several exotic 
species emerged as valuable alternatives to sweet chestnut, 

although careful consideration of all potential ecological 
consequences is required. We also identified several native 
tree species as promising substitutes, offering ecological 
benefits and potential adaptability to climatic conditions. 
Since species diversification fosters forest resilience, we 
also determined communities of alternative species that can 
be grown together. Our findings represent a valuable deci-
sion tool for forest managers confronted with the challenges 
posed by ink disease and climate change. Given that, even in 
absence of disease, sweet chestnut is not a future-proof tree 
species in the study region, the identified species could offer 
a pathway toward resilient and sustainable forests within the 
entire chestnut belt.

Keywords Invasive pathogens · Tree distribution 
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Introduction

Biological invasions resulting from the unintentional or 
deliberate anthropogenic introduction of species are a major 
consequence of globalization and constitute a significant 
component of global environmental change (Vitousek et al. 
1996; Simberloff et al. 2013). Consequences of introductions 
for native ecosystems may be dramatic, including alteration 
of their fundamental structure, loss of biodiversity, and sub-
sequent threat of functioning (Ehrenfeld 2010). Biological 
invasions also impact world economies, with annual costs 
estimated at about 10 billion Euros in Europe and at over 21 
billion US dollars in the United States (Hulme et al. 2009; 
Fantle-Lepczyk et al. 2022).

Forests are particularly prone to biological invasions all 
around the world (Liebhold et al. 2017) and fungi and fun-
gal-like oomycetes play a significant role among invasive 
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organisms (Desprez-Loustau et al. 2007; Wingfield et al. 
2017). Global movement of live plants and plant material 
has been recognized as an important invasion pathway for 
exotic pests and pathogens (Liebhold et al. 2012). In some 
cases, invasive forest pathogens have caused large-scale 
changes of native ecosystems and modified the ecological 
dynamics through local and regional extinction of key host 
species. A well-known example is Cryphonectria parasit-
ica, the causal agent of chestnut blight, which dramatically 
reduced populations of American chestnut (Castanea den-
tata) in North America (Anagnostakis 1987). Within a few 
decades, a keystone native species in local forest ecosys-
tems experienced a strong niche contraction and significant 
changes in its ecological role (Paillet 2002; Burke 2012), 
with a cascade of consequences for wildlife and people. The 
fungus Ophiostoma ulmi, which causes Dutch elm disease, 
is another famous invasive pathogen that in the last century 
killed hundreds of millions of elms (Ulmus spp.) trees in 
Europe and North America (Gibbs 1978). Starting in the 
Netherlands in the late 1910s, the pathogen rapidly spread 
through much of Europe, and in the late 1920s, it was intro-
duced to North America. The second epidemic of Dutch 

elm disease started around the 1940s, but was caused by 
Ophiostoma novo-ulmi, a much more aggressive pathogen. 
By the 1990s, very few mature elms were left in Britain and 
much of continental Europe. In North America, the impact 
of Dutch elm disease on American elms has been almost as 
severe as chestnut blight on American chestnut (Loo 2009).

Sweet chestnut (Castanea sativa Mill.; family Fagaceae) 
is an iconic tree species in southern Europe where it has 
been cultivated for centuries for its valuable wood and nuts 
(Conedera et al. 2004). Its extensive current distribution, 
covering over 2.5 million ha due to active management, has 
pushed the species to the limits of its ecological niche, mak-
ing it difficult to determine its original range (Conedera et al. 
2004). Despite being widely distributed, sweet chestnut is 
a poor competitor and requires active forest management to 
maintain its populations (Clark et al. 2023). It is also threat-
ened by a few invasive and destructive diseases, in particular 
chestnut blight and ink disease.

Already known in southern Europe in the eighteenth cen-
tury, ink disease causes root and collar rot of adult trees and 
of seedlings in nurseries, plantations, and forests (Vannini 
et al. 2001). The two main causal agents of this disease are 

Fig. 1  Locations of currently 
known outbreaks of ink disease 
(Phytophthora cinnamomi 
and P. × cambivora) of sweet 
chestnut (Castanea sativa) in 
southern Switzerland (Prospero 
et al. 2023) and the six regions 
delimitated to account for local 
microclimatic and topographic 
variability. Background: digital 
elevation model (©Federal 
Office of Topography swis-
stopo, https:// www. swiss topo. 
admin. ch/ en/ height- model- swiss 
alti3d)

https://www.swisstopo.admin.ch/en/height-model-swissalti3d
https://www.swisstopo.admin.ch/en/height-model-swissalti3d
https://www.swisstopo.admin.ch/en/height-model-swissalti3d
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Phytophthora × cambivora (Petri) Buism and P. cinnamomi 
Rand, two oomycetes originating from Asia. Since the end 
of the last century, a resurgence of ink disease has been 
noted in chestnut stands in several European countries, 
including Italy, France, and Switzerland (Vettraino et al. 
2001; Turchetti and Maresi 2006; Prospero et al. 2023). At 
the same time, the pathogens are spreading northward; cases 

have been reported, for example, in Germany and England 
(Vannini et al. 2001; Peters et al. 2019). Since both Phy-
tophthora-species have a thermophilic character (Zentmyer 
1981), the re-emergence of ink disease may be driven by 
global temperature increases (especially during the winter) 
and will most likely continue in the future. Unfortunately, to 

Fig. 2  Selected tree species (native and non-native to southern Switzerland) and study regions with their annual temperature and precipitation 
ranges (based on data by Karger et al. 2017)
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date no effective measures can control the disease; prevent-
ing the spread of the two pathogens is a key strategy.

Although a recent study conducted by Marzocchi et al. 
(2024) in Italy suggests that sweet chestnut may be able to 
coexist in a dynamic equilibrium with ink disease, damage 
can be locally severe. Such is the case in southern Swit-
zerland, where ink disease of chestnut is mainly caused by 
P. cinnamomi and has become a problem since the 1990s 
(Prospero et al. 2023). Many chestnut stands are on steep 
slopes and protect human infrastructure against natural haz-
ards like rock falls and landslides, so the death of chestnut 
trees can have severe impacts, at least temporarily. Thus, to 
assure permanent forest cover, besides conserving existing 
chestnut stands, forest management needs to include active 
replacement of chestnuts killed by ink disease with other 
tree species. In this study, we selected potential tree species 
that can provide the same services as sweet chestnut, then 
modeled which ones can climatically adapt to two future 
scenarios of climate change. Since species diversification 

is a well-known strategy to reduce biotic and abiotic risks, 
we also determined possible communities of replacement 
species.

Materials and methods

Study area

In the study area, the southern slopes of the Swiss Alps in 
the cantons Ticino and Grisons (Fig. 1), sweet chestnut is 
the most frequent broadleaf tree species between 300 and 
900 m a.s.l., and forms an almost continuous forest belt of 
about 30,000 ha. To account for local microclimatic and 
topographic variability, we divided the area into six regions, 
from north to south: Tre Valli (one known outbreak), Arbedo 
(one known outbreak), Locarnese (15 known outbreaks), 
Luganese (three known outbreaks), and Malcantone (two 
known outbreaks) in the canton Ticino, and Bregaglia (two 
known outbreaks) in the canton Grisons (Fig. 1).

Tree species selection

Potential tree species to replace sweet chestnut were selected 
among species already present in the study area and species 
present in European regions with a climate (temperatures 
and precipitations) like that expected in southern Swit-
zerland in the mid-twenty-first century (replacing time by 
space). Evergreen conifers were excluded from the selection 
(except for native Taxus baccata as an accessory species) 
because their introduction would fundamentally alter the 
appearance of the chestnut-dominated landscape, which car-
ries significant cultural implications in the area. Species pre-
ferring basic soils were also excluded, given the dominance 
of acidic soils in the study area. The selected species also 
had to be able to provide the same services as sweet chest-
nut for erosion control and slope stabilization because most 
chestnut stands with ink disease are on slopes and heavy 
precipitation is common in the study region (MeteoSwiss 
2019). Species enhancing biodiversity by providing shelter 
and forage for wildlife or soil improvement were preferred. 
Finally, the selected species should not be highly susceptible 
to P. cinnamomi and P. × cambivora or other invasive patho-
gens (in particular, Hymenoscyphus fraxineus, which causes 
ash dieback, and O. ulmi and O. novo-ulmi) or harmed by 
game browsing. For exotic (non-native) tree species, the 
ability to become invasive in the study region was a crite-
rion for exclusion.

Maps on the present potential distribution of several 
species were obtained using the national forest inventory 
(Wüest et al. 2021) and the online-tool TreeApp (https:// 
tree- app. ch/), developed by the Federal Office for the 
Environment (FOEN) and the Swiss Federal Institute for 

Fig. 3  Importance of the 20 predictor variables based on the fre-
quency with which they were used overall in all species distribution 
models

https://tree-app.ch/
https://tree-app.ch/
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Forest Snow and Landscape Research (WSL). These tools 
give spatial tree species recommendations under differ-
ent climate change trajectories and were therefore used 
to identify promising species that are already prevalent in 
the study area.

To identify well-adapted communities, we combined 
possible replacement species based on an extensive litera-
ture review and by ensuring that each species examined 
was included in at least one community. We then created 
a chord diagram in R (version 4.1.0, R Core Team 2021) 
to visually represent the associations between tree species, 
indicating which species can act as companion species for 
other ones and how these connections form distinct com-
munities. Species were excluded if they were not reported 
to be companion species to any of our listed promising 
species or we could not find information on them. Subse-
quently, we documented every identified community. For 
each region of the study area, a possible species composi-
tion was given for the two future scenarios (see below).

Modelling settings

Climatic suitability of the tree species at the selected sites 
under the future climate scenarios was modeled using the 
presence-only species distribution model MaxEnt (Phillips 
et al. 2006), a maximum-entropy based machine learning 
algorithm (El-Gabbas and Dormann 2018; Manzoor et al. 
2018) implemented in the R package dismo (Hijmans et al. 
2015). This model is one of the most used and highly accu-
rate algorithms (Yackulic et al. 2013; Booth 2018; Hosni 
et al. 2020; Zhang et al. 2021). Maximum entropy describes 

the state at which a system is closest to reality under the 
known conditions. The MaxEnt model finds the probabil-
ity distribution with the greatest dispersion or uniformity 
(= maximum entropy) that is subject to constraints repre-
senting incomplete information about the target distribution. 
This incomplete information results from the environmental 
conditions (known to us) that determine where a species 
occurs (Li et al. 2020). Presence-only models take points 
with a confirmed presence of a species into account, but not 
points with a confirmed absence. Instead of using absence 
or pseudo-absence points, MaxEnt integrates “background” 
points, which are randomly selected from the area of the 
presence points. Thus, the distribution of presence points 
can be compared to the distribution of background points 
along environmental gradients. In our case, 1000 back-
ground points provided the most robust results for most spe-
cies (except for Castanea mollissima and Ilex aquifolium, for 
which 10,000 points were chosen). The presence points were 
obtained via the R package rgbif (Chamberlain et al. 2022) 
from GBIF (Global Diversity Information Facility; https:// 
www. gbif. org/), an open-source database derived from both 
historical observations and identification applications such 
as PlantNet. The DOI of the derived datasets for each species 
can be found in Table S1 (ordered as in Fig. 2). To account 
for any sampling bias and autocorrelation, the occurrence 
data was thinned, using the function thin.algorithm from 
the R package spThin (Aiello-Lammens et al. 2015; Thurm 
et al. 2018). We selected a minimum distance of 100 km 
between each occurrence point, as this distance gave the 
most robust results in trial runs (data not shown). We used 
georeferenced data only and deleted any duplicate values. 

Table 2  Tested tree species 
grouped by their model results 
and origin (native vs. exotic)

Group, (I) Probability values do not (or barely) differ between today and the two future scenarios (SSP126 
and SSP370). (II) Values are highest in the reference period (1981–2010) and decrease in the future. (III) 
Values are highest in the future under scenario SSP126. (IV) Values are highest in the future under sce-
nario SSP370 (see Material and Methods for details)

Species origin Group

I II III IV

Native Acer platanoides
Quercus robur
Sorbus. aucuparia

Acer pseu-
doplata-
nus

Fagus syl-
vatica

Ostrya 
carpini-
folia

Taxus bac-
cata

Acer campestre
Ilex aquifolium
Sorbus aria

Laurus nobilis
Quercus cerris
Quercus petraea
Tilia platyphyllos

Exotic Fagus orientalis
Robinia pseudoacacia

Acer cappadocicum
Castanea crenata
Castanea mollissima
Tilia tomentosa
Larix kaempferi

Acer monspessulanum
Liriodendron tulipifera
Quercus frainetto
Quercus pyrenaica

Total (N) 5 4 8 8

https://www.gbif.org/
https://www.gbif.org/
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The model output was defined as probability of presence 
between 0 and 1.

Predictor variables

As predictor variables, we used the 19 bioclimatic variables 
from the CHELSA V2.1 dataset (Karger et al. 2017), which 
represent annual and seasonal temperature and precipitation 
trends based on the ERA5 (Hersbach et al. 2020) and CMIP6 
datasets (O’Neill et al. 2016) (Table S2). The data are avail-
able at a resolution of 30 arc seconds (approximately 1 km) 
for different time periods, model chains and scenarios. To 
account for model uncertainty, MaxEnt was run with all five 
available model chains (GFDL-ESM4, National Oceanic 
and Atmospheric Administration, USA; UKESM1-0-LL, 
Met Office Hadley Centre, UK; MPI-ESM1-2-HR, Max 
Planck Institute for Meteorology, Germany; IPSL-CM6A-
LR, Institut Pierre-Simon Laplace, France; MRI-ESM2-0, 
Meteorological Research Institute, Japan), and the ensemble 
mean was calculated.

To model possible future scenarios for the period 
2070–2100, we selected the SSP126 and the SSP370 shared 
socioeconomic pathways (SSP). The first scenario describes 
a sustainable pathway with an increase of radiative forc-
ing by 2.6 W  m−2 in 2100, and the second is dominated by 
regional rivalry, leading to higher damage and an increased 
radiative forcing of 7 W/m2 in 2100 (Böttinger and Kasang 
2021). Mean pH for soil at 30–60 cm depth from ISRIC Soil-
Grids (Poggio et al. 2021) was included as a further predic-
tor. ISRIC provides global interpolated estimates of different 
chemical soil properties (Booth 2018), which are used in 
species distribution modeling studies (Amaral et al. 2017; 
Lyam et al. 2018). The soil pH grid was transformed to 
match the resolution and extent of the bioclimatic variables.

The inclusion of many predictor variables can lead to 
more complex, but also overfitted models (Brun et al. 2020; 
Li et al. 2020). To reduce the number of predictors, we ran 
the model for the reference period and analyzed the percent-
age contribution of each predictor to select the most impor-
tant ones. Since the objective was to describe the ecological 
niche as precisely as possible, only mostly uncorrelated vari-
ables should be used (Li et al. 2020). Thus, we calculated a 
correlation tree and selected the variables with the highest 
contribution of each branch above an absolute Pearson cor-
relation threshold of 0.7. According to Brun et al. (2020), 

this process helps to avoid collinearity-related effects in the 
projection of species ranges.

Model evaluation

For cross-validation, the model data were split into 
75% training and 25% testing data using the kfold func-
tion in dismo. For each species, two evaluation metrics 
were calculated, namely the model AUCdiff, the differ-
ence between the AUC (area under the [receiver opera-
tor] curve) of the testing and training data, and continu-
ous Boyce index (CBI). The AUC is a commonly used 
metric for overall model discriminatory ability (Heller 
et al. 2017), but there are conflicting reports on whether 
it should be used in presence-only models (e.g., Yackulic 
et al. 2013; Low et al. 2021). Hence, here we only con-
sidered AUCdiff to quantify model performance (Bosso 
et al. 2016; Heller et al. 2017). A high AUCdiff would 
indicate overfitting, i.e., fitting too closely to the training 
data. In this case, a high AUC (and thus theoretically good 
performance) would be achieved with the training data, but 
a low AUC with the test data; consequently, AUCdiff val-
ues close to 0 (no difference between training and testing 
AUC) are desirable (Heller et al. 2017; Fois et al. 2018). 
The CBI measures how much the model predictions devi-
ate from the distribution of observed presence. Values 
closer to 1 indicate that the predictions match the actual 
presence points (Manzoor et al. 2018).

Binary distribution maps

To create binary maps for the presence/absence of a tree spe-
cies, we determined a species-specific threshold using the 
threshold function in dismo. The threshold was set to maxi-
mize the sum of sensitivity (true positive rate) and specific-
ity (true negative rate). This approach was described by Liu 
et al. (2005) as one of the most appropriate because a fixed 
threshold such as the commonly used 0.5 does not consider 
the different prevalence of each species.

Most promising species per site

The species-specific threshold was used to determine the 
most promising species for each region and scenario. We 
here define “promising” as those species for which model 
results exceed their threshold by 50%.

Fig. 4  Example of the modeled distribution of three native and 
three non-native species in southern Switzerland. Green area shows 
the potential occurrence of the species; black dots indicate the cur-
rent outbreaks of ink disease. Background: Digital elevation model 
(©Federal Office of Topography swisstopo; https:// www. swiss topo. 
admin. ch/ en/ height- model- swiss alti3d)

◂

https://www.swisstopo.admin.ch/en/height-model-swissalti3d
https://www.swisstopo.admin.ch/en/height-model-swissalti3d
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Results

Selected species

A total of 28 tree species (25 broadleaf and three coni-
fers) belonging to 11 families and 14 genera were tested as 
possible substitutes for sweet chestnut in the study region 
(Table 1, Fig. 2). Seventeen species are native to southern 
Switzerland, and 11 species are native to southern Europe, 
Asia, or North America. Even though black locust (Rob-
inia pseudoacacia) is an invasive species in Switzerland, 
we included it in the analyses. It is already widespread in 
parts of the study area (e.g., region Locarnese), where it 
frequently invades chestnut coppice stands after sylvicultural 
interventions (thinning, clearcutting). This species strongly 
contributes to slope stabilization and improves soil through 
nitrogen fixation.

Model evaluation

The summary results of the species-specific model 
performances and outputs per region are shown in 

Table 3  Simulated area 
of occurrence of each tree 
species in the reference period 
(1981–2010) and in the future 
period 2070–2100 under the 
two scenarios SSP126 and 
SSP370 based on the extent of 
the maps in Fig. S1

ΔHist, change (in %) compared to the reference period; n.a., not applicable

Species 1981–2010 Reference 2070–2100 SSP126 2070–2100 SSP370

Area  (km2) Area  (km2) ΔHist (%) Area  (km2) ΔHist (%)

Acer campestre 1075 1492  + 38.8 2234  + 107.8
Acer cappadocicum 1980 2296  + 15.9 2730  + 37.9
Acer monspessulanum 682 499 − 26.8 1806  + 164.8
Acer platanoides 2231 3064  + 37.3 4312  + 93.3
Acer pseudoplatanus 2000 1916 − 4.2 2545  + 27.3
Castanea crenata 1193 1685  + 41.2 3001  + 151.6
Castanea mollissima 0 718 n.a 752 n.a
Fagus orientalis 5220 5473  + 4.8 5482  + 5.0
Fagus sylvatica 2042 1965 − 3.8 2662  + 30.4
Ilex aquifolium 4993 5481  + 9.8 5481  + 9.8
Larix kaempferi 2422 3573  + 47.5 4543  + 87.6
Laurus nobilis 605 1080  + 78.5 1706  + 182.0
Liriodendron tulipifera 1536 1572  + 2.3 2505  + 63.1
Ostrya carpinifolia 4157 3980 − 4.3 1467 − 64.7
Quercus cerris 234 1479  + 532.1 2128  + 809.4
Quercus frainetto 1028 1559  + 51.7 2185  + 112.5
Quercus petraea 1903 2597  + 36.5 3458  + 81.7
Quercus pyrenaica 810 1250  + 54.3 1807  + 123.1
Quercus robur 2214 2627  + 18.7 3226  + 45.7
Robinia pseudoacacia 2407 3164  + 31.4 4306  + 78.9
Sorbus aria 4345 5435  + 25.1 5086  + 17.1
Sorbus aucuparia 5428 5429  + 0.02 5473  + 0.8
Taxus baccata 5424 5403 − 0.4 5251 − 3.2
Tilia platyphyllos 140 1194  + 752.9 1665  + 1089.3
Tilia tomentosa 673 1664  + 147.3 2200  + 226.9

Table 4  Groups of tree species, in which each species in a group 
is a companion species to all species in that group. Each species is 
included in at least one group. Complete species names are given in 
Table 3

Group Species composition

1 A. platanoides, T. platyphyllos, I. aquifolium
2 Q. pyrenaica, Q. petraea, Q. robur
3 Q. frainetto, A. campestre, Q. robur
4 S. aria, A. campestre, Q. cerris
5 T. tomentosa, S. aria, Q. petraea
6 A. monespessulanum, S. aria, Q. cerris
7 L. nobilis, Q. petraea, I. aquifolium
8 A. cappadocicum, Q. cerris
9 F. orientalis, L. kaempferi
10 R. pseudoacacia, A. campestre
11 L. tulipifera, Q. robur
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Table  1. The MaxEnt model performed well (average 
AUCdiff = 0.02 ± 0.03; average CBI = 0.8 ± 0.1), but with 
a few exceptions. The AUCdiff for Q. frainetto, A. cappa-
docicum, and F. orientalis were relatively high, indicating 
a slight overfitting of the model. On the other hand, the 
CBI for C. mollissima especially, but also for C. crenata, 
A. pseudoplatanus, Q. petraea, and Q. cerris was relatively 
low, indicating rather mediocre applicability of the model to 
regions outside the study area for these species.

Importance of predictor variables

Five predictor variables on average (range: 3 to 7) were used 
for each model. While many of the bioclimatic variables 
were closely correlated, soil pH was nearly independent and 
was therefore used as a predictor variable for each species. 

The predictor variables Bio2 (mean monthly diurnal range 
of temperatures), Bio3 (isothermality = ratio of diurnal to 
annual range of temperatures) and Bio15 (precipitation 
seasonality) were used for 48% of the models, Bio8 (mean 
temperature of the wettest quarter) and Bio17 (mean pre-
cipitation of driest quarter) in 40%, and Bio4 (temperature 
seasonality) in 37% of the models (Fig. 3). In general, sea-
sonality of precipitation and temperature seemed to be the 
most important factors for the distribution of most species 
(Fig. 3).

Model results

Before applying the species-specific threshold to create 
binary maps, we examined the raw results for each spe-
cies and region (probability of presence between 0 and 1, 

Fig. 5  Chord diagram showing how substitutive species for sweet chestnut could be combined to form mixed forest stands. Castanea crenata 
and C. mollissima were not included because we could not find information on known companion species within our list of species
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Table 1). The analysis revealed that in 56.5% of instances 
(28 species × 6 regions = 168 instances) the values obtained 
with SSP126 were higher than those with SSP370. In 35.7% 
of cases, the opposite situation was observed, whereas in 
13 cases the same value was observed for both scenarios. 
When considering the six regions separately, for most spe-
cies, the highest probability of presence was reached under 
SSP126 for all regions but Bregaglia, which is the coolest 
of all regions. When comparing the raw results (probability 
of presence) with the species-specific threshold, most spe-
cies can be considered as present in all or most regions. 
However, under both future scenarios, the model output for 
A. glutinosa, L. decidua, and T. cordata did not exceed the 
species-specific threshold for any region (Table 1). Thus, 
according to our model results, these three species would not 
occur under the investigated conditions and were excluded 
from further analyses.

Based on the results in Table 1, the tested tree species 
could be assigned to one of four groups (Table 2): (I) Val-
ues do not (or hardly) differ between the reference period 
(1981–2010) and the two future scenarios. (II) Values are 
highest in the reference period and decrease in the future. 
(III) Values are highest in the future period under the sce-
nario SSP126. (IV) Values are highest in the future period 
under the scenario SSP370. The five tree species in group 
I were projected to be suitable in all regions, today and in 
the future in both scenarios. The only exception was Q. 
robur, which did not reach the threshold value in Malcan-
tone under SSP370. Group II consists of four native species 
that are better adapted to the current climate than to the 
future scenarios. On the contrary, the species in groups III 
and IV are particularly adapted for future climate condi-
tions. Regarding the spatial distribution of the tested spe-
cies under the two climate scenarios (Fig. 4; Fig. S1), two 
main patterns emerged: (1) an expansion or a contraction 
of the area of occurrence or (2) a shift toward higher alti-
tudes. The area of potential occurrence of most species 
increased under the two future climate scenarios (19 of 25 
species under SSP126 and 23 of 25 species under SSP370; 
Table 3), with increments ranging from + 0.02% of the his-
toric (1981–2010) occurrence (Sorbus aucuparia, SSP126) 
to + 1089.3% (Tilia platyphyllos, SSP370). For most species 
(18 of 20), the area expansion was larger under SSP370 than 
SSP126, for one species (I. aquifolium) the same under both 
scenarios (+ 9.8%), and for one species (Sorbus aria) larger 
under SSP126 (+ 25.1%) than SSP370 (+ 17.1%). The area 
of potential distribution of three species (Acer monspessu-
lanum, A. pseudoplatanus, Fagus sylvatica) decreased under 
SSP126, but increased under SSP370 (Table 3). Finally, two 
species (Ostrya carpinifolia, T. baccata) showed an area 
contraction under both climate scenarios, with that of O. 
carpinifolia particularly important (–64.7% compared to the 
historic period) under SSP370.

Species composition

From literature data, we identified 11 combinations of tree 
species (Table 4, Fig. 5), each containing two to three spe-
cies. From this analysis, we excluded the four species from 
group II (Table 3) that performed better in the reference 
period than in the future under SSP126 and SSP370. Each of 
the six regions of the study area could harbor most combina-
tion of tree species (Table 5), with Bregaglia being the most 
selective region (8 tree combinations under SSP126 and 8 
under SSP370). Within regions, differences in the number 
of tree combinations between the two scenarios were mini-
mal (same number, plus or minus one), as were differences 
in the composition of the most promising species (Table 3, 
Fig. S1). We could not find any documentation of C. crenata 
or C. mollissima as companion species of any of our evalu-
ated replacement species, so they were excluded from the 
analysis of tree species composition.

Discussion

The future distribution of tree species will be influenced not 
only by climate change but also by biotic disturbances that 
can severely reduce tree vitality and health (e.g., Vacek et al. 
2023). Ink disease caused by the soil-borne oomycetes Phy-
tophthora cinnamomi and P. × cambivora is one of the most 
severe diseases of sweet chestnut in Europe (Vannini et al. 
2001; Robin and Marchand 2022). Its importance is likely 
to increase because the two pathogens are thermophilic and 
can persist in the soil over years. In this regard, Gustafson 
et al. (2022) in a simulation experiment showed that root 
rot caused by P. cinnamomi has the potential to seriously 
hamper restoration efforts of American chestnut (C. den-
tata) in the eastern United States under warming climate. In 
our study, we selected 28 tree species and used a modeling 
approach (model MaxEnt) to test their suitability to replace 
sweet chestnut in stands affected by ink disease in southern 
Switzerland in the two climate scenarios.

For most species, the model MaxEnt performed well, as 
shown by the formal evaluation criteria (AUCdiff and CBI), 
but also by a logical evaluation of the results. In general, the 
seasonality of precipitation and temperature seem to be the 
most important factors for the distribution of most species, 
as observed in previous studies (e.g., Dyderski et al. 2018). 
Since we only used one modelling algorithm due to time 
constraints, we were able to handle a larger number of spe-
cies. Although the algorithm was adapted to each species, 
the raw model outcomes of the different species cannot be 
compared because the different amount of reference data 
available for each species would influence the species-spe-
cific threshold. For this reason, we calculated species-spe-
cific threshold to derive binary results for presence/absence. 
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This approach has a limitation because some species can be 
marked as absent even if they might be present. For example, 
A. glutinosa and T. cordata currently occur in the study area, 
but the model projected their absence, even in the reference 
period. To account for these uncertainties derived from the 
modeling approach chosen, we could use additional mod-
eling algorithms and pool their results. However, a study by 
Booth (2018), which elaborated on the species distribution 
modeling tools and databases that can assist in managing 
forests under climate change, recommended, among others, 
exactly the tools and databases used in our study and, thus, 
confirmed our approach. The authors mentioned MaxEnt as 
one of the most used algorithms, the CHELSA dataset for 

climate predictor variables, ISRIC SoilGrids as a source for 
soil predictor variables, and the use of the GBIF database 
for occurrence data.

Although the assessment of the future potential extent 
of the forest area in the study region was not the main 
objective of this study, our results show an increase of the 
overall potential range in which the tested tree species can 
occur in the future. Noteworthy, this increase is expected 
to be stronger under the more extreme climate scenario 
SSP370 than under the milder SSP126 scenario. Since the 
study region is characterized by altitudes ranging from 
about 200 m to more than 3000 m a.s.l., and deep alpine 
valleys, an increase in temperature will most likely open 

Table 5  Recommendation per region for individual tree species and species composition for both future climate scenarios SSP126 and SSP370. 
The most promising species for each region are highlighted in bold. Complete species names are given in Table 3

Region Scenario Groups (see Table 4) Tree species

Bregaglia SSP126 2,3,4,5,6,8,9,10 A. campestre, A. cappadocicum, A. platanoides, C. mollissima, F. orientalis, I. aquifolium, L. 
kaempferi, Q. cerris, Q. frainetto, Q. petraea, Q. pyrenaica, Q. robur, R. pseudoacacia, S. 
aria, S. aucuparia, T. tomentosa

SSP370 2,3,4,5,7,8,9,10,11 A. campestre, A. cappadocicum, A. platanoides, C. crenata, C. mollissima, F. orientalis, I. 
aquifolium, L. nobilis, L. kaempferi, L. tulipifera, Q. cerris, Q. frainetto, Q. petraea, P. 
pyrenaica, Q. robur, R. pseudoacacia, S. aria, S. aucuparia, T. tomentosa

Locarnese SSP126 2,3,4,5,6,7,8,9,10,11 A. campestre, A. cappadocicum, A. monspessulanum, A. platanoides, C. crenata, C. mol-
lissima, F. orientalis, I. aquifolium, L. nobilis, L. kaempferi, L. tulipifera, Q. cerris, Q. 
frainetto, Q. petraea, Q. pyrenaica, Q. robur, R. pseudoacacia, S. aria, S. aucuparia, T. 
platyphyllos, T. tomentosa

SSP370 1,2,3,4,5,6,7,8,9,10, 11 A. campestre, A. cappadocicum, A. monspessulanum, A. platanoides, C. crenata, C. mol-
lissima, F. orientalis, I. aquifolium, L. nobilis, L. kaempferi, L. tulipifera, Q. cerris, Q. 
frainetto, Q. petraea, Q. pyrenaica, Q. robur, R. pseudoacacia, S. aria, S. aucuparia, T. 
platyphyllos, T. tomentosa

Luganese SSP126 1,2,3,4,5,6,7,8,9,10,11 A. campestre, A. cappadocicum, A. monspessulanum, A. platanoides, C. crenata, F. orientalis, 
I. aquifolium, L. nobilis, L. kaempferi, L. tulipifera, Q. cerris, Q. frainetto, Q. petraea, Q. 
pyrenaica, Q. robur, R. pseudoacacia, S. aria, S. aucuparia, T. platyphyllos, T. tomentosa

SSP370 1,2,3,4,5,6,7,8,9,10,11 A. campestre, A. cappadocicum, A. monspessulanum, A. platanoides, C. crenata, F. orientalis, 
I. aquifolium, L. nobilis, L. kaempferi, L. tulipifera, Q. cerris, Q. frainetto, Q. petraea, Q. 
pyrenaica, Q. robur, R. pseudoacacia, S. aria, S. aucuparia, T. platyphyllos, T. tomentosa

Malcantone SSP126 1,2,3,4,5,7,8,9,10,11 A. campestre, A. cappadocicum, A. platanoides, C. crenata, F. orientalis, I. aquifolium, L. 
nobilis, L. tulipifera, L. kaempferi, Q. cerris, Q. frainetto, Q. petraea, Q. pyrenaica, Q. 
robur, R. pseudoacacia, S. aria, S. aucuparia, T. platyphyllos, T. tomentosa

SSP370 1,4,5,6,7,8,9,10,11 A. campestre, A. cappadocicum, A. monspessulanum, A. platanoides, C. crenata, F. orientalis, 
I. aquifolium, L. nobilis, L. kaempferi, L. tulipifera, Q. cerris, Q. frainetto, Q. petraea, Q. 
pyrenaica, R. pseudoacacia, S. aria, S. aucuparia, T platyphyllos, T. tomentosa

Tre Valli SSP126 1,2,3,4,5,6,7,8,9,10,11 A. campestre, A. cappadocicum, A. monspessulanum, A. platanoides, C. crenata, C. mol-
lissima, F. orientalis, I. aquifolium, L. nobilis, L. kaempferi, L. tulipifera, Q. cerris, Q. 
frainetto, Q. petraea, Q. pyrenaica, Q. robur, R. pseudoacacia, S. aria, S. aucuparia, T. 
platyphyllos, T. tomentosa

SSP370 1,2,3,4,5,6,7,8,9,10,11 A. campestre, A. cappadocicum, A. monspessulanum, A. platanoides, C. crenata, C. mol-
lissima, F. orientalis, I. aquifolium, L. nobilis, L. kaempferi, L. tulipifera, Q. cerris, Q. 
frainetto, Q. petraea, Q. pyrenaica, Q. robur, R. pseudoacacia, S. aria, S. aucuparia, T. 
platyphyllos, T. tomentosa

Arbedo SSP126 1,2,3,4,5,6,7,8,9,10,11 A. campestre, A. cappadocicum, A. monspessulanum, A. platanoides, C. crenata, C. mollis-
sima, F. orientalis, I. aquifolium, L. nobilis, L. tulipifera, Q. cerris, Q. frainetto, Q. petraea, 
Q. pyrenaica, Q. robur, R. pseudoacacia, S. aria, S. aucuparia, T. platyphyllos, T. tomentosa

SSP370 1,2,3,4,5,6,7,8,10,11 A. campestre, A. monspessulanum, A. platanoides, C. crenata, C. mollissima, F. orientalis, 
I. aquifolium, L. nobilis, L. tulipifera, Q. cerris, Q. frainetto, Q. petraea, Q. pyrenaica, Q. 
robur, R. pseudoacacia, S. aria, S. aucuparia, T. platyphyllos, T. tomentosa
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large amounts of newly suitable land at higher altitudes, 
with an upward shift of the tree line. Interestingly, Noce 
et al. (2023), using species distribution models, showed 
that in the Italian Alps and Apennines, most major tree 
species are expected to experience a future contraction in 
their altitudinal distribution, although some of them may 
spread beyond the current tree line. However, the authors 
specify that it is generally difficult to clearly define suc-
cessful or unsuccessful species.

In our study, some of the tested tree species show dif-
ferent trends in their site-specific and spatial results, which 
underlines the heterogeneity, mainly due to altitude, within 
the study area. Based on our modeling, four tree species (A. 
pseudoplatanus, F. sylvatica, O. carpinifolia, T. baccata) 
performed better in the reference period (1981–2010) than in 
the future, which suggests they would not be a good alterna-
tive to sweet chestnut under climate change. All these spe-
cies are native to southern Switzerland and already present 
in the study area, either as main species (e.g., F. sylvatica) 
or accessory species (e.g., O. carpinifolia, T. baccata). Five 
other tree species (A. platanoides, Q. robur, S. aucuparia, 
F. orientalis, R. pseudoacacia) are not expected to change in 
performance under the two future climate scenarios tested. 
Noteworthy, two of these five species— oriental beech (F. 
orientalis) and black locust (R. pseudoacacia)—are not 
native to the study area. Oriental beech is occasionally 
grown as an urban tree, but is not present in local forests, and 
black locust has become invasive in many parts of Europe, 
including southern Switzerland since its introduction from 
North America (e.g., Vítková et al. 2017). Given the dif-
ficulty in its eradication and its unchanged performance in 
the future, this neophyte may contribute to maintaining the 
forest cover in already invaded chestnut stands, especially 
on steep slopes or dry sites.

Finally, nine of the 16 tree species that seem to perform 
better in the future than today are exotic: A. cappadocicum, 
A. monspessulanum, C. crenata, C. mollissima, L. kaemp-
feri, L. tulipifera, Q. frainetto, Q. pyrenaica, T. tomentosa. 
Among these species are two Asian chestnut species (C. cre-
nata and C. mollissima), which could be introduced in chest-
nut stands affected by ink disease where the preservation of 
Castanea species is desired, e.g., for landscape reasons (e.g., 
region Bregaglia). Despite their low value as timber and fruit 
producers, Asian chestnut species are resistant to the patho-
gens causing ink disease (Crandall et al. 1945). Similarly, 
the other seven exotic species, present only sporadically in 
the study area, could be introduced or further promoted as an 
alternative to sweet chestnut. However, non-native tree spe-
cies pose ecological risks that one should not underestimate 
(Vacek et al. 2023), for example, by becoming invasive in 
the new area or leading to considerable changes in the native 
biodiversity such as shifts in the soil microbial communities 
(Peterken 2001; Kjær et al. 2014; Byers et al 2020). When 

introduced in forests as seeds or seedlings/saplings, exotic 
species could also accidentally contribute to the spread of 
dangerous pests and pathogens (e.g., Wingfield et al. 2001; 
Franić et al. 2024). Finally, exotic species may hybridize 
with closely related native species (e.g., Asian chestnuts 
with sweet chestnut; Alcaide et al. 2022) and pollute their 
genetic background. Among the native tree species tested, 
A. campestre, I. aquifolium, S. aria, L. nobilis, Q. cerris, Q. 
petraea, and T. platyphyllos are expected to perform better 
under the future climate scenarios than today, and they are 
already sometimes present in sweet chestnut stands. Hence, 
they could be good alternatives to sweet chestnut in stands 
affected by ink disease. However, given the regular occur-
rence of forest fires in southern Switzerland (Tinner et al. 
1999), the two evergreen species, I. aquifolium and L. nobi-
lis, may not be the best choice (Dimitrakopoulos and Papa-
ioannou 2001; Conedera et al. 2017).

Mixing tree species in a forest stand has numerous eco-
logical advantages, including greater stability and resilience 
against biotic disturbance agents (Bauhus et al. 2017). For 
this reason, for each region of the study area, we determined 
a mixture of species that are potentially suited to replace 
sweet chestnut in the two future climate scenarios. Some tree 
species have a limited number of potential companion spe-
cies, while others appear to be less selective. Since we based 
our species selection on the literature review, the results may 
be partially biased by data availability. Hence, for less com-
mon species, their presence in a small community does not 
necessarily imply that they cannot be companion species 
for many others. Despite the limited size of the study area 
(current forest area: approx. 1470  km2), differences in the 
selected species communities are visible among regions and 
between climate scenarios within the same region. These 
differences may result from the small-scale environmental 
heterogeneity (climate, topography, soil) that characterizes 
the southern slope of the Swiss Alps.

Conclusion

Invasive soil-borne pathogens are of particular concern 
because once established in a forest stand, they are almost 
impossible to eradicate and thus have the potential to dam-
age several generations of trees. In this study, we identified 
candidate tree species to replace sweet chestnut in stands 
affected by ink disease in southern Switzerland under the 
shared socioeconomic pathways SSP126 and SSP370. Even 
though the whole range of potential species could not be 
included in the analyses, we were able to provide lists of 
native and exotic tree combinations that could help forest 
managers to ensure the future forest cover in areas with ink 
disease. Because sweet chestnut is not a future-proof tree 
species in southern Switzerland (Conedera et al. 2021), the 
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identified tree species could be useful for the whole chestnut 
belt.
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