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Patterns in soil microbial diversity
across Europe

Maëva Labouyrie 1,2,3, Cristiano Ballabio2, Ferran Romero 3,
Panos Panagos 2, Arwyn Jones2, Marc W. Schmid 4, Vladimir Mikryukov5,6,
Olesya Dulya5,6, Leho Tedersoo 5, Mohammad Bahram 6,7,
Emanuele Lugato 2,MarcelG.A. vanderHeijden 1,3 &AlbertoOrgiazzi 2

Factors driving microbial community composition and diversity are well
established but the relationship with microbial functioning is poorly under-
stood, especially at large scales. We analysed microbial biodiversity metrics
and distribution of potential functional groups along a gradient of increasing
land-use perturbation, detecting over 79,000 bacterial and 25,000 fungal
OTUs in 715 sites across 24 European countries. We found the lowest bacterial
and fungal diversity in less-disturbed environments (woodlands) compared to
grasslands and highly-disturbed environments (croplands). Highly-disturbed
environments contain significantly more bacterial chemoheterotrophs, har-
bour a higher proportion of fungal plant pathogens and saprotrophs, and have
less beneficial fungal plant symbionts compared to woodlands and
extensively-managed grasslands. Spatial patterns of microbial communities
and predicted functions are best explained when interactions among the
major determinants (vegetation cover, climate, soil properties) are con-
sidered. We propose guidelines for environmental policy actions and argue
that taxonomical and functional diversity should be considered simulta-
neously for monitoring purposes.

Soil biota plays an important role in contributing to provide eco-
system services such as food production, climate regulation and
pest control1,2. Soil microbes are involved in the decomposition of
soil organic matter, regulate carbon stocks and nutrient cycling,
and facilitate plant nutrient uptake3,4. Changes in soil microbial
community composition and related functions can alter the asso-
ciated services5. While previous studies have shown that land-use
perturbation can significantly reduce above-ground biodiversity6,
and that vegetation cover, climate and soil properties can strongly
affect above-ground communities7, far less is known about the
impacts of anthropogenic and environmental factors on below-

ground diversity and functions, especially at large spatial (e.g.
continental) scales8.

At the community-level, land-useperturbation has been identified
as one of the main anthropic pressures affecting soil microbial diver-
sity, resulting in community composition shifts8,9. Other reported
factors influencing soil microbial communities are climate, soil prop-
erties and vegetation. Changes in climate and in specific soil proper-
ties, such as pH10,11, texture12 and nitrogen availability13 also lead to
changes in microorganism assemblages14. In addition, plant commu-
nity attributes and functional traits predict a unique portion of the
variation in soil microbial diversity and community composition,
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which could not be explained by soil physico-chemical properties and
climate15.

At the functional level, land-use perturbation may alter the com-
position of soil functional groups (e.g.mycorrhizal fungi)8, by affecting
plant diversity and altering carbon and nitrogen retention16,17. More-
over, climate, soil properties and vegetation are known to strongly
affect the potential functions provided by the microbial communities.
Climate warming and altered humidity have been shown to enhance
the presence of certain functional groups, such as plant pathogens18,19,
but reduce the abundance of others, such as beneficial arbuscular
mycorrhizal fungi20. Soil microbial functional groups differ between
land-use types (e.g. agricultural and forest soils) and within the same
vegetation cover type (e.g. broadleaved and coniferous forests)21. At
the same time, soil physico-chemical properties (e.g. pH, carbon and
nitrogen contents) can significantly shape the distribution of func-
tional groups involved in carbon and nitrogen cycling22.

Althoughprevious studies have focusedonmajordeterminants of
soil microbial communities and functional groups, only a few surveys
have been conducted at the continental-scale4,5,9, preventing a sys-
tematic assessment of the forces driving changes in taxonomic and
functional diversity of bacterial and fungal soil assemblages over large
areas. Towards that aim, extensive field studies and standardised
datasets accounting for spatial diversity of microbes and driving fac-
tors are necessary to better understand the links between microbial
assembly distribution and above-mentioned driving factors23. More-
over, analyses comparing different microbial domains (e.g. prokar-
yotes and eukaryotes) are still rarely conducted24–27 and, generally, do
not include both semi-natural (e.g. woodlands and grasslands) and
highly-managed (e.g. croplands) environments. In particular, none of
the published studies so far has explored and compared bacterial and
fungal functional groups among this full range of vegetation cover
types and associated land-uses, preventing an assessment of the
impacts of an increasing land-use perturbation on targeted functions
associated to soil microorganisms. Finally, while many studies have
considered driving factors as acting separately, and a few have
explored the impacts of their combinations on microbial
communities4,28, the interaction-effect of diverse driver types has, until
now, been largely overlooked, especially for microbial functional
groups. Our analysis aimed to fill these knowledge gaps.

In this work, we analyse DNA sequences of two groups of micro-
organisms (bacteria and fungi) from 715 soil samples collected from 23
countries of the European Union and the United Kingdom (EU+UK)
(Fig. 1a). We assess continental-scale effects of vegetation cover (and
associated land-use), soil properties, climate and their two-way inter-
actions on soil microbial communities and potential functional groups
(i.e. inferred based on taxonomy). Soil sampling is performed within
the framework of the soil module of the Land Use/Cover Area frame
Survey (LUCAS)29. Sampling locations cover both semi-natural and
highly-managed environments, including six vegetation cover types
subjected to an increasing land-use perturbation gradient: from con-
iferous and broadleaved woodlands, to extensively- and intensively-
managed grasslands, and permanent and non-permanent croplands
(Fig. 1b). Vegetation cover is combined with a broad set of 9 soil
physico-chemical properties and 6 climatic variables. We hypothesise
that (i) land-use perturbation affects soil microbial diversity and
community structure and potential functional groups, as observed for
the above-ground biodiversity6; (ii) bacterial and fungal guilds and
potential functional groups are shaped by different forces30,31; (iii)
interactions between vegetation cover, climate and soil properties are
more important and informative than single-effects in driving the
assembly of bacterial and fungal soil communities and potential
functional groups.

Here, we find that microbial diversity and potential functional
groups distribution vary along a gradient of increasing land-use
perturbation across Europe. Soils that harbour richer and more

diverse microbial communities (e.g. croplands and grasslands), also
exhibit a higher fraction of potential fungal pathogens. In contrast,
woodlands and extensive grasslands harbour more fungal plant
symbionts and N-fixing bacteria. Furthermore, vegetation cover, soil
properties and climate differently influence bacterial and fungal
communities and potential functional groups. In addition, our ana-
lysis demonstrates that interactions, more than single environmental
factors, drive soil microbial communities and functional groups.
Based on these findings, we propose possible environmental policy
actions for better preserving soil microbial communities and pro-
moting ecosystem services provided by microbial functional groups.

Results
Land-use perturbation effects
The entire dataset included 79,593 bacterial zero-radius operational
taxonomic units (zOTUs) and 25,962 fungal OTUs. Bacterial observed
zOTU richness and Shannon diversity index were lowest in wood-
lands and significantly higher in croplands and grasslands. Similarly,
fungal richness and diversity were lower in woodlands compared to
grasslands and croplands (Fig. 2a–d, Supplementary Table 1). Vege-
tation cover had a significant impact on bacterial and fungal
community structure (β-diversity) (Fig. 2e, f). The highest difference
in community structure was found between microbial communities
in croplands and woodlands, as supported by pairwise multiple
comparison that displayed the highest determination coefficients
(R² = 22.6%; F value = 123.26; p value < 0.001 for bacteria and
R² = 8.3%; F value = 38.05; p value < 0.001 for fungi).

Thedistributionof inferredbacterial and fungal functional groups
also differed among vegetation cover types. Bacterial chemohetero-
trophs (12,786 zOTUs, i.e. 16.1%of the total number of bacterial zOTUs)
dominated in croplands and intensive grasslands (Fig. 3a). N-fixing
bacteria (97 zOTUs, 0.12%) were more abundant in woodlands, as well
as in extensive grasslands (Fig. 3b). N-fixing bacteria included both
free-living (e.g. Telmatospirillum siberiense) and symbiotic organisms
(e.g. Mesorhizobium loti). Bacterial pathogens (133 zOTUs, 0.17%,
among which Mycobacterium celatum and Bacillus anthracis) domi-
nated in coniferous forests (Fig. 3c). Regarding fungi, ectomycorrhizal
symbionts (2361 OTUs, i.e. 9.1% of the total number of fungal OTUs)
dominated in woodlands, especially in coniferous forests (Fig. 3d).
Arbuscular mycorrhizal fungi (AMF; 1261 OTUs, 4.9%) were more
abundant in grasslands, particularly in extensively-managed ones
(Fig. 3e). Fungal saprotrophs (9903 OTUs, 35%) and plant pathogens
(4355, 16.8%, among which Fusarum solani) were dominant in crop-
lands and grasslands (Fig. 3f, g). A total of 65,206 bacterial zOTUs and
7642 fungal OTUs were not assigned to any functional group (even
outside previously mentioned groups of interest), representing 81.9%
of all bacterial zOTUs and 29.4% of all fungal OTUs.

At the community-level, 23 phyla and 64 classes were identified for
bacteria, among which Proteobacteria (30.6%), Actinobacteria (26.1%)
and Acidobacteria (22.9%) were the most abundant phyla (Supple-
mentary Table 2). Bacterial classes were dominated by Actinobacteria
(25.4%) and Alphaproteobacteria (17.4%) (Supplementary Table 2). For
fungi, 20 phyla and 75 classes were identified, among which Ascomy-
cota (49.3%) and Basidiomycota (34.1%) were the most abundant phyla
(Supplementary Table 2). Fungal classes were dominated by Agar-
icomycetes (28.7%), Sordiaromycetes (16.7%), Leotiomycetes (10.5%)
and Dothideomycetes (10.2%). A small fraction (0.48%) of the fungal
OTUs could not be assigned to specific fungal phyla.

Mean relative abundances of Actinobacteria (phylum and class),
Ascomycota, Sordariomycetes and Dothideomycetes increased from
woodlands to grasslands and croplands (Supplementary Figs. 1, 2a, d,
3a, d, f). On the opposite, Acidobacteria, Alphaproteobacteria, Basi-
diomycota, Agaricomycetes and Leotiomycetes decreased along those
vegetation cover types (Supplementary Figs. 1, 2a, e, 3b, c, e). Pro-
teobacteria dominated inwoodlands, particularly in coniferous forests
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(Supplementary Figs. 1, 2c). Similar investigations were conducted at
the functional group-level and are presented in the Supplementary
Figs. 4, 5 and in Supplementary Tables 3, 4.

Single-effects of soil properties, climate, and vegetation cover
When considering the impact of drivers as single (non-interactive)
effects onmicrobial α-diversity, variation partitioning analysis showed
that bacterial communities were mainly driven by soil properties
(14.5% unique variance explained for the observed richness), followed
by climate (1.3%) and vegetation cover (0.6%). Conversely, fungal
communities were shaped by vegetation cover (5.1%), soil properties
(3.1%) and climate (0.6%) (Fig. 4a, b and Supplementary Fig. 6). Soil pH,

calcium carbonate content and carbon-to-nitrogen ratio (C:N ratio)
were the most important soil properties explaining bacterial α-
diversity (Supplementary Fig. 7). Increasing pH values favoured both
bacterial richness and Shannon index, while an increasing soil content
in calcium carbonate and higher C:N ratio values showed the opposite
effect. For fungi, once the main impact of vegetation cover was
accounted for, silt content, bulk density and pH were the most influ-
encing soil properties on fungal richness (silt content had a negative
impact while bulk density and pH had a positive effect). Soil pH and
extractable potassium had a positive and negative effect, respectively,
on fungal diversity (Supplementary Fig. 7). The number of soil prop-
erties and climatic variables acting on bacterial richness and diversity

Fig. 1 | Sampling design. a Sampling points distribution coloured by vegetation cover type across biogeographical regions. The number of sites is indicated between
brackets. b Vegetation cover types ordered along a gradient of increasing land-use perturbation.

Article https://doi.org/10.1038/s41467-023-37937-4

Nature Communications |         (2023) 14:3311 3



was higher than that of fungal α-diversity metrics. Soil properties and
climatic variables impacting both bacterial and fungal α-diversity
affected both groups in the same way (either positively or negatively),
with the exception of temperature seasonality and silt content (Sup-
plementary Fig. 7).

Considering β-diversity, soil properties had the strongest impact
on bacterial (11.9% of unique variance explained) and fungal (2.5%)

community composition (Fig. 4a, b and Supplementary Fig. 6e). Cli-
mate was the second driver explaining a difference in bacterial com-
munity composition between sites (3.1%), while vegetation cover was
the second driver explaining this difference for fungal communities
(2.1%) (Fig. 4a, b and Supplementary Fig. 6f). Soil pH was the most
important soil property explaining both bacterial and fungal β-diver-
sity, followed by C:N ratio (Supplementary Fig. 8).
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We also performed variation partitioning analyses to assess which
variables best explain microbial functional groups, focusing on single
factors (e.g. soil properties, climate, vegetation). We observed that the
distribution of soil bacterial functional groups was mainly driven by
soil properties, explaining 7.7%, 8.0% and 20.1% of unique variance
explained for bacterial chemoheterotrophs, N-fixers and pathogens
respectively (Supplementary Fig. 9a–c). Fungal functional groupswere
mainly shaped by vegetation cover, representing 28.2% of unique
variance explained for ectomycorrhizal fungi, 17.0% for AMF, 11.9% for
saprotrophs and 12.0% forplant pathogens (Supplementary Fig. 9d–g).

Considering the soil conditions driving bacterial functional
groups, bacterial chemoheterotrophs were associated to soils with
high pH and low C:N ratio values (Fig. 4c). They were also favoured by
more compacted soils (i.e. higher bulk density values) with higher

potassium contents and low calcium carbonate and silt contents.
N-fixing bacteria were more abundant in soils with low pH values as
well as low phosphorus contents and C:N ratio values, low calcium
carbonate and silt contents, but higher bulk density values (Fig. 4d).
Potential bacterial pathogens predominated in more sandy soils (low
clay and silt contents) with lowpHvalues but higher calciumcarbonate
contents and bulk density values (Fig. 4e). Considering climatic vari-
ables (Fig. 4c–i), more humid conditions (i.e. higher values of the
monthly aridity index) negatively impacted the proportion of bacterial
chemoheterotrophs, while more contrasted temperature conditions
over the year favoured them, e.g. higher isothermality (i.e. larger day-
to-night temperature oscillations relative to summer-to-winter oscil-
lations) and larger annual temperature range values. Bacterial N-fixers
presence was favoured by higher isothermality values and higher

Fig. 2 | Land-use perturbation (associated to vegetation cover types) and
communities. a Bacterial observed richness among vegetation cover types.
b Fungal observed richness among vegetation cover types. c Bacterial Shannon
index among vegetation cover types. d Fungal Shannon index among vegetation
cover types. Data are presented as mean values ± standard deviation SD. Boxplot
centre line indicates the mean, lower and upper hinges the standard deviation
around the mean and each whisker correspond to the minimum and maximum
values, respectively. Different letters correspond to a significant difference among
proportions of (z)OTUs in compared vegetation cover types, and p value corre-
sponds to the one obtained with a Kruskal-Wallis test testing the vegetation cover
effect. e Bacterial dbRDA plot testing the effect of vegetation cover on bacterial

community structure (β-diversity), based on the Bray-Curtis dissimilarity matrices
calculated on the Hellinger-transformed sample-by-zOTU table. f Fungal dbRDA
plot testing the effect of vegetation cover on fungal community structure, based on
the Bray-Curtis dissimilarity matrices calculated on the Hellinger-transformed
sample-by-OTU table. P value corresponds to the one obtained from the one-way
ANOVA test. In all panels, adjusted R-squares are expressed in percentages and
colours represent the different vegetation cover types, where n = 715 total sites,
with 160 belonging to coniferous woods, 99 to broadleaved woods, 128 to exten-
sive grasslands, 18 to intensive grasslands, 46 to permanent crops and 264 to non-
permanent crops sites. Source data are provided as a Source Data file.

Fig. 3 | Land-use perturbation (associated to vegetation cover types) and
functional groups. Mean relative proportion in percentages (±SE) of bacterial
zOTUs and fungal OTUs (weighted by their read counts) belonging to a functional
group, for each vegetation cover, detailed by functional group for (a) bacterial
chemohetrotrophs, (b) bacterial N-fixers, (c) bacterial pathogens, (d) ectomycor-
rhizal fungi, (e) arbuscular mycorrhizal fungi (AMF), (f) fungal saprotrophs, (g)
fungal plant pathogens. Error bars represent standard error. Different letters cor-
respond to a significant difference between proportions of (z)OTUs in compared

vegetation cover types, andp value corresponds to theoneobtainedwith aKruskal-
Wallis test testing the vegetation cover effect. Adjusted R-squares are expressed in
percentages, colours represent the different vegetation cover types, and n = 715
total sites, with 160 belonging to coniferous woods, 99 to broadleaved woods, 128
to extensive grasslands, 18 to intensive grasslands, 46 to permanent crops and 264
to non-permanent crops sites. Source data are provided as a Source Data file.
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variations in temperature seasonality over the year, but within a more
restricted range of annual temperature (i.e. lower annual temperature
range values), and by colder and drier climatic conditions (i.e. lower
monthly air temperature and monthly aridity index values respec-
tively). Contrasted and warmer temperature as well as more humid
conditions favoured bacterial pathogens (i.e. increasing isothermality,
monthly air temperature and monthly aridity index, and larger varia-
tions in temperature seasonality).

While the effects of vegetation cover on fungal functional groups
was as seen in Fig. 3, taking into account soil properties, we found that
ectomycorrhizal fungi were associated to soils with low pH values and
low phosphorus contents, and high percentages of coarse fragments
(Fig. 4f). AMF were relatively more abundant in soils with low potas-
sium contents and percentages of coarse fragments, and high calcium
carbonate and clay contents (Fig. 4g). Fungal saprotrophs were
favoured by soils with high bulk density and pH values, high potassium

and phosphorus contents, and low calcium carbonate and clay con-
tents (Fig. 4h). Potential fungal plant pathogens were associated with
sandy soils with high pH values, higher percentages of coarse frag-
ments, and low phosphorus and calcium carbonate contents (Fig. 4i).
More humid conditions favoured ectomycorrhizal fungi while ham-
pering the presence of fungal saprotrophs. Wider ranges of annual
temperatures promoted plant symbionts (e.g. AMF) over saprotrophs
and pathogens. At the opposite, larger variations in temperature sea-
sonality favoured these last two groups over the AMF communities.
Finally, precipitation only positively affected the proportion of
pathogens and AMF.

Interactive effects of soil properties, climate, and vegeta-
tion cover
In a next step, we used an ordinationmethod and associated biplots to
illustrate how community diversity and structure (α- and β-diversity)

Fig. 4 | Single effects. a Part of unique variance explained by pre-selected soil
properties and climatic variables and by vegetation cover on the bacterial observed
richness, Shannon index andβ-diversity.bPart of unique varianceexplainedbypre-
selected soil properties and climatic variables and by vegetation cover on the
fungal observed richness, Shannon index and β-diversity. Percentages correspond
to the unique partitioned variance of each single effect found after a variation
partitioning testing for the effect of pre-selected soil properties, climatic variables,
and vegetation cover (Supplementary Fig. 6). Colours correspond to the type of
environmental variables (soil properties, climate or vegetation cover). c–i Bacterial
or fungal variable importance for each soil property and climatic variable in
explaining the proportion of (z)OTUs (weighted by their read counts) belonging to

a given functional group for (c) bacterial chemohetrotrophs, (d) bacterial N-fixers,
(e) bacterial pathogens, (f) ectomycorrhizal fungi, (g) arbuscular mycorrhizal fungi
(AMF), (h) fungal saprotrophs, (i) fungal plant pathogens Only the numerical
properties selected by the models are presented, but the vegetation cover was
selected as a significant important (categorical) variable as well and included in the
models. Colours represent the positive or negative sign of the variable in the linear
model found after feature selection. The stars represent the level of the p value for
each term in the one-way ANOVA test (*** p <0.001; ** p <0.01; * p <0.05; . p <0.1).
Exact p values are provided in Supplementary Data file 2. Source data are provided
as a Source Data file.
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and the presence of potential functional groups were preferentially
related to certain combinations of vegetation cover type, soil prop-
erties and climatic variables (Supplementary Fig. 10). For instance,
croplands and grasslands with high pH values and clay contents were
more frequent in arid and warm conditions (i.e. low monthly aridity
index values and high monthly air temperature respectively) and
hosted more bacterial chemoheterotrophs, while woodlands were
characterised by high C:N ratio values, featured less-compacted soils
(i.e. low bulk density values) and hosted more ectomycorrhizal fungi
(Supplementary Fig. 10).

Variation partitioning showed that the most relevant interactions
shaping bacterial and fungal richness, diversity and community com-
position were the ones involving vegetation cover. In particular,
interactions among soil properties and vegetation cover (soil proper-
ties × vegetation) represented 4.8%, 4.0% and 2.8% of unique variance
explained for bacterial and fungal observed richness and fungal
diversity respectively (Fig. 5a, b and Supplementary Fig. 11). Those
interactions (soil properties × vegetation) mainly explained the dif-
ferences in community composition between sites (β-diversity) for
both bacteria (17.3% of unique variance explained) and fungi (5.8%)

(Fig. 5a, b and Supplementary Fig. 11). Bacterial diversity was relatively
more affected by interactions among vegetation cover and climate
(vegetation × climate), representing 3.4% of unique variance
explained (Fig. 5a and Supplementary Fig. 11). More details about the
most influential interactions are available in Supplementary Figs. 12, 13.
Similar investigations were conducted for the functional groups and
are presented in Fig. 5 and Supplementary Figs. 14, 15.

Overall, interaction models performed better than the single-
effect ones. For both groups of microorganisms (bacteria and fungi)
and inferred functional groups, interaction models explained from 2%
up to 16% of additional variance for all consideredmetrics (α-diversity,
β-diversity) and displayed smaller Akaike Information Criterion (AIC)
values (i.e. more parsimonious models) (Supplementary Table 5).
However, for fungal Shannon index, AIC valueswere equivalent among
model types (Supplementary Table 5). Interaction models also high-
lighted how certain soil properties differently affected communities
and potential functional groups depending on the climatic and vege-
tation contexts. For instance, the interaction between pH and tem-
perature seasonality was identified as one of the most influencing
interactions on fungal communities and functional groups (Fig. 5 and

Fig. 5 | Interaction effects. a Part of unique variance explained by pre-selected
interactions between soil properties, climatic variables and vegetation cover on
bacterial observed richness, Shannon index and β-diversity. b Part of unique var-
iance explained by pre-selected interactions between soil properties, climatic
variables and vegetation cover on fungal observed richness, Shannon index and β-
diversity. Percentages correspond to the unique partitioned variance of each
interaction type found after a variation partitioning testing for the effect of pre-
selected interaction terms between soil properties, climatic variables and vegeta-
tion cover (Supplementary Fig. 11). Colours correspond to the type of interactions

(soil properties × vegetation, soil properties × climate or vegetation × climate).
c–iVariable importanceof the first five two-way interaction terms in the interaction
models for bacterial and fungal functional groups for (c) bacterial chemohetero-
trophs, (d) bacterial N-fixers, (e) bacterial (human) pathogens, (f) ectomycorrhizal
fungi, (g) arbuscular mycorrhizal fungi, (h) fungal saprotrophs and (i) fungal plant
pathogens. Bars are coloured by interaction type. The stars represent the level of
significance of the p value for each term in the one-way ANOVA test (*** p <0.001;
** p <0.01; * p <0.05; . p <0.1). Exact p values are provided in Supplementary Data
file 2. Source data are provided as a Source Data file.
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Supplementary Fig. 12). A concrete visualisation of such interaction is
given in supplementary Fig. 16, where cluster areas were defined based
on temperature seasonality values. Increase in fungal richness, diver-
sity and proportion of potential fungal plant pathogens with soil pH
differed among climatic cluster areas (Supplementary Fig. 16a). Such
increase was more pronounced in areas characterised by a high tem-
perature seasonality but also differed among vegetation cover types
(Supplementary Fig. 16b). This example highlighted the interaction
effect among the three types of considered factors.

Discussion
Effects of land-use perturbation on microbial communities
Here we compared several microbial community metrics (i.e. richness,
diversity, structure) among six major vegetation cover types in Europe.
Land-use perturbation (i.e. established as a gradient fromwoodlands to
highly-managed croplands) affected soil microbial diversity. Microbial
richness (bacterial zOTUs and fungal OTUs) and diversity (Shannon
index) increased from less disturbed (i.e. woodlands) tomoremanaged
areas (i.e. grasslands andcroplands). In agreementwith this, community
structure also differed among vegetation cover types, with the com-
munities in woodlands and croplands being the most dissimilar. In
addition, shifts in relative abundances of main microbial phyla and
classes were observed among croplands, grasslands and woodlands.
These results confirm previous observations at a local scale showing
that land-use intensification alters soilmicrobial community structure32,
and suggest that highly-managed habitats (e.g. croplands) represent a
distinct soil biodiversity pool from less-disturbed sites such as natural
or semi-natural systems (e.g. woodlands). Highermicrobial richness and
diversity in croplands and grassland compared to woodlands might
result from increased niche availability at the local scale due to either
soil perturbation or the presence of a heterogeneous environment with
different plant species (e.g. in grasslands or when different crops are
rotated in arable and vegetable fields). In contrast, woodlandsmight be
a highly competitive environment with reduced niche opportunities
where fewer microbial taxa can persist33,34. Interestingly, the observed
below-ground patterns of microbial richness and diversity are not the
same as for above-ground organisms, which often have higher richness
and diversity in woodlands, and suggest contrasting responses of both
diversity types to land-use perturbation35.

Effects of land-use perturbation on functional potential
We also showed that, other than taxonomic diversity, the functional
annotation should be taken into account when addressing the impact
of land-use perturbation on soil microorganisms, as microbial func-
tional groups significantly varied from less disturbed to highly-
managed areas. Here we inferred functional groups based on bacter-
ial and fungal taxonomy and showed that land-use perturbationmight
promote antagonists, including potential fungal pathogens. The
reduction of plant species richness inmoremanaged areasmay indeed
allow fungal pathogens to occupy additional ecological niches due to
homogenisation of the above-ground plant-host community, reducing
dilution effects and allowing pathogens to spread faster and
accumulate35. Our results also showed that broadleaved woods and
extensively-managed grasslands hosted higher proportions of N-fixing
bacteria. In contrast to croplands, usually fertilisedwith nitrogen,most
woodlands and grasslands are not fertilised, and nitrogen is often
limited in these environments. As such, N-fixing bacteria, as free-living
N-fixers (e.g.Telmatospirillum siberiense) or in associationwithN-fixing
plants (e.g.Mesorhizobium loti), may represent the principal source of
nitrogen inputs for plants in such environments36. In addition, arbus-
cular mycorrhizal fungi (AMF) dominated in extensively-managed
grasslands compared to intensively-managed grasslands and crop-
lands, in line with previous observations at smaller scales showing a
marked decrease in AMF upon land-use intensification37,38. Ectomy-
corrhizal fungi (EcM), known to be involved in symbiotic relationships

with a broad diversity of forest trees39,40, dominated woodlands.
However, EcM fungi rarely associate with trees present in croplands
and grasslands (e.g. orchards and sparse shrubs), and were therefore
less abundant in these environments, suggesting a negative impact of
land-use intensification on ectomycorrhizal symbiosis41.

Effects of land-use perturbation on biodiversity-ecosystem
functioning relationship
A range of experimental studies demonstrated thatmicrobial diversity
promotes ecosystem functioning4,42 and high microbial richness is
generally viewed as positive for ecosystem functioning and the health
of a wide range of organisms43. However, our study indicates that
greater microbial taxonomic richness/diversity does not necessarily
imply beneficial outcomes, as highly-perturbated soils, hosting higher
taxonomic richness, harboured a greater prevalence of potentially
undesired taxa (e.g. pathogens). Altogether, these findings confirm
that an accurate evaluation of both taxonomic and functional biodi-
versity is necessary for an in-depth understanding of the impacts of
land-use perturbation on the structure and functions of soil microbial
communities at continental-scale. We argue that focusing on taxo-
nomic diversity only might lead to a false assumption that increased
biodiversity implies benefits in terms of ecosystem functioning. In
particular, we highlight that, besides the taxonomicmonitoring of soil
microorganisms, a scheme for controlling functional groups could
help conceiving actions targeting soil management and preservation.
In principle, the systematic assessment of potential microbial func-
tional groups would not require any additional costs, as it relies on
databases (e.g. FAPROTAX, FungalTraits) predicting functions based
on inferred taxonomy. This approachwould allow a first fast-screening
of potential microbial functions, although it has some limitations fur-
ther discussed below.

Single drivers of microbial communities
We also investigated the forces driving diversity and structure of
fungal and bacterial communities at large scale, by considering the
drivers acting separately. Interestingly, climate-related variables were
not the main driver of the assembly of soil microorganisms in this
study. Soil properties were important predictors of bacterial diversity,
richness and composition. Apart from the well-documented effects of
pH and C:N ratio10,11,24,44–47, other parameters, such as potassium, cal-
cium carbonate, and the soil content in silt and clay, which are often
overlooked, played a significant role in shaping bacterial communities.
These findings illustrate the need to expand the range of variables to
be examined when investigating soil bacterial distribution. On a more
practical level, they demonstrate why specific actions on soil man-
agement (i.e. practices affecting soil properties) should be considered
when targeting soil bacterial communities and related functions and
ecosystem services for conservation purposes.

The fungal α-diversity was driven by the vegetation covering the
soil,more than climate and soil properties as previously reported48. This
may be due to the tight link between fungi and plants (e.g. endophyt-
ism, mutualism—e.g. mycorrhizal fungi—or plant pathogenicity49–51).
Fungal β-diversity was, however, mainly driven by soil properties. In
particular, differences in community composition were found to be
highly influenced by soil pH. The driving effect of pH on fungal β-
diversity has already been reported but few reports are available so far
at such a large scale and these studies are limited to a few vegetation
cover types (e.g. grasslands and woodlands11,24,26,52,53). From a manage-
ment perspective, our results suggest that when targeting soil fungi,
actions on vegetation cover (e.g. rewilding) combined with soil man-
agement could help ensure more effective conservation measures.

Single drivers of functional potential
Compared to taxonomic diversity, the factors driving soil microbial
functions received less attention. However, a better understanding of
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how taxonomic diversity patterns can be associated to ecological
functions is key to ensure the provision of ecosystem services that rely
on such functions54. Recent studies have focused on the factors driving
functional diversity within soil fauna55, but large-scale studies on the
factors driving microbial functional diversity are still limited26,48, par-
ticularly for bacteria. To fill in those knowledge gaps, we used tax-
onomy to predict functional groups within the bacterial and fungal
communities and tested single-effect models on them. We observed
that microbial functional groups were not driven by the same factors
among groups. In particular, functional groups were influenced by
different sets of soil properties and climatic variables, suggesting that
conservation actions could have different impacts on various func-
tional groups.

Our findings also offered new insights in relation to soil properties
and climate. As of soil features, for instance, bacterial chemohetero-
trophs were preferentially found in highly-managed lands (i.e. crop-
lands) andwerepositively affected by bulkdensity, a soil characteristic
often overlooked when investigating the effects of soil properties on
microbial communities56. Increased chemoheterotrophy could thus be
related to agricultural practices and also indicate high quality litter
inputs promoting mineral-associated organic matter formation57,58.
Similarly, fungal saprotrophs and fungal plant pathogens were nega-
tively linked to calcium carbonate content while AMF were positively
linked to it. Studies linking calcium carbonate to fungal functional
groups at a large scale are virtually missing and further investigations
could contribute to a better assessment of lime application impacts on
fungal functional groups59. As the relationship between the addition of
calcium carbonate and deacidification of soil pH is non-linear60, being
able to relate both lime application and targeted pH correction to
variations in fungal symbionts and fungal pathogens in soils may help
to quantitatively assess the impacts of this agricultural practice on soil
functioning, and contribute to better decisions on soil management.
Our findings also confirm the need to deepen the knowledge of drivers
of soil microbial functional groups by including as many soil physico-
chemical properties as possible, next to information on the vegetation
covering the soils (especially for biotrophic organisms) and climatic
conditions.

Looking at climate, warmer conditions were found impacting
beneficial functions for plant communities as, for example, a drier
climate favoured bacterial chemoheterotrophs but reduced ectomy-
corrhizal symbionts presence. Both potential bacterial human patho-
gens and fungal plant pathogens were favoured by high temperature
seasonality values, while those conditions hampered AMF presence.
Interestingly, our results demonstrate the difficulty in assessing one
overall effect (positive or negative) of climate on soil microbial func-
tions, and highlight the need to investigate a large set of climatic
variables to better capture the impact of temperature and precipita-
tion evolution (within and over a year) on each functional group.
Considering a potential future homogenisation of communities in an
increasingly dry climate61,62, our findings suggest that changes in cli-
mate may impact the provision of key ecosystem services by selecting
for some specific taxa and associated functions. Simultaneously, cli-
matic extremes (e.g. increased temperature and drought) may pro-
mote plant vulnerability to pathogens63. Using climatic projections
mayhelp assessing the future impacts of climatic change on functional
groups and, thus, designing preventive actions and monitoring
schemes.

Interactive drivers of microbial communities and functional
potential
Our study also showed that interactions among soil properties, cli-
mate, and vegetation cover better explain patterns of soil microbial
communities and inferred functional groups than when considering
drivers acting separately. Models accounting for these interactions did
not only perform better (i.e. from 2% up to 16% of additional explained

variance and, overall, equivalently or more parsimonious models) but
also brought additional information on potential drivers of soil
microbiomes in different climatic and vegetation contexts. For
instance, single-effect analyses hid the impact of climate by showing a
clear predominance of soil properties in explaining bacterial commu-
nity patterns, while interaction analyses highlighted that variations in
temperatures (annual range and seasonality) are particularly influential
on bacterial diversity of croplands- and extensively-managed grass-
lands-associated communities, in combination with soil variables. In
addition, interaction analyses confirmed the dominance of vegetation
cover in explaining fungal richness and diversity, and also underlined
the importance of certain soil properties (e.g. clay content) that were
not identified as relevant drivers in the single-effect analyses. Inter-
estingly, interaction-effect models on β-diversity detected a limited
role of climate for both bacteria and fungi, indicating that the diversity
of communities between sites at broader scales is preferentially driven
by soil properties interacting with vegetation cover. This might reflect
the fact that at the site scale, the uniqueness of communities is pro-
moted by local and more stable conditions (i.e. soil properties and
vegetation cover), more than by long-term acting factors (i.e.
climate)64.

Furthermore, our results encourage the identification of climatic
cluster areaswhere the impact of soil properties in relation to different
vegetation cover types should be further studied. To investigate soil
microbial communities, large areas may be broken down into combi-
natorial patches of environmental features (e.g. climate, vegetation
and soil properties) known to affect microorganisms through their
interactions. Such procedure may facilitate the establishment of clus-
ters of action (areas of priority) where implementing appropriate
monitoring tools and preservationmeasures. This might pave the way
to a new strategy overcoming the eternal difficulty, faced by the sci-
entific community, to propose reliable approaches for soil (microbial)
diversity conservation65.

Study limitations and perspectives
Despite the broad range of factors included in our analysis, the applied
models still recorded a significant unexplained variance, suggesting
other forces playing on soil microbial communities. Previous studies
have identified variables as potential drivers of soil microbial diversity
(e.g. soil wilting point66) and community structure (e.g. specific
micronutrients67) that LUCAS survey does not currently cover due to
thedifficulty of collecting relatedfielddata over sucha large area. Also,
future studies should compare multiple sampling points within the
same location, in order to account for micro-scale variability of the
biota (i.e. changes over distances of few metres). Additionally, we
noted that the lack of quantified information on covering plants (e.g.
plant community richness and structure, crop yield) may have repre-
sented a limitation to our interpretations (e.g. when comparing semi-
natural and highly-perturbated soils and when approaching the dis-
tribution patterns of biotrophs) and could also contribute to the
unexplained variance15.

Furthermore, the proportion of soil taxa that were assigned to a
potential function remained low, especially for bacteria. Thus, efforts
to improve the taxonomic and functional characterisation ofmicrobial
communities and specific microbial taxa would be needed to provide
further insight into the interactive effects among soil properties,
vegetation cover, and climate on soil microbial functional groups. In
particular, such efforts should bemade in all types of vegetation cover,
to thoroughly address potential biases in inferred functional annota-
tion among more anthropic and semi-natural environments. This is
especially true for potentially pathogenic taxa, that are more fre-
quently studied in croplands areas so far68. Also, a range of potentially
pathogenic fungal taxa are known to have saprotrophic activities; it is
likely that the actual proportion of pathogenic taxa is lower and the
reported proportion of potential fungal pathogens (e.g. almost 40%
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for grasslands and croplands) represents an upper limit and includes
taxa that act as saprotrophs but are also classified as opportunistic
pathogens.

Although functional databases offer a fast-functional screening of
microbial data, we were aware of the limitations regarding their
functional assignments69. For instance, bacterial zOTU assignments
were done basedon 16S, a conservedDNA region that can discriminate
bacteria at the finest taxonomic level (i.e. strain), while it is likely that
some functions may not be phylogenetically conserved (i.e. different
strains of same species carrying out different functions)70. An analysis
based on inferred functions, thus, would benefit from additional
experimental works like (i) metagenomics, metatranscriptomics and
metaproteomics to quality-check the predicted functional annotation
(metagenomic) and assess the functionally active communities
(metatranscriptomics and metaproteomics71,72), (ii) metabolomics to
better understand community functional potential by quantifying the
presence of functional products (i.e. metabolites) in the
environment73, and (iii) a cause-effect analysis (e.g. linking the occur-
rence of putative plant pathogens to detrimental plant growth and
reduced yield in agricultural fields). These approaches, if applied to
LUCAS Soil, could steer the functional assessment of soil microbial
communities across Europe.

Guidelines for policy-related applications
Despite the above-mentioned limitations, our findings provide guide-
lines for the establishment of priorities and targets,which are currently
missing, for soil biodiversity monitoring within the European Union
(EU). The EU, like most countries, lacks specific legislation for soil
biodiversity protection. This gap is mainly due to the lack of robust
approaches for (i) identifying drivers upon which preservation and
monitoring actions could be designed and (ii) defining spatial areas
where those actions should apply. Nonetheless, policy initiatives taken
recently at the EU level (e.g. EU Biodiversity Strategy for 2030, Farm to
Fork Strategy and EU Soil Strategy for 2030 with a proposal for a Soil
Health Law74–76) show a fertile ground for the possible development of
a legal framework that takes into account soil life77. Our analyses may
thus lay the foundations of a new paradigm for preserving soil
microbial communities and promoting ecosystem services provided
by soil functional groups, with two principles at its base:
1. Investigating the interactions of a large set of soil properties and

climatic variables (including poorly considered parameters), as
well as various vegetation cover types, helps explaining large scale
patterns for soil bacteria and fungi, and their functional groups.
The outcomes derived from interaction analyses can be used to
circumscribe cluster areas featuring specific environmental
properties in terms of soil, vegetation and climate. Preservation
actions, monitoring schemes and thresholds may be tailored on
these well-defined zones, and adapted to the organism type or
functional group.

2. Decisions based on the functional diversity should complement
the taxonomical ones for preservation and monitoring purposes,
by keeping in mind that a high soil microbial (taxonomical)
diversity might not always be beneficial (higher potential patho-
genicity). The functional groups tobeprioritised (likely organisms
providing beneficial functions, at least from an anthropogenic
point of view) have thus to be decided and then better monitored
to control the effectiveness of measures.

In conclusion, this study demonstrates that microbial diversity,
community structure and potential functional group distribution vary
along a gradient of increasing land-use perturbation. At European
scale, microbial communities from more disturbed areas (e.g. crop-
lands) differ the most from communities associated to semi-natural
habitats (e.g. woodlands). Soils harbouring richer and/or more diverse
communities (i.e. croplands andgrasslands) are also characterised by a

higher presence of potential fungal pathogens. In contrast, woodlands
and extensive grasslands harbour more fungal plant symbionts and
N-fixing bacteria. Our study also investigates three types of environ-
mental drivers (i.e. soil properties, climate and vegetation cover) and
provides evidence that bacterial diversity is mainly shaped by soil
conditions while fungal diversity is mainly influenced by vegetation
cover. Differences in microbial community structure among sites are
better explained by variations in soil properties. Our analyses show
that the distributions of inferred microbial functional groups are
shaped by different type of drivers (i.e. soil properties for bacteria but
vegetation cover for fungi) and that the same soil and climatic condi-
tions can have opposite effect on groups.

Overall, our results highlight that monitoring and preservation
schemes should take both taxonomic and functional diversity into
account in order to get a reliable estimate of the impacts of land-use
intensification and environmental factors on below-ground diversity.
While considering environmental drivers as acting inparallel (i.e. single
effects) gives an adequate overview of microbial patterns at the Eur-
opean scale (up to 65% of variance explained), considering their
interactionsmay lead to newperspectives with respect to soil diversity
monitoring and protection.

Methods
Sampling and soil properties analysis
As part of the 2018 LUCAS Soil module, 881 sites were sampled across
all European Union countries (EU) and the United Kingdom (the UK
wasanEUMember State at the timeof the sampling). In brief, sampling
points were selected based on a simulated annealing sampling applied
to the LUCAS Soil 2009 data as the original population from which to
sample. Point selection was performed so that an optimal configura-
tionwas found replicating awide range of environmental variables (i.e.
soil physico-chemical properties, topography, climate and land cover).
At each location, five subsamples covering a depth of 20 cm were
collected and mixed together. One subsample was collected at the
precise geographical location of the pre-selected point while four
additional subsamples were collected at the four cardinal directions
(North, East, South and West), at a distance of 2m from the first sub-
sample location in each direction. Altogether, 500 grams of soil were
stored on ice and transported to the JRC within 48 h of collection
where they were then frozen. On completion of the survey, samples
were sent to the molecular biology laboratory of the Mycology and
Microbiology Centre (University of Tartu) for DNA analyses. A second
sample was analysed for physical and chemical soil properties by SGS
Hungary. Further details about LUCAS Soil sampling campaign are
available in Orgiazzi et al.29.

Soil DNA analysis
Soil samples were analysed for their bacterial and fungal biodiversity
through a DNA metabarcoding approach. Primer sets for barcode
amplification were 515F (GTGYCAGCMGCCGCGGTAA) and 926R
(GGCCGYCAATTYMTTTRAGTTT) for the bacterial 16S region78,79 and
ITS9mun (GTACACACCGCCCGTCG) and ITS4ngsUni (CGCCTSCSCTT
ANTDATATGC) for the fungal ITS region80,81. Sequencing was per-
formed by Illumina MiSeq platform with 2 × 300 paired-end mode for
bacterial data and PacBio Sequel II platform for fungal data. Protocols
for DNA extraction and amplification are described hereafter.

DNA extraction and amplification. DNA was extracted with the Qia-
gen DNeasy PowerSoil HTP 96 Kit Q12955-4. Three 0.2 g aliquots per
sample were extracted. The three subsamples were pooled after
extraction. A negative control and positive control were used during
extraction to locate any external contamination and cross-
contamination. Quality check and quantification of DNA were per-
formed with Qubit™ 1X dsDNA HS Assay Kit using Qubit 3 fluorometer
(Invitrogen).
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All PCRs were performed in three replicates using 5 ×HOT FIRE-
Pol® Blend Master Mix (Solis BioDyne, Tartu, Estonia) in 25 μl volume.
The optimal number of cycles and optimal annealing temperature
were used for the primer pairs. In case of PCR failure, the extracted
DNA was purified using Favorgen FavorPrep Genomic DNA Clean-up
Kit FAGDC001-1 and the PCR was repeated with more cycles to the
thermocycler programme if needed. For bacteria, the primers 515F and
926R were used. The PCR conditions included: 55 °C annealing tem-
perature, 26 cycles, 1.5 ng/µl of DNA template (1 µl). In case of PCR
failure even after DNA was purified, 28 cycles were used instead of 26
cycles. For eukaryote ITS region, the primers ITS9mun and ITS4ngsUni
were used. The PCR conditions included annealing temperature 55 °C,
30 cycles, 1.5 ng/µl of DNA template (1 µl). In case of PCR failure even
after DNA was purified, 33 or 35 cycles were used instead of 30 cycles.
Both the forward and reverse primers were tagged with a 12-base
multiplex identifier (MID) tag. The three replicates of each reaction
were pooled and visualised on TBE 1% agarose gel. PCR products were
purified using UltraClean 96 PCR Cleanup Kit (Qiagen). DNA con-
centrations were measured with Qubit™ 1X dsDNA HS Assay Kit using
Qubit 3 fluorometer (Invitrogen).

Metabarcoding library preparation. Illumina amplicon libraries were
generated using TruSeq DNA PCR-Free High Throughput Library Prep
Kit with TruSeq DNA CD Indexes. For PacBio, SMRTbell library pre-
paration followed precisely the Pacific Biosciences Amplicon library
preparation protocol. Metabarcode sequencing was performed using
the Illumina MiSeq platform with 2 × 300 paired-end mode or PacBio
Sequel II platform. Positive and negative controls of extractions as well
as amplifications were used to further infer any contamination and
index-switching. For both bacterial and fungal DNA datasets, 12 ran-
domly selected samples were replicated during library preparation to
verify that library-to-library variability was low. Data were processed as
described for the full dataset until normalisation of the (z)OTU table
(threshold 16S: 12,277 counts and ITS: 458 counts). For fungi, two
resequenced samples were excluded from the analysis, as one of the
replicates in each pair had a much smaller number of reads than the
threshold. In unconstrained NMDS ordination based on Bray-Curtis
dissimilarity, the pairs of replicates grouped by sample ID, confirming
the reproducibility of sequencing results (Fig. 6). For fungi, some of
the replicate samples may be more variable than others due to:
(i) differences in amplification efficiency, namely using longer

amplicons (full-length ITS region) with the PacBio platform may
result in different amplicon lengths, with shorter amplicons

amplifyingmore efficiently than longer ones, so a small difference
in DNA template concentration may be influential;

(ii) technical factors, namely the sequencing depth in PacBio is lower
compared to the Illumina platform, hence the fungal dominance
and the compositional nature of the sequencingdatamay result in
some low abundance species being missing in a sample, resulting
in different compositions of non-abundant species, and hence, in
a higher dissimilarity.
Considering expected richness in samples, different sequencing

strategies and sequencing depth were selected for bacteria and fungi.
For bacteria, Illumina MiSeq was used and the samples with less than
50,000 reads were subjected to resequencing. For fungi, PacBio
Sequel II instrument was used and the samples with less than 3000
reads were subjected to resequencing; for samples with less than 1500
reads new tags were selected and then resequenced. The sequencing
was performed on 1050 samples of which 885 were official LUCAS Soil
samples (from 881 locations). Samples from four locations were taken
and, thus, sequenced twice due to sampling issues (DNA reads from
885 samples in total). Only DNA sequences from the four re-sampled
soils were considered for further analyses (i.e. 881 unique samples).
The bacterial amplicons (primers 515F and 926R) produced a total of
657,641,306 reads (140,032,087 accepted reads without control sam-
ples). The mean read count per sample was 133,364. 63 samples had
less than 50,000 reads initially. Re-sequencing of those 63 samples
provided 2,185,911 reads with the mean read count of 34,697 per
sample. Out of 63 re-sequenced samples, 58 samples had less than
50,000 reads. The re-sequenced reads were combined with the origi-
nal dataset. Altogether 9 samples had less than 50,000 reads in total
and can be considered as substandard. A single sample had less than
5000 reads and can be considered as failed. The great loss of reads in
the demultiplexing stage is attributable to the presence of large
amounts of metagenomics material that varied greatly among sam-
ples. The fungal amplicons (primers ITS9mun and ITS4ngsUni) pro-
duced a total of 9,156,823 accepted reads (9,031,552 reads without
control samples). The mean read count per sample was 8601. 46 sam-
ples had less than3000 reads initially. Re-sequencingof those 46 along
with 12 randomly selected samples produced 369,537 reads with the
mean read count of 6371 per sample. The five samples with read count
less than 1500 in the original run were assigned different tags and re-
sequenced again. A total of 24,090 reads were produced with the
mean read count of 4818 per sample. A single sample had a total read
count of less than 500 and can be considered as failed. Each sample
was evaluated based on read counts of original and both sets of

Fig. 6 | Reproducibility of sequencing results. Ordination plots for pairs of resequenced samples (replicates) for (a) bacteria and (b) fungi. Colours correspond to
replicates with the same sample ID. Source data are provided as a Source Data file.
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re-sequenced reads, which were either replaced, merged, or retained
in separate files.

Sequence processing and filtering. The Illumina and PacBio ampli-
con data (for bacteria and fungi, respectively) were demultiplexed
using LotuS282 with default options. Paired-end reads were assembled
using FLASH 1.2.1083 with default options (minimum overlap 10 bp).
Unmerged reads were removed from the final datasets.

For bacteria, zero-radius operational taxonomic units (zOTUs)
were generated with UPARSE84 (usearch version 10.0.024) accord-
ing to the tutorial available for paired-end Illumina data (drive5.-
com/uparse/). Paired-end reads were merged with usearch. Merged
reads were then truncated up to the 16S primer sequences (515F and
926R) and filtered for the presence of both primer sequences with a
custom python script allowing up to 2 mismatches per primer.
Primers were clipped. Merged reads were further quality-filtered
with usearch by removing sequences with more than one expected
error over the whole length (as suggested by Edgar & Flyvbjerg85).
Duplicated sequences were collapsed with fqtrim86 (version 0.9.7)
and denoised with usearch. 136,427 zOTUs sequences were
obtained and annotated with the taxonomy data available from the
Ribosomal Database Project87 (bacterial sequences, version 16) with
usearch using a confidence-threshold of 0.8. Sequence filtering and
trimming was done with fastp using default settings: reads that
contain more than 40% bases with a PHRED quality score < 15 were
removed. ZOTU abundances were finally obtained by counting the
number of sequences matching to the zOTU sequences. To avoid
sequencing artifacts, only the zOTU sequences with 50 counts at
least across the samples and present in at least 10 samples
were kept.

For fungi, data were processed as described in Tedersoo et al.88

(see Molecular analyses), with the exception that singletons were
removed from the analysis. 98%-OTUs were obtained and preferred
over the use of ASVs, as ASVs are not considered suitable for full-
length ITS sequences and are not optimal due to randomPCR errors
and the presence of multiple/highly similar copies of the ITS region
in eukaryote genomes89. In addition, the use of ASVs increases the
elimination of taxa that are both rare and phylogenetically
unique90. Fungal taxonomic assignment was performed using
BLAST + 2.11.091 by running MegaBLAST queries of representative
OTU sequences against the updated UNITE 9.192 beta reference
dataset. These taxonomic assignments were checked against the 10
best megablast hits. Following taxon-specific thresholds were set:
kingdom, emax = e−50; phylum, emax = e−55 to e−80; class, emax = e−70 to
e−100; order, emax = e−80 to e−120; genus, sequence similarity to the
best match > 85–95%88.

The quality-filtered reads were thus grouped into zero-radius
operational taxonomic units (zOTUs, also known as ASVs, i.e. 100%
similarity threshold) for bacteria and into OTUs at a 98% similarity
threshold for fungi. Archaeal, chloroplasts and mitochondrial zOTUs
were removed from the 16S dataset, which collectively accounted for
0.34% of all initial zOTUs. The sample-by-OTU tables resulting from
those processes were then subjected to several filtering steps. Only
sites belonging to biogeographical regions presenting all land cover
types of interest (i.e. woodland, grassland and cropland) and a suffi-
cient number of reads for the normalisation stepswerekept for further
analyses. The filtered datasets containing information of the 715
remaining sites were normalised to comparable sequencing depth
(bacteria: 40,109 reads; fungi: 502 reads) using the Scaling with
Ranked Subsampling (SRS) method93.

In details, siteswerefirstfilteredby land cover type. Todefine land
cover,we referred to LUCASnomenclature, namely “the physical cover
of the Earth’s surface”94. Among the seven official LUCAS land cover
classes, three main classes were selected to conduct robust statistical
analysis: (i.e. cropland, grassland and woodland). Altogether 815 sites
remained, representing over 90% of the total number of sampling
locations. These 815 sites were distributed across the eight European
biogeographical regions: Alpine, Atlantic, Black Sea, Boreal, Con-
tinental, Mediterranean, Pannonian and Steppic regions95. Only the
regions harbouring sites belonging to all land cover types of interest
were selected, namely the Atlantic, Boreal, Continental and Medi-
terranean regions, which resulted in inclusion of 752 sites. Finally, for
fungal data, the sites with less than 500 read counts were excluded
from further analysis in order to perform data normalisation (Fig. 7),
leaving 715 sites for statistical analyses. In order to compare the bac-
terial and fungal datasets, the number of sites considered for bacteria
was reduced accordingly.

Although the selected threshold of 502 read counts covers less
initial richness than higher thresholds (Table 1), the normalisation of
the sample-by-OTU table down to this sequencing depth led to similar
results and conclusions compared with normalisation performed at
higher sequencing depths (e.g. 1000, 1500 and 2000 read counts),
both quantitatively (Table 2) and qualitatively. However, selecting
higher thresholds discarded a non-negligible number of sites (Table 1),
that removed valuable information (e.g. combination of vegetation
cover and bioclimatic context) from the dataset and led to unbalanced
representation of the vegetation cover, soil and climatic conditions
found across Europe. Normalisation of the data down to 502 read
counts thus permitted us to (i) investigate a representative ensemble
of sites in termsof vegetation cover, soil and climatic conditions across
Europe, and (ii) to compare both bacterial and fungal communities at a
large scale, from the same sampling sites (and thus, exact same

Fig. 7 | Normalisation (SRS) curves for bacterial and fungal dataset (16S and
ITS). The curves are plotted up to 100,000 reads for bacteria and 5000 reads for
fungi to better visualise small samples behaviour. Theminimum threshold towhich
the sample-by-(z)OTU table is normalised: 40,109 reads for bacteria and 502 reads

for fungi. Curves were generated using SRScurve function from SRS package93.
Note: the zigzag behaviour of the SRS curves results from the combination of
scaling and ranked subsampling of the fractional part (Cfrag) inherent to the SRS
approach.
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environmental conditions). Values taken by the observed fungal OTU
richness and Shannon index among different thresholds across com-
mon (i.e. non-discarded) sites are correlated with r² > 0.92 and avail-
able in Supplementary Data file 1.

Functional annotation. The functional traits databases FAPROTAX96

and FungalTraits97 were used to associate potential functions to
bacterial zOTUs and fungal OTUs based on their taxonomy. Tax-
onomically unannotated bacterial zOTUs and fungal OTUs were not
associated to any function and left as unknowns. For bacteria,
FAPROTAX confidently associates a function to zOTUs identified at
family, genus or species levels (i.e. a zOTU identified down to the
order level is usually ignored by FAPROTAX, see the Instructions
section on http://www.loucalab.com). For fungi, as described in
Tedersoo et al.7, functional annotation of OTUs was performed at
the level of genera for most fungal guilds. Authors also used order-
level annotation of certain life history traits (e.g. life form and
arbuscular mycorrhizal fungi) when this was unequivocal for the
entire order. Ectomycorrhizal fungi were additionally annotated at
the level of sequence accessions based on information accumulated
in UNITE.

For bacteria, the predicted functions were then grouped into
broad functional groups including chemoheterotrophs (involved in
the carbon cycle), nitrogen-fixers and human pathogens. For fungi,
functional groups included ectomycorrhiza, arbuscular mycorrhiza,
saprotrophs and plant pathogens. In details, bacterial zOTUs
associated to the functions “chemoheterotrophy”, “aero-
bic_chemoheterotrophy”, “anaerobic_chemoheterotrophy” were
grouped as potential bacterial chemoheterotrophs. Bacterial N-fixers
were associated to “nitrogen_fixation” and bacterial human pathogens
to “human_pathogens_all”, “human_pathogens_pneumonia”. Fungal
plant pathogens gathered OTUs identified as “root-associated”
pathogens, “leaf/fruit/seed_pathogen”, “other_plant_pathogen”,
“algal_parasite”, “wood_pathogen”, “root_pathogen”, “leaf/fruit/seed_-
pathogen, algal_parasite”, “wood_pathogen, leaf/fruit/seed_pathogen”,

“moss-associated” pathogens, “moss_parasite”. Fungal saprotrophs
gathered OTUs identified as “soil_saprotroph”, “litter_saprotroph”,
“unspecified_saprotroph”, “dung_saprotroph”, “wood_saprotroph”,
“nectar/tap_saprotroph”, “sooty_mold”, “pollen_saprotroph”. Arbus-
cular mycorrhizal fungi (AMF) were associated to “arbuscular_mycor-
rhizal” and ectomycorrhizal fungi to “ectomycorrhizal” as primary
function, respectively. As several functions can be associated to each
(z)OTU, some taxa could be identified as bacterial chemoheterotrophs
and N-fixing bacteria, or as a potentially pathogenic chemohetero-
trophic bacteria, but no overlap among N-fixing bacteria and patho-
gens was detected. Similarly, potential fungal plant pathogens were
mainly identified as fungal saprotrophs as well.

Proportions of (z)OTUs belonging to the same functional group
were estimated for each site, by weighting the (z)OTUs belonging to a
given group by their number of read counts, and dividing the result by
the total number of read counts of the site.

We also investigated potential major differences in functionally
unassigned (z)OTUs among vegetation cover types and found that a
total of 65,206 bacterial zOTUs and 7642 fungal OTUs were not
assigned to any functional group at all (even outside previously
mentioned groups of interest). This represents 81.9% of all bacterial
zOTUs and 29.4% of all fungal OTUs. For each sampling site, two
statistics were calculated: the proportion of (z)OTUs represented by
the functionally unassigned (z)OTUs (number of functionally unas-
signed (z)OTUs for site A/total number of (z)OTUs detected in site A),
and the proportion of read counts represented by the functionally
unassigned (z)OTUs (sum of read counts belonging to functionally
unassigned (z)OTUs for site A/total read counts for site A). We then
calculated themean and standard error of proportions by vegetation
cover type and performed a Kruskal-Wallis test and a Pairwise Wil-
coxon posthoc test (with a Benjamini-Hochberg’s correction) to
assess significant differences in proportions of unassigned (z)OTUs
among types.

Coniferous andbroadleavedwoodlands andextensively-managed
grasslands displayed the highest proportions of functionally unas-
signed bacterial zOTUs (Fig. 8a, c), illustrating a bias in functional
annotation between anthropic habitats and semi-natural environ-
ments. Extensive grasslands hosted the highest proportions (number
and read counts) of unassigned fungal OTUs (Fig. 8b, d). We suggest
that this result is due to the fact that other systems host more ecto-
mycorrhizal fungi or pathogens that are relatively confidently assigned
and we speculate that most of these unknowns are probably sapro-
trophs. It also highlights the need to improve functional annotation in
grasslands to better assess functional group distribution among var-
ious vegetation cover types.

Environmental variables
From the official LUCAS land cover nomenclature94, three main land
cover types were selected to conduct robust statistical analyses:
cropland, grassland and woodland. A hierarchical system allowing the

Table 1 | Number of remaining sites at different normalisation
thresholds and coverage of initial fungal richness

Threshold (read counts) Number of sites Coverage initial richness

502 715 63.29%

1000 668 80.23%

1500 578 84.26%

2000 488 83.43%

2500 422 80.69%

3000 348 75.12%

3500 293 70.61%

4000 237 63.55%

Table 2 | Comparison of fungal model performance for different normalisation thresholds

Adjusted R² AIC

502 1000 1500 2000 502 1000 1500 2000

Observed richness 0.1972 0.2225 0.2245 0.2177 −145.19 −155.33 −135.07 −103.13

Shannon index 0.1645 0.178 0.1874 0.1828 −117.58 −120.05 −108.0863 −85.73

EcM 0.6594 0.6254 0.6413 0.6425 −977.65 −857.39 −707.23 −584.35

AMF 0.2981 0.2872 0.3681 0.3726 −239.26 −215.27 −251.49 −216.66

Fungal saprotrophs 0.4473 0.4434 0.4719 0.4767 −408.61 −380.89 −354.61 −305.53

Fungal plant pathogens 0.3599 0.3453 0.3745 0.3817 −303.11 −274.03 −256.71 −227.03

Adjusted R² andAIC values for alpha-diversity and functional groups single-effectmodels based on sample-by-OTU tables normalised to aminimumof 502 read counts, 1000 readcounts, 1500 read
counts and 2000 read counts. EcM designate ectomycorrhizal fungi and AMF designate arbuscular mycorrhizal fungi.
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differentiation of these classes into finer cover types provided more
insights on the potential role of vegetation cover. In particular, crop-
lands were separated into permanent crops (e.g. fruit trees, olive
groves and vineyards) and non-permanent crops (e.g. cereals and
legumes). Grasslands were separated into intensive grasslands (i.e.
grassland identified at the time of the survey as a former cropland not
cultivated for at least a year and not part of a crop-rotation, or an
abandoned cropland) and extensive grasslands (i.e. permanent grass-
land covered by communities of grassland and grass-like plants and
forbs). Woodlands were separated into coniferous or broadleaved
forests.

In details, finer vegetation cover types were established based on
EUROSTAT classification94, as follows:

• Non-permanent crop (264 sites). The vegetation cover type
“non-permanent crop” consisted of the following specific
vegetation classes: Class B55 Temporary grassland (12 sites):
land occupied by temporary (and artificial) pastures, occupying
the ground for at least one crop year and less than five years, the
seeds being either pure or mixed grass, on cropland areas (i.e.
making part of the crop rotation). Classes B54 Mixed cereals for
fodder (2 sites), B53 Other legumes and mixture for fodder
(8 sites), B52 Lucerne (5 sites), B45 Strawberries (1 site), B44

Fig. 8 | Proportions (in percentages) of number and read counts of functionally
unassigned bacterial zOTUs and fungal OTUs by vegetation cover type
(mean ± SE). a Proportions of number of functionally unassigned bacterial zOTUs.
b Proportions of read counts of functionally unassigned bacterial zOTUs.
c Proportions of number of functionally unassigned fungal OTUs. d Proportions of
read counts of functionally unassigned fungal OTUs. Error bars represent standard
error SE. Different letters correspond to a significant difference among proportions

of (z)OTUs in compared vegetation cover types, andp value corresponds to theone
obtained with a Kruskal-Wallis test testing the vegetation cover effect. Here, col-
ours represent the different vegetation cover types and n = 715 total sites, with 160
belonging to coniferous woods, 99 to broadleaved woods, 128 to extensive grass-
lands, 18 to intensive grasslands, 46 to permanent crops and 264 to non-permanent
crops sites. Source data are provided as a Source Data file.
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Floriculture and ornamental plants (1 site), B43 Other fresh
vegetables (3 sites), B41 Dry pulses (6 sites), B37 Other non-
permanent industrial crops (1 site), B35 Other fibre and
oleaginous crops (1 site), B33 Soya (3 sites), B32 Rape and
turning rape (15 sites), B31 Sunflower (16 sites), B23 Other root
crops (2 sites), B22 Sugarbeet (4 sites), B21 Potatoes (5 sites), B19
Other cereals (1 site), B18 Triticale (5 sites), B16 Maize (27 sites),
B15 Oats (9 sites), B14 Rye (7 sites), B13 Barley (43 sites), B12
Durum wheat (12 sites), B11 Common wheat (75 sites).

• Permanent crop (46 sites). Classes B82 Vineyards (15 sites), B81
Olive groves (20 sites), B77 Other citrus fruits (1 site), B75 Other
fruit trees and berries (5 sites), B74Nuts trees (1 site), B73 Cherry
fruit (1 site), B72 Pear fruit (1 site), B71 Apple fruit (2 sites).

• Intensive grasslands (18 sites). Class E30: Spontaneously re-
vegetated surfaces: It consists of mostly agricultural land which
has not been cultivated this year or the years before. It has not
been prepared for sowing any crop this year. This class can also
be found on clear-cut forest areas, industrial “brownfields”,
storage land and of course on abandoned or unused land etc.
Main case is agricultural land not providing a crop during the
entire year or abandoned earlier agricultural surfaces. It is
occupied by spontaneous vegetation in case of set-aside arable
land, with some tall herbs or weeds. This class applies as well for
former grassland or hedgemargins which are currently not used
anymore but covered by tall herbs fringes. Theremight be some
bare land pockets or crop residues and spontaneous re-grown
crops of the before management period. Only surfaces which
have not been deliberately sown and do not have any fodder
crops likemixed cereals or are temporary grasslands classify for
this land cover class.

• Extensive grasslands (128 sites). Class E10: Grassland with sparse
tree/shrub cover (22 sites): Land predominantly covered by
communities of grassland, grass-like plants and forbs including
sparsely occurring trees (the tree canopy is between 5 and 10%
and the total of the tree+shrub canopy is between 5 and 20% of
the area). Class E20: Grassland without tree/shrub cover
(106 sites): Land predominantly covered by communities of
grassland, grass like plants and forbs without trees and shrub-
land (density of tree+shrub canopy is less than 5%).

• Broadleaved forests (99 sites). Class C10: Broadleaved wood-
lands (82 sites): Areas with a tree canopy cover of at least 10%
and composed of more than 75% of broadleaved species. Class
C33: Other mixed woodland (17 sites): Mixed stands where less
than 75% of the coniferous trees are spruce or pine trees.

• Coniferous forests (160 sites). Class C21: Spruce dominated
coniferous woodland (32 sites): Coniferous stands where > 75%
of the part of coniferous trees are spruce. Class C22: Pine
dominated coniferous woodlands (51 sites): Coniferous stands
where > 75% of the part of coniferous trees are pine species.
Class C23: Other coniferous woodlands (14 sites): Coniferous
stands where none of the previously mentioned coniferous
species (pine or spruce) is represented > 75%. Class C31: Spruce
dominated mixed woodlands (34 sites): Mixed stands where
> 75% of the coniferous trees are spruce. Class C32: Pine domi-
nated mixed woodlands (29 sites): Mixed stands where > 75% of
the coniferous trees are pine.

Subsequently, the different vegetation cover types were ordered
along a gradient of increasing land-use perturbation, from woodlands
(less managed and less disturbed areas) to grasslands and croplands
(highly-managed and more disturbed areas).

Vegetation cover served two distinct purposes in the analysis:
1. Assessment of land-use perturbation impact. Vegetation cover

was considered as single factor including different types (e.g.
coniferous forests, extensively-managed grassland and perma-
nent crops). A multiple comparison of diversity metric values (or

functional groups) among these types was carried out (e.g.
bacterial and fungal α-diversity in coniferous forests compared to
extensive grasslands and permanent crops).

2. Assessment of factors shaping microbial communities and func-
tional groups. Vegetation cover was considered as a unique driver
to be combined with and compared to other types of factors (i.e.
climate and soil properties).

Quantified climatic variables were considered to broaden the
spectrum of driving factors (i.e. temperature, rainfall, aridity) and
capture the variability of the sampled locations (from the Medi-
terranean up to the Boreal regions). Climatic variables, averaged over
the period 1970–2000, were obtained from the WorldClim
database98. The climate values included were (i) monthly mean air
temperature98; (ii) monthly aridity index (calculated based on the
ratio between monthly total precipitation averaged over the period
1970–200098 and monthly potential evapotranspiration averaged
over the same period99), where higher aridity index values indicated
higher water availability and more humid conditions; (iii) iso-
thermality: day-to-night temperatures oscillations relative to
summer-to-winter (annual) oscillations98; (iv) temperature season-
ality: amount of temperature variation over a given year (or averaged
years)98 (v) annual temperature range98; (vi) precipitation seasonality:
variation in monthly precipitation totals over the course of the year
(or averaged years)98. More details about bioclimatic variable are
presented in O’Donnel & Inizio100.

Soil chemical and physical properties were assessed for each site
using International Organisation for Standardisation (ISO) methods.
Thoseproperties included: bulkdensity (0–20 cm,g.cm−3), clay and silt
contents (%), coarse fragments (%), calcium carbonate content (g.kg−1),
extractable potassium content (mg.kg−1), pH (in H2O), available phos-
phorus content (mg. kg−1) and the ratio between organic carbon (g.kg
−1) and total nitrogen content (g.kg−1) (C:N ratio). Bulk density desig-
nated the weight of dry soil in a given soil volume, accounting for both
the solid part and pore spaces of soil, and reflected soil compaction.
Content of coarse fragments corresponded to themineralparticles not
passing a 2-mm sieve and reflected soil texture29. ISO standards and
references are available in Supplementary Table 6.

Statistical analyses
All statistical analyses were performed using Rversion 4.2.1101 and
Rstudio version 2021.09.0102. All statistical analyses described here-
after were run separately for the bacterial and fungal datasets.

Microbial diversity. The observed OTU richness and Shannon index
were calculated as a measure of bacterial and fungal α-diversity. Mean
values taken by each α-diversity metric were compared across vege-
tation cover types using a Kruskal-Wallis and PairwiseWilcoxon (with a
Benjamini & Hochberg’s correction) tests in order to explore land-use
perturbation effect on α-diversity.

Multivariate ordinary least squares model103 including all soil
properties, climatic variables and vegetation cover together were
used to assess the single effect of each of the three driver types (soil
properties, climatic variables and vegetation cover) on α-diversity,
for each metric separately. A selection of predictors was done using
an Akaike Information Criterion (AIC) based stepwise feature selec-
tion (in both directions) on these models to reduce the number of
variables included and to limit redundancy and multicollinearity in
variation partitioning analyses. Variation partitioning104 was used on
resulting models to assess the fraction of α-diversity variance
explained uniquely by each type of drivers (i.e. soil properties, cli-
matic variables and vegetation cover). Variable importance (VIP)105,
corresponding to the statistical significance of each considered
variable with respect to its effect on the generated models, was
used on these same models to establish a hierarchy between
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feature-selected numerical variables (soil properties and climate),
and to compare their order between bacteria and fungi. Vegetation
cover types were accounted for when investigating variable impor-
tance, but not visualised.

For each α-diversity metric separately, a stepwise feature selec-
tion was applied on a multivariate ordinary least squares model
including all possible two-way interaction terms between drivers, i.e.
all possible interaction terms between each soil property and vegeta-
tion cover type (soil properties × vegetation), each soil property and
climatic variable (soil properties × climate), and eachvegetation cover
type and climatic variable (vegetation × climate). Variation partition-
ing was used to assess which type of interactions (soil properties ×
vegetation, soil properties × climate or vegetation × climate) led the
models. Variable importance was used to establish a hierarchy
between feature-selected interaction terms. Explained part (adjusted
R-squared) and AIC values from the models were used as comparison
metrics between the single-effect model and the interaction-
effect model.

Microbial phyla and classes. At the community-level, (z)OTUs were
grouped by phylum (or class) for each site. Total abundance of each
taxonomic group was obtained by converting group counts to pro-
portions. The ten most abundant phyla (or classes) corresponded to
the ten phyla (or classes) that had the highest mean relative abun-
dances in the dataset, across all sites. Themean relative abundances of
each most abundant taxonomic group were obtained by vegetation
cover type and converted to proportions to compare the groups
among vegetation cover types on an equal basis. These steps allowed
to set abundance of a phylum (or class) in each vegetation cover type
to its mean proportion. Multiple comparison of mean relative abun-
dances for each taxonomic group among vegetation cover types were
established using a Kruskal-Wallis and Pairwise Wilcoxon
posthoc tests.

The same pipeline was used at the functional group-level, inves-
tigating the phyla and classes (reduced to the ten most abundant
classes when too numerous for visualisation). For that, entities (bac-
terial zOTUs or fungal OTUs) belonging to each functional group of
interest were identified. For each functional group, previous analyses
were performedon aphyloseq106 object createdwith the sub-OTU table
containing the entities belonging to the group, their taxonomic
information and metadata information for the sites in which entities
were detected.

Community structure. A dissimilarity matrix was calculated to assess
the diversity in (z)OTUs between sites (β-diversity) using a Hellinger
transformation of the sample-by-(z)OTU table and Bray-Curtis dis-
similarity. A distance-based redundancy (dbRDA) analysis only
including the vegetation coverwasused to assess the effect of land-use
perturbation on the β-diversity. Multilevel pairwise comparison with a
Benjamini & Hochberg’s correction was used to test the difference in
community structure among communities belonging to different
vegetation cover types.

Another dbRDA analysis tested the single effects of vegetation,
soil properties and climatic variables together on the β-diversity after
performing a stepwise feature selection on the standardised pre-
dictors. The significance level of each variable was evaluated with
permuted ANOVA (999 permutations). Variation partitioningwas used
on the dissimilarity matrix in order to compare the fraction of β-
diversity variance explained uniquely by the feature-selected soil
properties, climatic variables and vegetation cover. A multiple left-
hand side (LHS) multivariate model with the feature-selected proper-
ties was run on the site scores of the first two axes of the dbRDA and
variable importance was used on this model to establish a hierarchy
between feature-selected numerical variables (soil properties and cli-
mate) on the first axis, and to compare their order between bacteria

and fungi. Vegetation cover types were accounted for when investi-
gating variable importance, but not visualised.

An ordination biplot was used to visualise interactions between
drivers and the communityβ-diversity. Observed richness (or Shannon
index), previously estimated, was added as isolines on the ordination
plot to apprehend both α- and β-diversity relationships with the
environmental variables simultaneously. A stepwise feature selection
was applied on a dbRDA including all possible two-way interaction
terms between type of drivers (i.e. between each soil property and
vegetation cover type (soil properties × vegetation), each soil prop-
erty and climatic variable (soil properties × climate), and each vege-
tation cover type and climatic variable (vegetation × climate).
Variation partitioning was used to assess which types of interactions
were the most important. Variable importance was used to establish a
hierarchy between feature-selected interaction terms on the first axis,
based on the multiple LHS multivariate model established on the site
scores of the first two axes of the dbRDA accounting for selected
interaction terms between drivers. Explained part (adjusted R-
squared) and AIC values from the ordinations were used as compar-
ison metrics between the dbRDA ordination based on single effects
(after stepwise selection) and the dbRDA ordination based on inter-
action terms (after stepwise selection).

Functional groups. For each vegetation cover type, the mean pro-
portion of (z)OTUs (weighted by their read counts) belonging to a
given inferred bacterial or fungal functional group was determined.
Subsequently, we assessed the impact of land-use perturbation level
associated to each vegetation cover type on bacterial and fungal
functional groups. Kruskal-Wallis and Pairwise Wilcoxon (with a Ben-
jamini & Hochberg’s correction) tests were performed to assess dif-
ferences in mean proportions of functional groups among vegetation
cover types.

The statistical analyses applied to α-diversity metrics (i.e. feature
selection and multivariate ordinary least square models, variation
partitioning, variable importance) were used to determine the most
influencing set of environmental variables (soil properties, climate and
vegetation cover) and their interactions driving the proportion of (z)
OTUs belonging to each functional group. The relationship between
microbial functional groups and the investigateddriverswas visualised
by means of ordination biplots.

Complementary statistical analyses. Each model assessing the
impact of land-use perturbation and thus comparing a metric among
vegetation cover types was performed on n = 715 total sites, with 160
belonging to coniferous woods, 99 to broadleaved woods, 128 to
extensive grasslands, 18 to intensive grasslands, 46 to permanent
crops and 264 to non-permanent crops sites. We set statistical sig-
nificance at p value < 0.05; if any other significance value was used, it
was indicated in the corresponding table or figure.

In each multivariate ordinary least squares model testing the
single- or interaction effects of vegetation cover, soil properties and
climate, the explained variable was appropriately transformed in order
to reach a normal distribution of model residuals (Supplementary
Table 7). The sandwich estimator was used to calculate the variable
importance when heteroscedasticity was observed in the model resi-
duals. Itwasonly used for the fungal functional groups, for both single-
and interaction-effect models. Some important variables (or interac-
tion terms) that were feature-selected by the multivariate ordinary
least squares models appeared as non-significant in one-way ANOVA
tests. Those variables were kept in the models as they allowed to
causally identify the parameters of other (significant) variables and
removing them would bias the effect of the other variables. Except for
β-diversity analyses, p values obtained with a permuted ANOVA (PER-
MANOVA with 999 permutations and using Euclidean distance) were
compared to the ones from a regular one-way ANOVA (see
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SupplementaryData file 2). Both p valueswere consistent and added as
stars to the figures representing the variable importance of each
variable in the models, but should be interpreted with caution for the
models departing from ordinary least squaresmodel assumptions. For
beta-diversity analyses, p values from permuted ANOVA (999 permu-
tations) performed on the ordinations were added as stars to the fig-
ures representing the variable importance of each variable in the
models (see Supplementary Data file 2 for the exact p values).

Spatial autocorrelationwas tested on all model residuals but none
of the models showed strong geographical patterns that were not
already accounted for by the set of environmental variables con-
sidered (Supplementary Fig. 17). Increasing semivariance with higher
distances was attributed to the fact that the configuration of site
locations is spatially constrained by the geographical shape of Europe.
Elevation was either not selected by the feature selection step, or did
not improve the model predictive power, representing quasi-null
negative explained fraction in the variation partitioning analyses. As
elevation is used to interpolate theWorldClimdata onwhich are based
the climatic variables used in the analyses, this variable was removed
from the set of explaining variables in the models. The influence of
seasons and sampling time was accounted for by including monthly
climatic variables (i.e. monthly aridity index and monthly mean air
temperature) which values for each site were established for the
month during which the site was sampled.

R packages. All R packages used are listed with their version in the
Reporting Summary associated to this paper. In details, sf package107

was used to link every site to its corresponding biogeographical region
when filtering the sample locations. Normalisation was performed
using SRS package with Cmin argument equals to the minimum read
counts for each filtered (bacterial or fungal) sample-by-(z)OTU table.
Bioclimatic variables were obtained via the dismo package108.microeco
package109 permitted to relate bacterial zOTU to a set of potential
ensured functions using the FAPROTAX database.

phyloseqpackagewas used for the calculation of observed (z)OTU
richness and Shannon diversity index, visualised using ggplot2110 and
multcompView111 for the addition of the significance letters on the
boxplots. Stepwise AIC for feature selection was performed via the
stepAIC function from MASS package112 in both directions. The sig-
nificance level of each variable was evaluated with PERMANOVA using
adonis2 function from vegan package113, 999 permutations and Eucli-
dean distance. phyloseq package was also used for the calculation of
the taxonomic groups at the phylum and classes within communities
or functional groups. (z)OTUs were grouped by phylum (or class) for
each site using tax_glom function. Total abundance of each taxonomic
group was obtained by converting group counts to proportions with
function transform_sample_count. The mean relative abundances of
each most abundant taxonomic group were obtained by vegetation
cover type using merge_samples function.

vegan package was used to calculate the dissimilarity matrix
between any two pair of sites, to perform the dbRDA, feature selection
with ordistep function andordination plot inputs. Ordination plots were
visualisedwith ggordiplots114 and the envfit function from veganpackage
was used to fit the functional groups onto the plots. The significance
level of each variable was evaluated with permuted ANOVA using ano-
va.cca function from vegan package and 999 permutations.

Kruskal-Wallis and Pairwise Wilcoxon (with a Benjamini & Hoch-
berg’s correction) tests were used in order to compare α-diversity or
functional groups proportion among vegetation cover types (krus-
kal.test and pairwise.wilcox.test functions from stats package with
p.adjust.method argument set to “BH”). Multilevel pairwise compar-
ison with a Benjamini & Hochberg’s correction was used to test the
difference in community structure among communities belonging to
different vegetation cover types (pairwise.adonis function from pair-
wiseAdonis package115 with p.adjust.m argument set to”BH”).

veganpackagewas alsoused for the variationpartitioningoutputs
for both alpha and β-diversity analyses. caret package and varImp
function116 were used to investigate the variable importance between
feature-selected predictors for both alpha and β-diversity analyses, car
package and the vif function117 wereused to check for collinearity in the
models.

bestNormalize package118 was used to transform the explained
variable and reach a normal distribution in the model residuals of the
(single and interaction) models testing for the alpha-diversity and the
functional groups (Supplementary Table 7). When heteroscedasticity
was detected in themodel residuals, a sandwich estimator was used to
correct for it, via the vcovHC function from sandwich package119,120 and
coeftest function from lmtest package121.

geoR package122 was used to produce the variograms testing for
spatial autocorrelation (Supplementary Fig. 17).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data (DNA sequences) generated in this study have been
deposited in the Sequence Read Archive (SRA) database under Bio-
Project ID PRJNA952168. The sampling sitemetadata used in this study
are available on the European Soil Data Centre (https://esdac.jrc.ec.
europa.eu/content/soil-biodiversity-dna-bacteria-and-fungi). The data
generated in this study are provided in the Supplementary Informa-
tion, Supplementary Data 1 and 2. Source data are provided with
this paper.

Code availability
R scripts designed for data analyses are available on the European Soil
Data Centre (https://esdac.jrc.ec.europa.eu/content/soil-biodiversity-
dna-bacteria-and-fungi).
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