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Abstract: Satellite-derived land surface temperature (LST) data are most commonly observed in the
longwave infrared (LWIR) spectral region. However, such data suffer frequent gaps in coverage
caused by cloud cover. Filling these ‘cloud gaps’ usually relies on statistical re-constructions using
proximal clear sky LST pixels, whilst this is often a poor surrogate for shadowed LSTs insulated under
cloud. Another solution is to rely on passive microwave (PM) LST data that are largely unimpeded
by cloud cover impacts, the quality of which, however, is limited by the very coarse spatial resolution
typical of PM signals. Here, we combine aspects of these two approaches to fill cloud gaps in the
LWIR-derived LST record, using Kenya (East Africa) as our study area. The proposed “cloud gap-
filling” approach increases the coverage of daily Aqua MODIS LST data over Kenya from <50% to
>90%. Evaluations were made against the in situ and SEVIRI-derived LST data respectively, revealing
root mean square errors (RMSEs) of 2.6 K and 3.6 K for the proposed method by mid-day, compared
with RMSEs of 4.3 K and 6.7 K for the conventional proximal-pixel-based statistical re-construction
method. We also find that such accuracy improvements become increasingly apparent when the
total cloud cover residence time increases in the morning-to-noon time frame. At mid-night, cloud
gap-filling performance is also better for the proposed method, though the RMSE improvement is far
smaller (<0.3 K) than in the mid-day period. The results indicate that our proposed two-step cloud
gap-filling method can improve upon performances achieved by conventional methods for cloud
gap-filling and has the potential to be scaled up to provide data at continental or global scales as it
does not rely on locality-specific knowledge or datasets.

Keywords: cloud gap-filling; land surface temperature; thermal infrared; passive microwave; Kenya

1. Introduction

Land surface temperature (LST) is classified as a Global Climate Observing System
Essential Climate Variable (GCOS-ECV) [1]. It is widely used in both research and com-
mercial applications, with its key domains of relevance including agriculture [2], urban
landscape management [3], disaster risk analysis [4], and investigations on heat flux and
hydrological features across the globe [5,6]. However, satellite LST data derived from
brightness temperatures (BT) recorded in the longwave infrared (LWIR) spectral region
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have the key limitation that widespread cloud can completely obscure land surface from
the sensors’ view [7–9]. The resulting spatiotemporal ‘cloud gaps’ pose a challenge for
applications reliant on regular and routine LST observations, both in terms of environ-
mental models and derived data products [10,11]. The cloud gap problem may be further
exacerbated when the sensor providing BT data is mounted on a polar orbiting satellite.
In this scenario only a few (usually 1–2) views of an area in the tropical low latitudes and
the temperate middle latitudes can be provided in every diurnal cycle, and these views
can often be compromised by high (>50%) levels of cloud cover. This is a critical problem
for both the monitoring of LST and its downstream users in applications, such as drought
monitoring [12], urban island heat characterization [13], and fire detection [14,15].

1.1. Prior Cloud Gap-Filling Research

The filling of ‘cloud gaps’ in LWIR-derived LST data has been the subject of much
research, with methods focusing primarily on data interpolation approaches based on
temporal techniques such as the Savitzky–Golay filter [16,17], single spectrum analysis [18],
and other similar methodologies [19]. The key assumption in such studies is a high conti-
nuity between daily LST dynamics at the scale of a remotely sensed pixel. However, daily
continuity breaks down when a region suffers significantly from cloud shadowing, storm
cells, differential urban heating, short-term precipitation events, and other environmental
phenomena [20,21]. Therefore, there is an urgent need to enable a cloud gap-filling method
that can account for these sub-daily changes in LST to minimize their negative effect on
the intra-day continuity that temporal interpolation relies on. Geo-statistical interpolation
is a variant of the above interpolation approaches for LST cloud gaps, in which areas
of no-data are filled using functions built from the spatial distribution of the available
clear-sky observations obtained at, or close to, the same local time at which the cloud gaps
are observed [22–24]. However, this approach has been proven unreliable when the study
area is affected by larger portions of contiguous data gaps [25] and is thus not suitable for
use in areas suffering frequent cloud.

Another type of approach exploited to fill cloud gaps is based on LST variation and dis-
tribution patterns in the spatio-temporal space, sometimes referred to as “spatio-temporal
data fusion” (STDF) methods. An STDF framework is usually constructed using clear-sky
LST observations of spatially neighbouring pixels made at proximal or near-proximal
dates. The methods deployed include linear models [26,27], Markov-based models [28],
and those based on ratios between daily LST observations and the corresponding eight-day
averages [29]. Improved performance of these methods, and thus more stable cloud gap
LST estimates, have been obtained through the introduction of additional data beyond
LST alone [25,30,31]. However, a flaw of this approach is highlighted by Song et al. [30] in
that gap-filled pixels of MODIS LST data based on STDF methods represent an estimate of
the LST that would be found under clear sky conditions, even if the gaps are caused by
clouds. This is because the STDF approaches rely on relationships built from ‘clear sky’
LST observations. Therefore, a ‘clear sky bias’ within the STDF cloud gap-filled product
can be introduced because the amount of outgoing longwave and incoming shortwave
radiation in clouded areas is affected by the cloud cover in a manner not accounted for by
the clear sky STDF relationship.

The use of physically based land surface energy balance (LSEB) modelling [31–33]
and numerical weather prediction (NWP) modelling [34] are theoretically not affected
by a clear-sky bias. However, since they require accurate local soil properties to work
effectively, the LSEB models have large uncertainty on the model parameterization process.
A recent investigation [35] has attempted to overcome this flaw by fusing LSEB theory with
machine-learning-based methods. Despite the good accuracies (RMSE < 2.5 K) achieved in
terms of results, their inputs still require spatially and temporally contiguous shortwave
radiation products that are difficult to obtain globally with a high accuracy and at a high
resolution from geo-stationary satellites [36]. In addition, validation of energy balance
models of surface temperature has shown that there is a tendency for such models to suffer
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a cold bias [37,38]. The NWP modelling technique is much more sophisticated in describing
the land surface and atmospheric conditions but has been shown to struggle in accuracy
with regards to surface temperatures over a variety of landcovers [39,40]. Overall, physical
models as they currently exist should be further improved to act as a suitable answer on
their own to the filling of LST cloud gaps, especially on large (global) scales.

The final methodological approach available to tackle the cloud gap problem is to
exploit passive microwave (PM) data. The advantage of PM-based approaches is the
ability of microwave radiation to penetrate clouds, which allows the spaceborne sensor
to record surface-emitted PM radiation and support the production of ‘all-weather’ LST
data [41]. However, the ground pixel footprints of satellite-based PM instruments suitable
for LST estimation are typically coarser than 10 × 10 km2. This is a far worse spatial
resolution than is provided by LWIR sensors, such as the Moderate Spatial Resolution
Imaging Spectroradiometer (MODIS) and the Visible infrared Imaging Radiometer (VIIRS),
and insufficient for many applications of LST data given the strong spatial heterogeneity
typical of land surface temperatures. Furthermore, PM-derived LST estimates represent
the temperature at some depth in the soil, typically 2 mm to 1 cm, which is different to the
surface skin temperature estimates typically provided by LWIR-based LST methods [42–44].

Due to the known limitations of PM-derived LST data, numerous investigations have
been performed with respect to how PM- and LWIR-derived LST data records might be
combined to produce an ‘all-weather’ daily LST record at a spatial resolution the same
or similar to that of the original LWIR-derived LST record. Table 1 summarises key
studies in this field from the last five years, almost all of which rely on the environmental
characteristics of the particular region studied. Most of the approaches did not address the
potential universality of their method beyond the particular study region, which is likely a
limitation to producing the all-weather daily LST at continental/global scales.

Table 1. Summary of LWIR and Passive Microwave data fusion studies related to the production of ‘all-weather’ daily LST
information at a higher spatial resolution than PM data alone can produce.

Study Main Method Description Spatial Scale Limitations

1. Kou et al. [45]

A Bayesian Maximum Entropy (BME)
blending approach to merge PM and LWIR
data, achieving a Root Mean Square Error
(RMSE) in LST of between 2.3–4.5 K.

A relatively small
100 × 100 km2 region

Only used on night-time data over a small region,
with its universality requiring more validation.

2. Duan et al. [43]

An empirical model based on a digital
elevation model (DEM) and clear sky
LWIR-derived LST at neighboring pixels to
downscale PM-derived data for achieving
LST of cloudy LWIR pixels.

China

Downscaling of PM LST only relies on DEM, may
be theoretically less effective in areas where the
topographical variation is not important (e.g., low
altitude plains).

3. Sun et al. [46]
A downscaling method for PM LST using
NDVI and DEM data applied for gap-filling
of LWIR LST at a finer resolution.

China

(1) Penetration depth difference between PM and
LWIR not considered.
(2) The method was applied over a large area but
only validated at limited sites.
(3) PM data were downscaled to 5 km but the
feasibility of the method at a finer resolution (e.g.,
1 km) requires further investigation.

4. Zhang et al. [47];
Zhang et al. [48];
Zhang et al. [49];

A temporal component decomposition
developed for merging observations that
achieved a 1-km all-weather daily LST data.

Northeastern China;
the Tibetan Plateau

Both microwave data and reanalysis data are
required as essential inputs to reconstruct the real
LST under cloud. But this increases the complexity
of the method and risks increased uncertainty from
data inputs. Therefore, it should be cautiously
discussed when applied in other regions.

5. Long et al. [50]

A data fusion method used to merge LWIR
observations and PM-like coarse-resolution
reanalysis datasets, based on correlations
between images taken a limited time apart.

3 plots of
80 × 80 km2

in China

(1) This time-interpolation-like fusion method has
strict requirement on the availability of its input
datasets at neighboring dates [49].
(2) The method only addresses situations of
temporally discontinuous pixel loss across
relatively small study regions.

6. Yoo et al. [51];
Shwetha and
Kumar [52]

Machine-learning based models to fuse LST
at different spatial scales.

South Korea, about
10,000 km2;
Cauvery river basin
in India, about
80,000 km2

The physics behind machine learning models
remains unclear, and it is difficult to justify the
global universality of these models when the
relationships they derive cannot be
explicitly formalized.
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1.2. Research Objective

Based on the research described above, both conventional STDF approaches and
PM-LWIR data fusion approaches have a mixture of merits and limitations. Therefore,
a combination of these has potential for compensating for the ‘clear sky bias’ present in
the STDF approaches and for removing the regional restriction present in many existing
PM-LWIR fusion methods. In this study, we build on past efforts by developing a novel
two-step framework for better estimation of LST in cloud covered areas at a relatively high
spatial resolution, based on a combination of LWIR-derived LSTs and PM LST data. We
applied the approach at a national scale in tropical Africa, and through our efforts aim
to further enhance the universality of an approach to generate all-weather, fine spatial
resolution (~1 km) LST data. We also aim to investigate the effect of cloud insulation on
the gap filling of LST, answering whether and how PM observations might mitigate biases
in the cloud gap filled LST data generated by the conventional STDF methodology. Our
work may benefit future efforts to produce globally quasi-full coverage daily LST data at
resolutions similar to those provided by current LWIR sensors.

2. Study Area and Datasets
2.1. Study Area and In Situ LST Ground Observations

The study area for this work covers Kenya (East Africa) with a total area of around
582,646 km2. As illustrated in Figure 1, the far southwestern part of the country is char-
acterized by highly vegetated cropland and forest, with complex topography at higher
elevations (>1000 m). In contrast, the rest of the region is primarily dominated by flat
plains and covered with sparser vegetation types (grass or shrub savannas). Most of Kenya
is dominated by Arid (BSh, BWh) and Tropical (Af, Am, Aw) Köppen–Geiger climate
zones with some Temperate (Cfb, Csb, Cwb) climate zones found in the south-west [53].
Snow and ice rarely occur except at high altitude. The local climate experiences a bi-modal
rainfall pattern, with a season of ‘short rains’ typically between October and December
and ‘long rains’ from April to late May or June. Other months are identified as dry seasons.
Given the wide range of precipitation, topography and climate types, methodologies for
improving LST cloud gap-filling developed in Kenya are likely applicable to many other
areas globally, especially in the (sub) Tropics and the Temperate zones.

The ILRI Kapiti Research Station is located in south-west Kenya (−1.6083◦, 37.1327◦),
as shown in Figure 1a. This station is run by the International Livestock Research Institute
(ILRI) and provides observations of LST and land surface energy balance, as well as CO2
and H2O fluxes. The observation sites are instrumented using a series of mast mounted
(Heitronics) LWIR radiometers to deliver upward (53◦ view zenith angle) and downward
(15◦ view zenith angle) looking LWIR brightness temperatures. They are then processed
to deliver logged LST estimates every 5-min according to the LST in situ measurement
principles described in Gottsche et al. [54]. There are four sites in all (Masts 1–4 in Figure 1a)
which can provide LWIR radiometer measurements suitable for the evaluation of satellite-
based LST products since September 2018. The research station has a fenced 15 km × 20 km
area of homogenous savannah, which can further be broken down into 94% grassland-soil
complexes and 6% tree canopy cover.
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Figure 1. Location and geographical settings of the study area, Kenya- Eastern Africa, and the layout of in situ measurement
sites located within the study area whose LST data records are used as validation data herein. (a) Upper left, Location of
the ILRI Kapiti Research Station in Kenya and the location of the LST validation masts at Kapiti. Inset right- location of
Kenya in Africa. Lower pane- Location of the four LST measurement mast sites at ILRI Kapiti Research Station with the
approximate response area of the SEVIRI and MODIS pixels over the research station. (b) NDVI time series from MODIS
MYD13A2 16-day composite product for five typical pixels (A, B, C, D, and E) across Kenya of an entire phenological year
from October 2018 to September 2019. (c) A 300 m resolution land cover classification map of Kenya in 2018 produced by
the European Space Agency (ESA) Climate Change Initiative (CCI); (d) An NDVI map of Kenya at 500 m resolution on 22
October 2018, calculated using MODIS MCD43A4 product. Pixels with NDVI < −0.2 (which might indicate water) were
screened out. (e) The resampled 1 km resolution map Digital Elevation Model (DEM) of Kenya, derived from the 90m
NASA Shuttle Radar Topography Mission (SRTM) dataset (http://srtm.csi.cgiar.org accessed on 7 February 2019).

We employ the in situ LST data on Masts 1–4 of ILRI Kapiti Research Station as
our primary benchmark (validation) dataset, focusing on the period from October 2018
to February 2019. A brief description of the derivation and accuracy evaluation of our

http://srtm.csi.cgiar.org
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benchmark LST data is provided in the Supplementary Material (Figure S1). The certainty
(range of possible error) of the ground observations ranges between 0.79 and 0.95 K per
observation throughout the whole time series, across the four masts. The range of possible
error consists of radiometric measurement uncertainty, surface emissivity uncertainty,
and the uncertainty contribution of the logging equipment as driven by environmental
temperature. This time period, encompassing both the short-rains and subsequent dry
period, is sufficient in capturing the major climatic and vegetative cycles of an entire year
(Figure 1b), by which land surface emissivity and the thermodynamic temperature are
strongly affected [55]. In particular, the selected period includes the very rapid green-up
(typically only a few days) when the rains start, the rainy sub-period accompanied by
increasing vegetation canopy cover, and the sub-period of landscape drying when the
rain ends. This phenological pattern is representative of the study area as a whole, as
can be seen from the NDVI time series of five typical LWIR pixels in different locations
and different land covers across Kenya in Figure 1b. Notice that the locations of the five
pixels, i.e., Pixels A (at 3.63◦ N, 40.35◦ E), B (4.16◦ N, 35.23◦ E), C (0.78◦ S, 35.22◦ E), D
(0.76◦ S, 40.84◦ E), and E (0.93◦ N, 39.37◦ E), have been marked in Figure 1c. They are
respectively covered by different land use types of shrubland, grassland, cropland, forest,
and urban area.

2.2. Satellite Datasets

Several satellite datasets were utilized for our study. The enhanced Aqua MODIS
1-km daily LST product (MYD21A1D/N.v061) was selected as the cloud gap-filling target.
In addition, we also employed the MODIS MCD43A4 (v061) 500-m daily “Bidirectional
Reflectance Distribution Function (BRDF)” adjusted reflectance dataset and the 90-m
DEM data generated by the NASA Shuttle Radar Topography Mission (SRTM). The PM
data employed are the Level-1R BT data collected by the Advanced Microwave Scanning
Radiometer-2 (AMSR-2) operated onboard the Global Change Observation Mission1-Water
(GCOM-W1) satellite. The polar orbiting GCOM-W1 was launched by the Japan Aerospace
Exploration Agency (JAXA) in May 2012 and shares the same orbital track as Aqua, with a
very closing equator-crossing time (about 1:30 p.m./a.m.). The similarity of AMSR-2 and
Aqua MODIS observation times is beneficial for blending their observations to fill the gaps
of MODIS LWIR LST under cloud.

In addition to the ~5-month in situ data record coming from the ILRI Kapiti Re-
search Station, we also employed the LST data from the geostationary Meteosat platform’s
Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) [56] as a second benchmark
validation dataset. SEVIRI-derived LST data covering an entire climatic year (from October
2018 to September 2019) were used across the whole Kenya. The SEVIRI LST product is pro-
vided every 15 min by EUMETSAT’s Land Surface Analysis Satellite Application Facility
(LSA-SAF). Trigo et al. [56] describe the adapted split window algorithm for producing LST
data from SEVIRI-measured LWIR brightness temperatures (BTs). Gottsche et al. [54] report
that the product has an overall RMSE of 3.2 K compared to LWIR-radiometer derived LSTs
collected at a West African validation station located in a tiger bush savanna biome. With
a pixel size of around 4 km in Kenya, the primary role of Meteosat LST data was to aid
evaluation of both the standard MODIS LST data and the cloud gap-filled MODIS LST
data. The latter is possible because instances exist where MODIS pixels classed as cloudy
(and thus with no MODIS LST data) are matched by Meteosat LST data that do have an
LST observation classed as cloud free within a time lag of up to around 8 min, due to either
cloud movements, differences in the cloud masking procedures, and/or due to the different
viewing geometries of the two sensors (SEVIRI = ~40–42◦ view zenith angle (VZA) over
Kenya, MODIS VZA = 0–65◦ depending on overpass). This can be observed in the contrast
show in Figure 4c,e in Section 4.
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3. Methodology

The flowchart of our cloud gap-filling approach for MODIS LST data is schematically
shown in Figure 2. It generally comprises two steps, namely (1) a conventional realization
of the STDF methodology and (2) a PM-driven bias adjustment process to calibrate the
data coming out of step (1), accounting for the fact that these data should represent
cloud-covered rather than clear-sky LSTs. Therefore, there are three datasets tested in the
validation step: (i) the clear sky original MODIS product (MODISClear), (ii) MODIS with
gaps filled by step (1) (MODISSTDF), and (iii) MODISSTDF bias corrected for under-cloud
pixels with passive microwave (AMSR-2) observations (MODISPMBC).
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3.1. Step 1: STDF Methodology
3.1.1. Methodology Description

The 1 km MODIS LST data were subset to Kenya and pixels classed as cloud con-
taminated were removed using the “quality control (QC)” field contained within the
MODIS LST product. In addition, all pixels flagged as ‘cloud-edge’ or low quality were
also removed. A 500-m daily NDVI dataset for Kenya was calculated using the red-band
and infrared-band reflectance data from the MODIS MCD43A4 product, which has been
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corrected for angular reflectance effects based on the BRDF. The resulting estimates were
resampled using a spatial averaging procedure to the same 1-km resolution as the MODIS
LST product. The spatial resampling process was also applied to the SRTM DEM dataset
subset over Kenya. For each date (represented as t1) in the study period (from October 2018
to September 2019), we used the STDF methodology version detailed in Song et al. [30] to
fill cloudy pixels that have no LST data record within the MODIS daily LST product. The
Song et al. [30] method was chosen as it has been applied to a large area in South China
and obtained relatively good validation performance (with RMSEs between 1.5 and 3.5 K).
A summary of the STDF method is given here, whilst the full details can be found in the
work of Song et al. [30].

The STDF method first builds a transfer function based on the above-described
datasets (LST, NDVI and DEM) as follows:

LST∗
t1 = a × LST∗

t0 + b × NDVI∗t1 + c × DEM∗ + d (1)

where the superscript “*” indicates that this variable has been normalized to the range 0
to 1.0, based on the maximum and minimum values of that variable found across Kenya
during our study period. Parameters a, b, c, and d are coefficients fitted using all pixels that
have a clear-sky LST estimate on a specific date t1 (LST*

t1 ) and at least one closely preceding
date, t0 (LST*

t0 ) (see below for further detail on how this was calculated). NDVI*
t1 indicates

the corresponding (normalized) NDVI on the t1 date. The NDVI data are available for
almost every pixel continuously because the MCD43A4 daily product is generated using
16-day composited reflectance data, and therefore has good resistance to data loss from
cloud contamination. Notice that day-time and night-time LST data must be separately
treated in this transfer function.

After deriving the coefficients of a, b, c, and d, the Equation (1) transfer function was
used to fill all cloudy MODIS LST pixels on the t1 date. For any t1 date included in the
study period, the t0 date was iterated among all neighbouring dates of t1 meeting the
condition |t0 − t1| <= 15 days (from the nearest date to the furthest date). An average of
the estimated LST values for t0 was then taken where a cloud gap pixel was filled more
than once (based on the iterative t0 dates), and the iteration was stopped when the fraction
of pixels with effective LST values on t1 was equal to or exceeded 0.9. In the original
STDF method of Song et al. [30], the remaining small fraction (<0.1) of cloud gaps was
then filled with LST data generated by a conventional inverse distance weighted (IDW)
interpolation method [57]. However, the IDW step is not done here in order to avoid
bringing in extra interpolation uncertainty that may negatively influence the validation
step. The final modification to the original Song et al. [30] method is the use of iteration
over all possible dates within a 30-day window (rather than only selecting one t0 date
that has a high fraction of clear-sky pixels) to increase the amount of data available to the
procedure and therefore improve the applicability to the entire area of Kenya.

3.1.2. Method Sensitivity Analysis

In this section, we conducted sensitivity analysis for the STDF method expressed
through Equation (1), in order to explore the existing uncertainty sources of the method
which may influence performance of the subsequent bias adjustment process. Considering
the linearity of Equation (1) and the fact that there are no interactive components between
different input variables, the sensitivity of the output variable LSTt1 to each input variable
X (denoting LSTt0 , NDVIt1 , or DEM) can be expressed as the 1st order partial derivative to

X, i.e., (
dLST(t1)

dX ). It should be noted that these input variables are not normalized between
0–1. The sensitivity was calculated for all iterations conducted during Section 3.1.1. The
statistical summary of this sensitivity analysis of the different iterations are reported in
Table 2. From Table 2, it is apparent that the difference between daytime and night-time for
sensitivity of output LSTt1 against LSTt0 and DEM is low. An LSTt0 difference of 1 K can
cause a difference on average of 0.5–0.6 K for the (output) gap filled LST. In comparison an
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average decrease of about 0.3 K or 0.4 K was observed when elevation rises by 100 m. For
NDVI, sensitivity is more important in the daytime compared with night-time, since an
NDVI increase of 0.1 can result a decrease >1 K in the gap-filled outcome, while it has an
almost negligible effect on the night-time outcomes.

Table 2. Statistical results for sensitivity analysis of the STDF method during the selected study period. The upper and
lower threshold of the indicator are respectively defined as the 90th and 10th percentile of all result samples rather than the
maximum and minimum values, in order to avoid outliers.

Sensitivity of LST(t1) on the
Input Variables X, i.e., ( dLST(t1)

dX )
Observation Time Average Standard

Deviation
Upper Threshold
(90th Percentile)

Lower Threshold
(10th Percentile)

NDVI (K/0.1) Day-time −1.11 0.89 2.88 −4.28

Night-time −0.06 0.17 0.76 −0.93

DEM (K/100 m) Daytime −0.42 0.35 1.21 −6.30

Night-time −0.36 0.42 1.43 −5.69

LST(t0) (K/K) Daytime 0.50 0.84 1.72 −0.80

Night-time 0.59 0.25 1.49 −0.71

3.2. Step 2: Cloud Shadowing Bias Adjustment with PM-Derived LST Data

As the STDF methodology is based on cloud-free LST observation data from MODIS
but is attempting to estimate LST under cloud, biases may be introduced. Identifying and
removing such bias is the focus of Step 2 and is based on the AMSR-2 PM-derived LST data.
AMSR-2 provides both horizontally (H-) and vertically (V-) polarized BT observations in
seven different frequencies [58]. LST data have been estimated by different combinations
of these data [59–63], including at 6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and
89 GHz. The linear LST retrieval algorithm based on the 36.5 GHz V-polarized BT [61,64]
is among the most widely used, though Song et al. [65] found it inferior to that based on
the 18.7 GHz and 23.8 GHz bands [63,66], especially for pixels with higher fractions of
water surface (including standing water and dynamic water signals like high levels of soil
moisture). To minimize the influence from increased soil moisture on LST retrieval in the
rainy season of our study area, we employ the AMSR-2 V- and H-polarized 18.7 GHz and
23.8 GHz BTs to retrieve LST using the methodology of Jones et al. [63]. The resulting
PM-derived LST estimates have a spatial resolution of 25 km after the AMSR-2 Level1R BT
data were resampled according to the global Equal Area Scalable Earth (EASE) Grid [67]
projection system.

The PM BTs at 18.7 GHz and 23.8 GHz have a theoretical temperature sensing depth
of around 1 cm [68], as compared to the MODIS LWIR-derived LST skin surface depth
of ≤1 mm [69]. To deal with this we first averaged the MODIS 1-km LST data of Kenya
to the 25-km EASE Grid and compared those cells that have more than 600 samples (i.e.,
>95%) of clear-sky MODIS pixels to the AMSR-2 retrieved LST for the same region. As seen
in Figure 3, both daytime (ascending) and night-time (descending) MODIS and AMSR-
2 LSTs show strong correlations but depart from the 1:1 line. This result agrees with
the observations of Song et al. [65], who demonstrated that, apart from in desert and
snow/ice covered areas, the LST derived from these two different sensors have a strong
linear correlation at the global scale. The AMSR-2 observations have a negative bias of
around −0.7 K in the daytime and a positive bias of around 2.5 K in the night-time. This is
consistent with the logic that compared to temperature of sub-surface soils, that of skin
surface is usually higher at mid-noon but lower at midnight. Therefore, the bias in Figure 3
can be largely ascribed to the different sensing depths. To enable the AMSR-2 LST data to
provide the best estimate of what MODIS would have measured, we fit an independent
linear equation to the data of day-time and night-time modes respectively, as shown by
the orange text in Figure 3. These achieved high coefficients of determination (R2 ≥ 0.9),
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with RMSEs between the AMSR-2 LST data adjusted via these equations and the true
MODIS LST (RMSEunbias) of less than 1.5 K. The small value of RMSEunbias proves a high
degree of consistency between PM (AMSR-2)-derived LST and MODIS LWIR LST, thereby
confirming the feasibility of the penetration depth bias adjustment process.
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Next, we inverted the linear relations in Figure 3 and thus transformed the AMSR-2
based LST data (LSTAMSR-2) into the corresponding best estimate of MODIS-derived LST
at the 25-km pixel scale (LSTMODIS_25km):

LST MODIS_25km = k0 × LSTAMSR−2 + m0 (2)

where k0 and m0 are the linear relationship parameters found in Figure 3. This removes the
penetration depth bias. Data at 1-km resolution can then be further calibrated to remove
the cloud shadowing bias based on the relationship:

N1
∑

i=1
LSTclear_sky_i +

N2
∑

j=1
(LSTcloud_gap_j + ∆LST)

N1 + N2
= LST25_km (3)

where the number of clear-sky MODIS LST pixels (LSTclear_sky) within a 25-km pixel is N1,
and the number of cloud gap-filled pixels (LSTcloud_gap) is N2. We then assume that all
cloud gap-filled MODIS pixels within the 25-km AMSR-2 pixel have the same shadowing
bias (∆LST). Therefore, ∆LST for all cloud gap-filled pixels within a certain 25-km grid can
be calculated via rearrangement of Equation (3) to:

∆LST =

LST25_km × (N1 + N2)−
N1
∑

i=1
LSTclear_sky_i −

N2
∑

j=1
LSTclear_gap_j

N2
, if

N2
∑

j=1
∆LST

N1 + N2
> RMSEunbias (4)
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Equation (4) is constrained with the premise of
∑N2

j=1 ∆LST
N1+N2 ≤ RMSEunbias. RMSEunbias

denotes the fitting errors illustrated in Figure 3 and can be identified as the threshold
value for random (non-systematic) error between LST retrievals made at different spatial

resolutions. When
∑N2

j=1 ∆LST
N1+N2 lies below this threshold the LST error is mainly driven by

this random error. The influence of this random error on ∆LST can be exaggerated if
(N1 + N2) >> N2. To mitigate such influences, we use (N1 + N2) to substitute N2 as the

new denominator in Equation (5) where
∑N2

j=1 ∆LST
N1+N2 ≤ RMSEunbias. This means that when

random error dominates the overall shadowing bias of the 25-km grid, the bias will be
equally allocated to all (N1 + N2) MODIS pixels within the grid regardless of whether they
are clear sky or cloudy, as in Equation (5):

∆LST =

LST25_km × (N1 + N2)−
N1
∑

i=1
LSTclear_sky_i −

N2
∑

j=1
LSTclear_gap_j

N2 + N1
, if

N2
∑

j=1
∆LST

N1 + N2
≤ RMSEunbias (5)

Finally, the STDF cloud gap filled LST values are calibrated by the application of ∆LST,
as found by Equation (4) or (5) depending on the amount of cloud cover within an AMSR-2
25-km grid cell, to give MODISPMBC.

4. Results
4.1. Overview of Cloud Gap-Filling

Our two-step cloud gap-filling processes improved the spatial coverage of the daily
daytime and night-time MODISClear data of Kenya from <50% to >90% for the cloud gap-
filled images, as can be seen in Figure 4a. However, it is important to note that the re-visit
cycle of AMSR-2 at low latitudes such as those of Kenya is normally greater than a day,
so not all cloud gap-filled MODIS LST pixels were able to be bias-adjusted based on a
near-simultaneous AMSR-2 observation. Figure 4b shows the proportion distribution of
bias adjustment fraction (BAF) for gap-filled pixels of each date. It indicates that BAF on
most (≥49%) of dates is between 0.25 and 0.5. Although not high, this rate is sufficient
to provide a basis for comparison between the bias adjusted and non-bias adjusted cloud
gap-filled LST data. From Figure 4c–h, we employed the day-time data of 22 October 2018
as an example to demonstrate the spatial inputs, outcomes, and corresponding reference
data of our methodology. Spatial distribution maps of LST are shown respectively for the
non-bias adjusted result in Figure 4f and for the bias adjusted result in Figure 4g. The map
of their difference is demonstrated in Figure 4h, revealing that some gap-filled LST values
in the middle and south of the country are lower when bias adjustment is included. A
series of quantitative validation steps against the reference datasets are carried out in the
following sections.
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Figure 4. Demonstration of the cloud gap filling approach for the Aqua MODIS LST data record.
(a) Time series of LST fractional coverage of Kenya before and after gap-filling. (b) Proportional
distribution of bias adjustment fraction (0–1) in the gap filled pixels of different dates. (c–e) Daytime
LST maps from the different spaceborne sensors recoded near simultaneously on 22 October 2018,
and (f,g) the MODIS LST data of (c) now cloud gap-filled using the methodology detailed herein.
All MODIS LST pixels with an NDVI of <−0.2 (indicating the likely presence of surface water) have
been screened out in these latter two datasets. (h) A bias adjustment map of cloud gap-filled LST
(clear sky pixels eliminated) generated by (g) minus (f).
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4.2. Validation against In Situ LST Ground Observations

We first compared MODISClear observations from clear-sky pixels, MODISSTDF from
Step 1, and MODISPMBC from Step 2, to the contemporaneously collocated in situ LST data
recorded at the four masts of the ILRI Kapiti Research Station site (Figure 5 and Table 3).
As the local observation times of MODIS and AMSR-2 are reported to have a variation
between ±15 min from 13:30 for different dates and different observation swaths, the
corresponding in situ data were determined by averaging all in situ LST samples from
13:15 to 13:45 local time (UTC+3) in the day-time, and all in situ LST samples from 01:15
to 01:45 local time at night-time. Moreover, in situ LSTs from Mast 2 and Mast 3 were
averaged rather than being used independently, because these masts are in the same 1 km
MODIS pixel. The use of multiple masts across and within different pixels (along with
the geometric illumination model upscaling method applied, see Section Supplementary
Figure S1) means that surface heterogeneity is well accounted for in the landcover under
observation. We also examined the gap-filling results against the in situ LST data from
Mast 1, Masts 2 and 3 (averaged), and Mast 4 as a time series (Figures 6 and 7). For the time
series demonstration, each blue point (MODISPMBC) is accompanied by a corresponding
green point (MODISSTDF). Bias adjustments herein are made only on dates where LST
estimates are available from both MODIS and AMSR-2. Bias-adjusted outcomes on dates
when AMSR-2 data were not available are not shown.

Table 3. Statistics resulting from the LST comparison shown in Figure 5. ** indicates significance at
p < 0.05.

MODIS LST
Data Type RMSE (K) Mean Bias (K) r N

Day MODISClear 2.7 −1.6 0.96 ** 198
MODISSTDF 4.3 2.5 0.94 ** 71
MODISPMBC 2.6 0.2 0.97 ** 71

Night MODISClear 1.1 −0.4 0.93 ** 115
MODISSTDF 1.0 −0.6 0.93 ** 119
MODISPMBC 0.8 −0.2 0.94 ** 119
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Figure 5. Comparison of MODISClear (green ‘x’), MODISSTDF (orange plus sign) and MODISPMBC (blue dot) data to
corresponding in situ LSTs recorded using the mast-mounted IR radiometers of the ILRI Kapiti Research Station detailed in
Figure 1. Day-time data are collected around 1:30 p.m. local solar time, whereas night-time data are around 1:30 a.m. The
1:1 line is also shown, and comparison statistics are presented in Table 3. The clearest benefit of the bias-adjusted gap filling
is seen in the coolest temperatures of the day-time record.
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At night, all three datasets show a high degree of agreements with the in situ LST data,
with absolute values of mean bias less than 1 K, and RMSEs below 1.5 K. The day-time
performance of our cloud gap-filling approach appears poorer than that of night-time,
this is likely due to the stronger spatial and temporal variations of LST at noon than at
mid-night. However, MODISPMBC agrees significantly better with the in situ LST data
record in the daytime than does MODISSTDF. The former has an RMSE of 2.6 K compared
to 4.3 K for the non-bias adjusted data, and this is similar to the 2.7 K RMSE shown by
MODISClear. Based on all analyses above, the MODISSTDF values tend to overestimate the
in-situ data in general, whilst MODISPMBC values are in closer agreement in the daytime.
At night, most of the cloud gap-filled satellite estimates are close to the in-situ values,
regardless of whether they have been bias-adjusted or not.

4.3. Validation against SEVIRI Geostationary LST

Our cloud gap-filled MODIS LST data record was also validated against the LSA-SAF
Meteosat SEVIRI LST dataset, based on the mean LST of all MODIS pixels within a SEVIRI
pixel. This was carried out for the full twelve months of the year. Similar to the evaluation
employed against the in situ LST data, SEVIRI data were compared in three independent
scenarios. These scenarios are: (1) comparison against only pixels containing clear-sky
MODISclear observations; (2) against only pixels that have undergone cloud gap-filling up
to Step 1 (MODISSTDF), and (3) against only pixels that have undergone cloud gap-filling
up to Step 2 (MODISPMBC) (Figure 8). The temporal means of the SEVIRI-derived LST
obtained from the local time of 1:15 p.m./a.m. to 1:45 p.m./a.m. were used for comparison
against the spatial means of MODISClear estimates within SEVIRI pixels produced at the
corresponding time. To ensure a consistent comparison, only SEVIRI pixels for which ≥14
spatially coincident clear-sky MODIS observations were available (i.e., either all or almost
all MODIS pixels within the SEVIRI pixel are identified as cloud free) were considered. The
same strategy was also applied to the evaluation schema of MODISSTDF and MODISPMBC.
From Figure 8, it is clear that daytime results differ more between clear-sky observations
and cloud gap-filled estimates than do the night-time results. In the daytime, the best
correspondence between MODIS and SEVIRI LSTs is achieved under clear-sky conditions,
with a negligible bias and an RMSE of 3.2 K. The performance of the bias-adjusted cloud
gap-filled result is slightly worse, with an RMSE of 3.6 K. However, this is an improvement
upon the performance of the non-bias adjusted cloud gap-filled data, where an RMSE of
6.7 K and a positive LST bias of about 2.6 K were observed. At night, the performance of
MODISSTDF and MODISPMBC correction is similar, with RMSE no higher than 3.0 K.

Based on the yearly Kenya-wide comparison in Figure 8, further detailed analyses were
conducted with respect to independent land cover types and daily timescales, as shown in
Figures 9 and 10 respectively. The ESA CCI 300-m land cover map in 2018 (see Figure 1c)
was exploited to provide land cover type information for the entirety of Kenya. The areal
fraction of each land cover type in Figure 1c (except for water bodies) was calculated for
all SEVIRI-viewed pixels (~4 km) within the country. A SEVIRI 4-km pixel containing
any given land cover type with area fraction lower than 0.7 is identified as a ‘mixed pixel’
and thus eliminated, while the remaining ‘pure’ pixels were employed to evaluate the
potential influence of land cover variation on the gap-filled results, as shown in Figure 9.
The similar performance among different land covers was consistent with the overall
RMSE results reflected in Figure 8. This suggests that the bias-adjusted cloud gap-filling
method is effective over a wide range of vegetation covers in obtaining LST estimates with
competitive accuracy against MODIS clear-sky LST observations. The poorest performance
of MODISPMBC is found over bare soil/rock during the day (RMSE ≈ 4.2 K) and over
sparse vegetation at night (RMSE ≈ 4.0 K). However, this is acceptable considering that the
difference between MODISpmbc and MODISclear RMSE is insignificant (<1.5 K).
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shown in Figures 9 and 10 respectively. The ESA CCI 300-m land cover map in 2018 (see 
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The areal fraction of each land cover type in Figure 1c (except for water bodies) was cal-
culated for all SEVIRI-viewed pixels (~4 km) within the country. A SEVIRI 4-km pixel 
containing any given land cover type with area fraction lower than 0.7 is identified as a 
‘mixed pixel’ and thus eliminated, while the remaining ‘pure’ pixels were employed to 
evaluate the potential influence of land cover variation on the gap-filled results, as shown 
in Figure 9. The similar performance among different land covers was consistent with the 
overall RMSE results reflected in Figure 8. This suggests that the bias-adjusted cloud gap-
filling method is effective over a wide range of vegetation covers in obtaining LST esti-
mates with competitive accuracy against MODIS clear-sky LST observations. The poorest 
performance of MODISPMBC is found over bare soil/rock during the day (RMSE ≈ 4.2 K) 
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ing that the difference between MODISpmbc and MODISclear RMSE is insignificant (<1.5 k).  

The daily time series of difference between RMSE for gap-filled LST (MODISSTDF and 
MODISPMBC) and RMSE for clear sky LST (MODISClear) are demonstrated in Figure 10. The 
fraction of clear sky LST pixels over the study area for each day are also shown using the 
red bar on the right-hand y-axis. From the contrast between blue (MODISPMBC) and orange 
(MODISSTDF) lines, we can see that the relative performance between the bias adjusted gap-
filling algorithm against the non-bias adjusted algorithm is stable over different seasons 
of the year. The performances of the non-bias adjusted vs. bias adjusted algorithms are 
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Figure 8. Comparison of Aqua MODIS and Meteosat SEVIRI-derived land surface temperatures (LSTs). (a) day-time data
and (b) night-time data. MODIS data includes both the clear-sky MODIS LSTs from MYD11A and that output from Step
1 and Step 2 of the cloud gap-filling methodology detailed in Section 3. Colour bars indicate the number of co-located
observations within the plotting space.
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Figure 10. Difference between RMSE for MODISSTDF (or MODISPMBC) and RMSE for MODISClear, against SEVIRI LST
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The daily time series of difference between RMSE for gap-filled LST (MODISSTDF and
MODISPMBC) and RMSE for clear sky LST (MODISClear) are demonstrated in Figure 10. The
fraction of clear sky LST pixels over the study area for each day are also shown using the
red bar on the right-hand y-axis. From the contrast between blue (MODISPMBC) and orange
(MODISSTDF) lines, we can see that the relative performance between the bias adjusted gap-
filling algorithm against the non-bias adjusted algorithm is stable over different seasons of
the year. The performances of the non-bias adjusted vs. bias adjusted algorithms are not
significantly influenced by the fraction of clear sky LST pixels that are needed to build the
gap-filling model.

4.4. Influence of Cloud Duration on PM-Based Calibration

As the PM-based bias adjustment was found to have more of an effect in the daytime
than at night-time, we further investigated the impact of cloud duration during the day
and night on bias correction performance. Firstly, data from the four selected dates high-
lighted in Figure 6 were employed to calculate an evaluation metric, ∆bias. This metric
is defined as the difference between the absolute bias of the MODISSTDF (|∆LSTSTDF|)
and that of MODISPMBC (|∆LSTPMBC|). The ∆bias metric (|∆LSTSTDF| − |∆LSTPMBC|)
was computed over the pixels in which ground validation masts are located. It can be
used as an indicator of the accuracy improvement found through applying the PM-based
LST bias-adjustment approach of Step 2. A time series indicating the presence or absence
of morning cloud was then generated (1: cloud, 0: clear sky) from 7:30 a.m. to 1:30 p.m.
local time for each of the four dates selected. Cloud state was provided by data from
the sky-pointing radiometer deployed on the masts at ILRI Kapiti Research Station (see
Supplementary Material Section S2, Figure S2). The dates selected for this were chosen
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at random from the days within four equal divisi)ons of the available time period. Based
on this time series, a daily cloud duration fraction (CDF) was calculated, defined as the
number of stable (occluded sky for a minimum of 15 min prior to the given minute) cloud
minutes from 7:00 a.m. to 1:30 p.m., divided by the total number of minutes in that period.
The results are displayed in Figure 11 and suggest that there is a relationship to be explored
between ∆bias and CDF, especially considering the low ∆bias of 1.3 K and a small CDF of
0.14 on 2nd November 2018 as compared to the far higher ∆bias (4.8 K) and correspondingly
high CDF of 0.85 of the morning of 15 January 2019. Results in Figure 11 suggest that
the performance of our bias adjustment methodology in the daytime is influenced by the
length of the cloud period experienced during the morning prior to the early afternoon
MODIS overpass whose cloudy observations were filled by our proposed method.
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Figure 11. Time series of cloud state reported using the in situ data record from the upward pointing LWIR radiometer
installed at the ILRI Kapiti Research Station between 7:30 a.m.–1:30 p.m. for the four dates selected and reported in Figure 6,
(a) 22 October 2018; (b) 2 November 2018; (c) 19 December 2018; and (d) 15 January 2019. A value of 1 = stable cloud was
present for at least the prior 15 min, whilst a value of 0 = stable cloud was not present for the 25 min prior to the LST
derivation. Cloud duration fraction (CDF) and ∆bias values are reported for each sub-Figure and defined at the start of
Section 4.4.

To corroborate the relationship found in Figure 11, a further analysis was carried out
using the Meteosat SEVIRI LST data, as this data contains cloud masking information
that is available over the entirety of Kenya at 15-min intervals. This provides a more
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extensive test than with the in-situ data alone. A CDF based on the SEVIRI cloud mask was
calculated for both daytime and night-time periods, following the same method as detailed
above. For the day-time data, the CDF period was slightly extended to between 7:00 a.m.
and 2:00 p.m. in order to account for differences in the observation time of the satellite
sensors. Similarly, for the night-time data the period between 7:00 p.m. of the previous
date and 2:00 a.m.of the observation date was used. Due to the temporal resolution of
SEVIRI (15 min) as compared to that of the in-situ data (5 min), only 28 unique CDF values
can be obtained in each seven-hour period.

The outcome (Figure 12) is that in the daytime, the mean ∆bias rises as the CDF
increases from 0 to 1, while the standard deviations are close for all CDF-based groups.
This phenomenon, together with the results in Figure 11, indicate that better day-time
performance of our bias adjustment strategy is achieved under conditions of higher CDF
ranges in the morning, especially when CDF exceeds 0.5. Essentially, longer periods
of cloud cover prior to the afternoon Aqua MODIS overpass tend to provide improved
performance of the bias adjustment approach. This is logical because, up to a certain limit,
the longer a pixel is covered by cloud, the longer it is shadowed from direct sunlight and
therefore the larger the temperature difference will be relative to clear-sky conditions. By
contrast, at night there is only a very slight increase in ∆bias with increasing CDF, probably
indicating that the change in LST is more influenced by the presence/absence of solar
radiation in the day time rather than by the presence/absence of downwelling atmospheric
radiation from cloud layers at night.
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Figure 12. Outcome of the cloud duration analysis for the whole of Kenya with SEVIRI. Mean (solid point) and standard
deviations (dotted line) of the evaluation metric ∆bias of cloud gap-filled MODIS LST dataset according to different cloud
duration fraction (CDF) groups. The evaluation is made at the pixel level of SEVIRI observations (pixel sizes of around 4 km
over Kenya). This analysis highlights that during the day, the STDF+PMBC approach results in improved performance over
the STDF-only approach, and this improvement increases with cloud residence time, as indicated by CDF. At night, bias
correction offers little additional performance improvement.

5. Discussion
5.1. Improvement and Universality of the Gap-Filling Methodology

Overall, our evaluation of the cloud gap-filled MODIS LST data against the bench-
mark data, based on both the in situ and Meteosat SEVIRI LST data records, provides a
consistent narrative. For day-time Aqua MODIS overpasses gap-filled LST data using the
conventional STDF methodology shows a positive bias. This supports our supposition that,
if used alone, the STDF approach overestimates LST due to simulating what the LST would
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be under clear-sky type conditions, whereas in fact the location is or has recently been
cloudy. Our results also reveal the effectiveness of using PM observations for calibration of
the gap-filled LWIR-derived LSTs, especially during the daytime.

The implementation of this improved two-step cloud gap-filling framework on LST
only depends on satellite remote sensing datasets. Compared to the existing methods
(Table 1), it is easier to be implemented and is independent from all auxiliary datasets
(e.g., reanalysis data) other than satellite remote sensing inputs. Our approach requires
much less dependence on the particular environmental characteristics of the study area
than some prior works (Table 1), especially when we take into account Figure 10 which
shows that the accuracy of this method is not strongly influenced by the varied daily
area fraction of cloudy pixels. The performance is stable under periods of continuous
cloudy/rainy weather, as can be seen from the time series (e.g., between late November
and early December 2018) in Figure 7. Taken together, these tests indicate the greater
universality of the proposed method beyond its current study area, as compared to other
existing methods.

It is noticeable that we find a relatively inconsequential cloud insulation effect on
LST bias correction at night (Figure 12b), as opposed to the effect seen in the morning-to-
noon window. The difference between daytime and night-time observations has rarely
been discussed in previous studies related to cloud gap-filling of an LWIR-derived LST
dataset, with some authors ignoring the problem by only tackling night-time cloud gap-
filling [45]. Other works may have failed to find significant day/night differences, because
they calibrated against air temperatures rather than the more physically accurate surface
temperatures [30,70]. Our findings suggest that the difference between bias-adjusted and
non-bias adjusted gap-filled LST, driven by cloud insulation, is less sensitive to ground long-
wave outgoing radiation and downwelling atmospheric radiation at night, as compared
with the shadowing of solar short-wave incoming radiation during the day.

From Section 2.1 we can see that Kenya is representative of a variety of different
geographical settings due to the varied land covers, climate zones and topographical
conditions found across the country. Based on the stable evaluation of results across the
different land covers in Figure 9, we suggest that the improved two-step cloud gap-filling
framework should be effective in the vast majority of vegetation covers ranging from
sparsely vegetated soils and grassland to forest found in low- and middle-latitude regions,
where most of the world’s human population resides. However, our current method is
likely to be unsuitable for use in several land cover types, namely desert and snow/ice
covered areas. This is because the temperature difference between microwave observations
and LWIR skin surface observations is very high in such landcovers, whilst a conventional
linear calibration (as applied in Equation (2)) insufficiently accounts for the depth-induced
temperature differences encountered in these areas [65].

5.2. Uncertainty and Limitations of the Current Study

It is important to stress that neither the benchmark datasets (field radiometer de-
rived LSTs and the Meteosat LST product) or the MODISClear data employed in this study
represent the ‘absolute truth’ in terms of surface temperature observations, and we do
not consider them as such. Each sensor is subject to its own inherent measurement er-
rors. Moreover, measurements observed by the different sensors may differ on account
of the heterogenous spatial scales at which observations are made and aggregated over
sensor footprint geometry, as well as changes in environmental conditions occurring be-
tween non-temporally contemporaneous measurements. As such, we focus here upon the
relative difference in performance metrics between the gap filled data (MODISSTDF and
MODISPMBC) and MODISClear, rather than the absolute performance of these gap filled
products vs. the SEVIRI and field radiometer benchmark LST datasets themselves. For ex-
ample, using the Meteosat LST product as a benchmark, a relatively large absolute daytime
RMSE (3.6 K) was obtained for pixels gap-filled using the MODISPMBC dataset. This value
is however much closer to the absolute daytime RMSE value (3.2 K) obtained from the ‘raw’
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MODISClear dataset than the RMSE value (6.7 K) obtained using the MODISSTDF dataset,
highlighting the effectiveness of our novel cloud gap-filling two-step framework. While
the absolute RMSE found between the MODISClear and the benchmark datasets during
the daytime was observed to be high (>3 K), exploration of the causes of this discrepancy
is beyond the scope of the current study. Furthermore, the validation effort of Gottsche
et al. [54] found an average RMSE of 3.2 K for Meteosat SEVIRI data over a similar biome,
indicating RMSE values of this magnitude are currently inherent in LWIR LST products in
semi-arid savannah regions.

A limitation of the current study is the relatively small number of field-based LST
observations available to validate our cloud gap-filling methodology. Radiometer mea-
surements made at the ILRI Kapiti Research Station are temporally limited, spanning
a ~5-month period. Fortunately, however, the period is sufficient to capture one entire
climatic and vegetation cycle of local land surface (Figure 1b). In the spatial domain, the
validation sites only coincide with ground footprints of three distinct 1-km MODIS pixels
that are in close geographic proximity to one another relative to the size of the study area.
Nevertheless, the establishment and maintenance of even a single site represents a sub-
stantial achievement. Indeed, only one other satellite validation site capable of producing
similar LST validation data exists anywhere on the African continent and it is not currently
operational [54]. In addition, the limited availability of ground validation data has been
compensated for to some extent by the intercomparison of the MODIS-derived products
against the independent Meteosat SEVIRI LST product [56] at the national scale through
an entire climatic year. The intercomparison between the MODIS derived products and
the ground/Meteosat-SEVIRI validation data provided consistent results. Prior studies on
cloud gap-filling have primarily relied on validation strategies that artificially remove data
to create “vacant sub-regions” of the imagery to replicate the presence of cloud gaps but
for which the ‘true values’ of the data are actually known [26,71]. However, this strategy is
unsuited to evaluating cloud gap-filling of LST data records, since the pixels for which the
“true values” of LST are known have actually been observed under clear sky conditions
and have thus not experienced the radiation interception effects of clouds that would be
the case for ‘true’ cloud-covered LST pixels.

The sensitivity analysis results reported in Table 2 indicate that a theoretical error
as large as 100 m in the DEM only leads to a difference of 0.3–0.4 K in LST on average.
As the vertical error of the SRTM DEM is reported to be <16 m [72], the uncertainty of
elevation data can be effectively neglected. On the other hand, the influence generated
by uncertainty in the NDVI data can be much more significant. This is because the
generation of daily-scale NDVI data from the 16-day composite MCD43A4 product relies
on an assumption that vegetation change is not significant during the 16-day window.
Unfortunately, vegetation changes rapidly during the onset of the rainy seasons in Kenya,
which may result in a not-insignificant estimation error in NDVI estimates at certain
dates. The resultant gap filled LST data is sensitive to such errors, especially during the
daytime (as described in Section 3.1.2). Consequently, the differing performance between
MODISSTDF and MODISPMBC in the daytime cannot only be attributed to the effects of
cloud as performance can also be impacted by NDVI uncertainty, particularly during the
onset of the rainy season when rapid vegetation changes occur. However, the impact of
cloud effects can still be identified as the primary driver of the performance differences
between MODISSTDF and MODISPMBC, based on the positive correlation observed between
the CDF and ∆bias of the day-time data in Figures 11 and 12. Furthermore, the impact of
the bias correction did not get significantly smaller at the rainy periods (typically between
April-June and between October-December) in Figure 10.

Finally, despite the potential bias due to clouds as well as the uncertainty of NDVI in-
put not being very significant for the night-time observations in this study, more validation
experiments are required in other study areas to test the wider applicability of this finding.
Currently, we recommend applying the PM bias correction process to both daytime and
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night-time data in future studies, in the event that larger night-time errors can arise from
factors that were not present in the current study.

5.3. Future Work

Several points remain where further improvements to our approach might be investigated:
(1) Biases calculated at the coarse (25-km) resolution of AMSR-2 are linearly allocated

to each cloud gap pixel at the fine (1-km) resolution in the current study, based on an
assumption that cloud geometry (e.g., cloud top height, cloud thickness, etc.) is homoge-
nous within the AMSR-2 pixel. However, a bias-adjustment approach that considers the
influence of cloud geometry differences at the AMSR-2 sub-pixel scale may offer further
performance improvements to the current two-step LST cloud gap-filling framework.

(2) If applying the methodology at continental to global scales, the derived relations
between AMSR-2 and MODIS LSTs (Equation (2)) should be re-explored because they are
likely dependent on seasonal features and climate types that will vary at the continen-
tal/global scales.

(3) As the re-visit cycle of AMSR-2 is greater than one day at low latitudes, better
spatial coverage may be achieved by the fusion of AMSR-2 data and data from other
PM radiometers.

(4) Cloud gap-filling of Terra MODIS LST data (MOD11A1) could be similarly con-
ducted using data from a PM radiometer similar to AMSR-2, but with local time of over-
passes around 10:30 a.m./p.m. One candidate is the microwave radiation imager onboard
the Fengyun-3C satellite [73].

6. Conclusions

In this study, we have presented an effective two-step framework for improving the
cloud gap-filling performance of the LWIR-based daily land surface temperature (LST)
data delivered by Aqua MODIS. The primary innovation of the framework lies in the
coupling of a conventional “spatial-temporal data fusion (STDF)” methodology to a cloud
shadowing bias-adjustment process, based on passive microwave (PM) LST data derived
from the AMSR-2 instrument. We have evaluated the resulting STDF-based cloud gap-
filled and PM-bias adjusted LST data against both in situ LST data and the geostationary
SEVIRI-derived LST data record. In the daytime, the STDF-based outcomes show an RMSE
of 4.3 K against the in-situ data and 6.7 K against the SEVIRI LST data. The RMSEs of the
PM bias-adjusted outcomes are 2.6 K and 3.6 K respectively. At night, the performance of
bias-adjusted outcome and that of STDF-based outcome are very similar.

Overall, we conclude that, compared to the STDF approach alone, our two-step
framework provides a means to improve the performance of cloud gap-filling on LWIR-
derived LST through fusion with PM data, although the degree of improvement is far
more significant for daytime compared to night-time observations. Finally, we have shown
that the day-time accuracy improvements of our two-step approach to cloud gap-filling
are increasingly apparent (relative to conventional STDF methods) under the condition of
increased cloud cover residence time in the morning-to-noon timeframe. The proposed
method has been shown to be stable in terms of RMSE change through time, even under
spatially and temporally continuous pixel loss conditions, across a wide range of land
cover types. In the future, this method could be applied to the next generation of sub-1 km
all-weather LST products at the continental or global scale.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13173522/s1, Figure S1: Summary of the available in situ LST record (Kelvin) for Kapiti
site configuration 1. Data is available when at least one ground observing radiometer is active
and returning admissible data. The upscaled mean is only available when at least two radiometer
observations are available across all masts. Site time series are the downwelling and emissivity
corrected LST values for each mast upscaled to the SEVIRI pixel scale. The final (E) time series is the
Kapiti mean LST derived from all four sites and upscaled to the SEVIRI pixel scale. Figure S2: Stable
cloud cover analysis for Mast 3. 1 is stable cloud present. 0 is stable cloud not present.

https://www.mdpi.com/article/10.3390/rs13173522/s1
https://www.mdpi.com/article/10.3390/rs13173522/s1
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Abbreviations

Terms Acronym
Land surface temperature LST
Normalised difference vegetation index NDVI
the Moderate Resolution Imaging Spectroradiometer MODIS
the Advanced Microwave Scanning Radiometer AMSR
passive microwave PM
spatio-temporal data fusion STDF
the Global Change Observation Mission1-Water GCOM-W1
land surface energy balance LSEB
Long wave infrared LWIR
numerical weather prediction NWP
brightness temperature BT
Global Climate Observing System Essential Climate Variable GCOS-ECV
Visible infrared Imaging Radiometer VIIRS
International Livestock Research Institute ILRI
Shuttle Radar Topography Mission SRTM
digital elevation model DEM
Japan Aerospace Exploration Agency JAXA
National Aeronautics and Space Administration NASA
European Space Agency ESA
European Organization for the Exploitation of the Meteorologcial Satellites EUMETSAT
view zenith angle VZA
Land Surface Analysis Satellite Application Facility LSA-SAF
the Spinning Enhanced Visible and Infra-Red Imager SEVIRI
quality control QC
Bidirectional Reflectance Distribution Function BRDF
Universal Time Coordinated UTC
cloud duration fraction CDF
bias adjustment fraction BAF
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