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A B S T R A C T   

In the first two decades of the 21st century, a wide range of analyses, including free volatile carboxylic acids 
(FVCAs), endeavoured to describe 10 different cheese varieties from Switzerland. The aim of the present work 
was to investigate whether these 10 cheese varieties could be classified by means of supervised machine learning 
(ML) techniques, as well as to analyse the importance of the features FVCAs in order to understand their role in 
characterising cheese varieties. Special emphasis was placed on SHAP values (SHapley Additive exPlanations). In 
total, 241 cheese samples were classified using different ML algorithms with the help of the PyCaret library; at 
least 90% were correctly classified with two ensemble algorithms: Extra Trees and Random Forest. The fewest 
misclassifications were observed for Emmentaler AOP, Raclette du Valais AOP, and Formaggio d’Alpe Ticinese 
DOP, whereas most misclassifications occurred between Le Gruyère AOP and Berner Alpkäse AOP. The most 
important feature was C1, followed by C3, C6, and iso-C4, with iso-C6 being the least important after C2 and C4. 
By means of the interpretation of SHAP values applied as a differentiating feature, key FVCAs were identified for 
most cheese varieties. This study represents a first step towards improved differentiation of cheese varieties.   

1. Introduction 

Approximately 200,000 tonnes of cheese are produced in 
Switzerland every year, which corresponds to ~45% of the milk pro-
duced there (TSM Treuhand, 2021). Cheese production is therefore an 
economic sector of considerable importance, where a major part of the 
cheese varieties is produced by local and artisan cheese dairies (Forney 
& Häberli, 2017; Schmitt, Keech, Maye, Barjolle, & Kirwan, 2016). The 
territorial associations of these varieties, the long tradition of cheese 
making, and the high cheese quality were the main reasons for several 
cheese consortia to apply for an AOP (appellation d’origine protégée), 
which is a protected designation of origin (FOAG, 2022; Maye, Kirwan, 
Schmitt, Keech, & Barjolle, 2016; Swiss PDO-PGI Association, 2023). In 
the year 2000, L’Etivaz was the first cheese in Switzerland to be so 
registered. 

This development increased interest in describing different cheese 
varieties at different ripening stages by means of a wide range of 
chemical, biochemical, biological, physical, and sensory analyses. 
However, most of these projects have been published, if ever, on a na-
tional level only. Table 1 summarises the cheese varieties, including 
references and consortia that have performed an analytical description 

of each variety. The aims of the individual cheese consortia were pri-
marily to produce descriptive characterisations, but the ideas of classi-
fication and differentiation were also a driving force behind these 
projects. Only a comparison with other cheese varieties can answer the 
question of how one cheese variety can be distinguished from another 
(Coker, Crawford, Johnston, Singh, & Creamer, 2005). However, as 
these characterisations were carried out independently of one another, 
the goals of classification and differentiation remained unachieved. 

In recent years, machine learning (ML) techniques have gained 
importance, and at the moment, their applications in food safety, pro-
cessing, quality, and authenticity are increasing almost exponentially 
(Jimenez-Carvelo, Gonzalez-Casado, Bagur-Gonzalez, & 
Cuadros-Rodriguez, 2019; Khan, Sablani, Nayak, & Gu, 2022; Wang, 
Bouzembrak, Lansink, & van der Fels-Klerx, 2022). ML is a branch of 
artificial intelligence that enables algorithms to learn continuously and 
improve upon (past) data and make predictions based on them (Alzubi, 
Nayyar, & Kumar, 2018). If the data are labelled, classification – a su-
pervised ML technique – is additionally possible. This task requires the 
algorithms to learn how a label should be assigned to the data – in our 
case, determining cheese varieties from the analysed parameters, the 
so-called features. Depending on the underlying algorithm, ML tech-
niques can be grouped into classical (also called ‘conventional’) or deep 
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learning, each supervised or unsupervised (LeCun, Bengio, & Hinton, 
2015). Classical supervised ML algorithms are preferably used when 
dealing with analytical data (Koren et al., 2020; Magnus, Virte, Thien-
pont, & Smeesters, 2021; Pérez-Rodríguez, Gaiad, Hidalgo, Avanza, & 
Pellerano, 2019; Wang et al., 2022). Supervised ML methods applied to 
measurements made on a chemical system are often called ‘chemo-
metrics’ (Jimenez-Carvelo et al., 2019). Examples of chemometric 
classifications in food science can be found in several studies (Cocchi, 
Biancolillo, & Marini, 2018; de Andrade et al., 2022; Di Donato, Bian-
colillo, Mazzulli, Rossi, & D’Archivio, 2021). One strength of such an 
approach for the current study is the possibility of interpreting the re-
sults post hoc, using SHapley Additive exPlanations values (SHAP; see 
section 2.3), whereas deep learning does not allow a look ‘behind the 
scenes’. The application of deep learning classification algorithms in 
food production is mostly used in image analysis (Arslan, Memis, Son-
mez, & Batur, 2022; Loddo, Di Ruberto, Armano, & Manconi, 2022; 
McAllister, Zheng, Bond, & Moorhead, 2018). 

Traditional cheese classification systems are usually based on milk 
type, milk treatment, coagulation methods, textural properties, and/or 
specific ripening patterns, all in combination with compositional data 
(Almena-Aliste & Mietton, 2014). To the best of our knowledge, a su-
pervised ML approach to classifying different cheese varieties on the 

basis of compositional data has not yet been published. However, it 
should not be disregarded that chemometric classification studies on 
cheese have already been performed, although with a different focus. 
Barile, Coïsson, Arlorio, and Rinaldi (2006) applied a neural network to 
predict Ossolano cheese production origin in order to guarantee the 
authenticity of this PDO cheese. Similarly, Brazilian artisanal cheeses 
were analysed for their mineral content and divided into production 
areas (de Andrade et al., 2022). The authors were able to classify the 
analysed cheeses with supervised ML methods (Random Forest (RF) and 
Support Vector Machines), reaching accuracy and kappa scores of >0.8. 
Di Donato et al. (2021) also used supervised ML methods to discriminate 
between Italian PDO Pecorino cheeses by their volatile fractions. They 
were able to reach an accuracy score for correct classification of 0.875 
with linear and partial least squares discriminant analyses. 

Finally, in the 1980s, Aishima and Nakai (1987) applied stepwise 
discriminant analysis to gas chromatograph (GC) profiles to classify 
cheese varieties (Cheddar, Gouda, Edam, Swiss, and Parmesan). 
Discriminating between Gouda and Edam revealed itself to be the most 
difficult. In cheeses from Switzerland, free volatile carboxylic acids 
(FVCAs) C1–C6 are often determined for quality assessment reasons, as 
they were for all the studied cheese varieties listed in Table 1. FVCAs are 
always formed during cheese ripening as metabolites from the fermen-
tation of pentoses, hexoses, and lactate by starter, non-starter, or sec-
ondary cultures (C1–C4), from the hydrolysis of milk fat (C4, C6), or 
from amino acid catabolism (iso-C4–iso-C6) (Badertscher, Blaser, & 
Noth, 2023). Most of these FVCAs – except for C1 – may also be pro-
duced by lactococci, lactobacilli, and/or surface microbiota from amino 
acids after carbohydrate starvation (Ganesan, Seefeldt, & Weimer, 2004; 
Ganesan & Weimer, 2017). For simplicity’s sake, the FVCAs will be 
divided into the three groups described above. FVCAs probably 
contribute to the typical flavour of all known cheese varieties 
(McSweeney, Fox, Cotter, & Everett, 2017). 

As can be seen in Table 1, most of these data were collected and filed 
in the first 20 years of the 21st century. In the present work, these data 
shall be brought together with the aim of answering the following 
questions, irrespective of the maturity stage: 

- Can cheese varieties be classified by their FVCA profiles using su-
pervised ML methods? 

- Which features from the FVCA profile are important for classifica-
tion? Could they be used to differentiate one variety from another? 

Glossary 

FVCA free volatile carboxylic acid 
C1 formic acid 
C2 acetic acid 
C3 propionic acid 
C4 butyric acid 
iso-C4 isobutyric acid, 2-methylpropionic acid 
iso-C5 isovaleric acid, 3-methylbutyric acid 
iso-C6 isocaproic acid, 4-methylpentanoic acid 
SHAP SHapley Additive exPlanations 
GC gas chromatograph 
ML machine learning 
AOP appellation d’origine protégée 
RF Random Forest classifier 
ET Extra Trees classifier 
LR Linear Regression classifier 
LightGBM Light Gradient Boosting Machine  

Table 1 
Cheese varieties from Switzerland that have been analytically characterised (N = number of samples/observations). AOP, appellation d’origine protégée; DOP, 
denominazione di origine protetta.  

Cheese variety N Link to consortia References 

Appenzeller® a 29 www.appenzeller.ch Fröhlich-Wyder, Beutler, Bütikofer, Lavanchy, and Winkler (2003) 
Berner Alpkäse AOP 10 www.casalp.ch Jakob, Badertscher, and Bütikofer (2007) 
Berner Alpkäse AOP a 26 www.casalp.ch Jakob and Piccinali (2010) 
Berner Hobelkäse AOP 10 www.casalp.ch Jakob et al. (2007) 
Emmentaler AOP a, b 58 www.emmentaler.ch Wyder, Bosset, Casey, Isolini, and Sollberger (2001) 
L’Etivaz AOP 10 www.etivaz-aop.ch Goy and Wechsler (2015) 
L’Etivaz à rebibes AOP 7 www.etivaz-aop.ch Goy and Wechsler (2015) 
Formaggio d’Alpe Ticinese 

DOP a 
16 www.formaggio-alpe- 

ticino.ch 
Haldemann (2010) 

Le Gruyère AOP a 30 www.gruyere.com Fröhlich-Wyder, Goy, Häni, Lavanchy, and Bosset (2003); Lavanchy, Bütikofer, Häni, Goy, and 
Fröhlich-Wyder (2002) 

Le Gruyère AOP a 18 www.gruyere.com Goy, Piccinali, Wechsler, and Jakob (2011) 
Raclette du Valais AOP 21 www.raclette-du-valais.ch Wechsler et al. (2021) 
Sbrinz AOP c 28 www.sbrinz.ch Eugster, Berthoud, and Amrein (2011)  

a Different maturity stages. 
b At that time, Emmentaler did not hold an AOP yet. Two different cultures of P. freudenreichii were used. 
c Cheeses were analysed within the framework of a trial in Sbrinz cheese factories. Different NSLAB cultures were tested. 
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2. Materials and methods 

2.1. Information on the cheese varieties (the target) 

The targets are typical cheese varieties from Switzerland that are 
more or less well known depending on the region. They are listed in 
Table 1 with corresponding references and websites where more infor-
mation on the individual varieties can be found. With the exception of 
Appenzeller®, all of the cheeses are registered as AOP (PDO and DOP in 
English and Italian, respectively) with the Swiss Federal Office for 
Agriculture (FOAG, 2022). They are all produced from raw milk and 
have different maturity stages, depending on the variety and on the 
preferred ripeness at the time of consumption. The youngest cheeses are 
the semi-hard varieties Appenzeller®, Formaggio d’Alpe Tincinese DOP, 
and Raclette du Valais AOP, aged 3–6 months, and the oldest cheeses are 
found among the extra-hard cheese varieties Berner Hobelkäse AOP, 
L’Etivaz à rebibes AOP, and Sbrinz AOP, aged 25–35 months. All three 
varieties are often eaten as shaved cheese. Le Gruyère AOP, Emmentaler 
AOP, and Berner Alpkäse AOP are ripened for 3–13 months. All cheese 
samples were judged by the respective consortia to be of good quality. 

For simplicity’s sake, the term AOP will be omitted throughout the 
following text. 

2.2. Data preparation: From the raw data to the working data 

As described above, several cheese varieties from Switzerland were 
characterised by means of various analyses, such as their GC profiles 
(C1–C6). The FVCAs were determined according to the method 
described by Fröhlich-Wyder et al. (2013). ‘20 g of cheese was first 
distilled in an acidic medium with steam and the distillate titrated with 
NaOH to determine the total acidity. Subsequently, 1 mL of the 
over-titrated solution was esterified and the relative concentrations of 
each FVCA were determined by headspace injection on a GC-FID. 
Together with the total acidity, the individual absolute contents could 
then be calculated’ (Badertscher et al., 2023). Information on sampling 
can be found in the references listed in Table 1. In most cases, a piece of 
2–3 kg of cheese had been provided by the consortia. At least 0.5 cm of 
the rind of the smear-ripened cheeses had been removed and at least 3 
cm of the hoop side. The remaining cheese had been grated and mixed 
before analysis. 

The raw data extracted from the database included 241 observations 
(cheese samples), eight features (FVCA), and one categorical variable, 
the target (cheese variety). The raw dataset had no missing data, which 
is important for classification. Furthermore, the sum of FVCAs was not 
included in the analysis since it strongly correlated with acetic (C2, r =
.985) and propionic (C3, r = .990) acids. However, looking at the in-
dividual cheese groups, C2 correlated strongly with total FVCAs in most 
cheese varieties (except for Berner Hobelkäse and L’Etivaz ̀a ribibes) but 
not C3, which only highly correlated with total FVCAs in Emmentaler 

and L’Etivaz (results not shown). 
Cheese is a natural product; therefore, variations must be expected in 

FVCA content. For this reason, a purely mathematical definition of 
outliers, such as the 1.5 × IQR rule, is not useful and would lead to the 
elimination of too many observations. It was thus decided to keep all 
samples in the dataset. 

The final dataset, the working file, consists of 241 observations, eight 
features, and the target cheese variety. 

2.3. The modelling process 

Fig. 1 shows the most important steps for classification with ML 
methods. Since classification is a supervised learning process (i.e., the 
target variables are known), the algorithms must be provided with a 
dataset to train a model. Training was conducted with 70% of the data 
(168 randomly selected samples), which were additionally split into 10 
equally sized subsets for cross-validation. Using the trained model, 
predictions were then generated with the remaining test data (the 
remaining 30%, i.e. 73 samples). A comparison of the predictions with 

Fig. 1. Representation of a typical machine learning process.  

Table 2 
Classifiers used in the present study (PyCaret).  

ID name reference 

LR logistic regression sklearn.linear_model._logistic. 
LogisticRegression 

KNN k-nearest neighbors classifier sklearn.neighbors._classification. 
KNeighborsClassifier 

NB naive Bayes sklearn.naive_bayes.GaussianNB 
DT decision tree classifier sklearn.tree._classes. 

DecisionTreeClassifier 
SVM SVM – linear kernel sklearn.linear_model. 

_stochastic_gradient. 
SGDClassifier 

Ridge Ridge classifier sklearn.linear_model._ridge. 
RidgeClassifier 

RF Random Forest classifier sklearn.ensemble._forest. 
RandomForestClassifier 

QDA quadratic discriminant analysis sklearn.discriminant_analysis. 
QuadraticDiscriminantAnalysis 

ADA AdaBoost classifier sklearn.ensemble. 
_weight_boosting. 
AdaBoostClassifier 

GBC gradient boosting classifier sklearn.ensemble._gb. 
GradientBoostingClassifier 

LDA linear discriminant analysis sklearn.discriminant_analysis. 
LinearDiscriminantAnalysis 

ET Extra Trees classifier sklearn.ensemble._forest. 
ExtraTreesClassifier 

LightGBM Light Gradient Boosting Machine lightgbm.sklearn.LGBMClassifier 
Dummy dummy classifier sklearn.dummy. 

DummyClassifier  

M.-T. Fröhlich-Wyder et al.                                                                                                                                                                                                                   
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the true values enables a quality assessment of the model by calculating 
the accuracy scores. 

The modelling process was carried out with the open-source low- 
code machine learning library PyCaret (Ali, 2020). It supports numerous 
ML algorithms; 14 classifiers were tested in this work, which are listed in 
Table 2, including their references. PyCaret applies the above-described 
train-eval-testing validation technique. The output of the model com-
parison is a table with the average scores of all models across the folds 
(10) and with the required times. The classification metrics in the output 
are accuracy, area under the curve (AUC), recall, precision, F1, Cohen’s 
kappa, and the Matthews correlation coefficient (MCC). These metrics 
represent always specified count fractions; this is why they are often 
indicated in %. The library also helps in pre-processing (e.g., it stan-
dardises and deals with imbalanced data, tunes the hyperparameters, 
and may even take over the feature engineering task). Since there were 
only eight features which had been investigated, the feature selection 
task was omitted. The following parameters were chosen in the setup 
function: remove_outliers = False, transformation = True, normalize = True, 
normalize_method = ‘robust’. Fine-tuning the best model did not improve 
the results. 

2.4. Model interpretation 

In order to understand the significance of each feature for the clas-
sification of the cheese varieties, the feature importance of the tree- 
based models was extracted, and the according SHAP values (SHapley 
Additive exPlanations) were calculated with the SHAP module in Python 
(Lundberg, 2018). The latter assigns each feature of each cheese variety 
an importance value (Lundberg & Lee, 2017); it uses the classic Shapley 
values from game theory. The SHAP values help to interpret the classi-
fications and, therefore, could be a valuable tool to differentiate cheese 
varieties. 

3. Results and discussion 

3.1. Data exploration 

Fig. 2 shows the distribution of the observations (samples) for each 
cheese variety. As can be seen, there are several outliers present across 
nearly all the cheese varieties and FVCAs. The outliers are found in the 
upper part of the boxplots, indicating a right- or positive-skewed dis-
tribution. In fact, skewness calculated for the distributions shows that 
the majority of the values are positive (results not shown). The negative 
values reached a negative maximum of − 0.283, indicating a fairly 
normal distribution; this was the case for C1, C2, C6, and iso-C4. The 
maximal positive values (>4.5) were found for iso-C4 and iso-C5 in 
Sbrinz, because only one and seven observations, respectively, con-
tained these FVCAs; they were missing in all the other samples. This 
explains the strongly right-skewed distribution. A similar observation 
was conducted for iso-C6 in Le Gruyère. Also, higher values were 
calculated for C3, with the exception of the varieties L’Etivaz à rebibes 
and Emmentaler. The only relevant source of C3 in cheese is Propioni-
bacterium freudenreichii. These bacteria naturally occur in raw milk as 
wild strains (Turgay et al., 2011), can grow during maturation, and 
produce a varying amount of C3 in a strain-dependent manner but 
mainly contingent upon their ability to grow to higher concentrations. In 
the case of Emmentaler, the only Swiss-type cheese in this study, 
P. freudenreichii is deliberately added as a culture during production in 
order to obtain the characteristic eyes and a relevant amount of C3 
(Fröhlich-Wyder et al., 2022). Due to this fact, the final concentrations 
of P. freudenreichii in mature Emmentaler are within the same order of 
magnitude for all samples, allowing C3 levels to occur at a near-normal 
distribution. L’Etivaz ̀a rebibes is a long-ripened and high-cooked cheese 
with a high salt content; this combination inhibits the growth of pro-
pionic acid bacteria. Therefore, the right-skewed distribution of C3 in 
the other cheese varieties is due to naturally occurring outliers. The 
remaining FVCAs reached values of 2–3, also indicating right-skewed 
distributions. This is easily recognisable from the medians being often 
situated in the lower part of the boxes (Fig. 2). Right-skewed 

Fig. 2. Boxplots of FVCAs grouped by cheese variety. The number of observations can be found in Table 1. The y-scale is adapted to the FVCA range of each cheese 
variety. (FVCA, free volatile carboxylic acids; C1, formic acid; C2, acetic acid; C3, propionic acid; C4, butyric acid; iso-C4; isobutyric acid; iso-C5, isovaleric acid; iso- 
C6, isocaproic acid). 

M.-T. Fröhlich-Wyder et al.                                                                                                                                                                                                                   
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distributions will always be encountered in the case of cheese produc-
tion; this is why it was decided to include all outliers in the modelling. 

3.2. Classification of cheese varieties 

Table 3 presents the classification results of the training dataset 
(mean values of 10 runs). Tree-based classifiers are the most common 
among the best models, namely the Extra Trees classifier (ET) and 
Random Forest classifier, two very similar ensemble classifiers (Cebal-
los, 2019). In the training phase, the two algorithms were able to classify 
over 90% of the holdout cheese samples correctly. The recall (sensi-
tivity) of the samples was ~4% higher with ET and the precision (reli-
ability) ~2%. Similarly, the F1-score – the harmonic mean of precision 
and recall – was found to be over 90% for ET. This score is a better 
accuracy score for imbalanced data than the classical accuracy score, 
which describes correctly predicted samples. In the present work, as can 
be seen in Table 1, the data are fairly imbalanced. However, the two 
scores are similar. The kappa metric describes the agreement between 
the predicted and true values for cross-validation during training. A 
better metric for imbalanced data and multiclass issues is the MCC, 
which calculates the correlation coefficient between the predicted and 
the true classes. However, all these metrics confirm that ET performed 
best, although RF, LR (logistic regression), and also the Light Gradient 
Boosting Machine (LightGBM) – a boosting framework using tree-based 
algorithms – are very close (Table 3). 

As Table 4 shows, >90% of the test data – corresponding to >65 of 
the 73 test samples – were predicted correctly with the above trained ET 
and RF algorithms, versus 85% with LightGBM and only 80% with LR. 
All the other metrics fell within a similar range, with kappa and MCC 
being somewhat lower than the classical accuracy scores. LR yielded the 
poorest results for all metrics except recall, which was higher than recall 
of LightGBM. This is not surprising, even though LR was judged second 
best during training: the median of the accuracy score showed a large 
divergence from the mean value, indicating the instability of the algo-
rithm (Table 3). 

Table 5 compares the true results with the predicted results for the 
test data using the trained models. They include misclassifications, 

which had to be expected because of the similarity of the cheese vari-
eties. As an example, L’Etivaz à rebibes and Berner Hobelkäse are long- 
ripened variants of L’Etivaz and Berner Alpkäse, respectively (Goy & 
Wechsler, 2015; Jakob, Badertscher, & Bütikofer, 2007). Other mis-
classifications – especially those concerning Berner Alpkäse – probably 
have to do with the high variability of the product (Jakob et al., 2007). 
Interestingly, Berner Alpkäse is often misclassified as Le Gruyère and 
vice versa; both are smear-ripened hard cheese varieties that use 
back-slopping cultures. The fewest misclassifications were observed for 
Emmentaler, Raclette du Valais, and Formaggio d’Alpe Ticinese. 

3.3. Feature importance 

In tree-based models, the features used as a decision node and 
contributing to the decrease in splitting impurity are ranked. This 
ranking can be used to assess the relative importance of these features 
(Pedregosa et al., 2011), which, in turn, helps in analysing and under-
standing which features are relevant for the correct classification of 
cheese varieties. Therefore, those yielded by the top three tree-based 
classifiers, ET, RF, and LightGBM, were compared (Table 6). All three 
models agree on the most (or second most) and least important features: 
C1 was judged to be the most (or second most) important and preferably 
used as a decision node, while iso-C6 was the least important. C1 is a 
product originating from the fermentation of citrate by facultatively 
heterofermentative lactobacilli (FHL), either from the raw milk or an 
adjunct culture, depending on the cheese variety. C1 is already formed 
in small quantities during lactic acid fermentation by Streptococcus 
thermophilus, which promotes the multiplication of lactobacilli (Hori-
uchi & Sasaki, 2012; Yamamoto, Watanabe, Ichimura, Ishida, & Kimura, 
2021). Appenzeller®, Emmentaler, and Formaggio d’Alpe Ticinese are 
produced with an adjunct culture of FHL; Raclette du Valais has a high 
prevalence of FHL originating from the raw milk, as shown by micro-
biome analysis (Wechsler et al., 2021). This is why they contain higher 
levels of C1 compared to the other cheese varieties (see references in 
Table 1). On the other hand, the extra-hard cheeses Sbrinz, Berner 
Hobelkäse, and L’Etivaz à rebibes, with high cooking temperatures of 
>50 ◦C, contain very low amounts of C1 as a consequence of the 

Table 3 
Performance results of a model training session in PyCaret (mean of 10 runs with 70% of the data).  

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (s) 

ET 0.9346 a 0.2000 0.9279 0.9352 0.9259 0.9241 0.9279 0.3180 
LR 0.9107 b 0.1992 0.9261 0.9350 0.9038 0.8967 0.9036 0.0310 
RF 0.9103 c 0.2000 0.8886 0.9104 0.9012 0.8960 0.9003 0.3110 
LightGBM 0.9040 d 0.1992 0.8700 0.9088 0.8906 0.8891 0.8960 0.0720 
KNN 0.8809 0.1953 0.8750 0.9057 0.8729 0.8625 0.8695 0.0920 
LDA 0.8743 0.1992 0.8751 0.9003 0.8660 0.8550 0.8625 0.0080 
NB 0.8507 0.1949 0.8386 0.8571 0.8306 0.8269 0.8382 0.0110 
GBC 0.8504 0.2000 0.8421 0.8502 0.8343 0.8270 0.8362 0.4370 
SVM 0.8096 0.0000 0.7956 0.8294 0.7903 0.7792 0.7954 0.0500 
DT 0.7974 0.1766 0.7772 0.7993 0.7775 0.7670 0.7782 0.0100 
Ridge 0.7081 0.0000 0.6210 0.6191 0.6436 0.6585 0.6742 0.0090 
ADA 0.3743 0.1374 0.2924 0.2324 0.2611 0.2505 0.3600 0.0540 
Dummy 0.1787 0.1000 0.1131 0.0319 0.0542 0.0000 0.0000 0.0090 
QDA 0.1493 0.0000 0.1131 0.0233 0.0401 0.0000 0.0000 0.0120  

a SD: 0.0488, median: 0.9412. 
b SD: 0.0477, median: 0.8824. 
c SD: 0.0559, median: 0.9100. 
d SD: 0.0494, median: 0.8824. 

Table 4 
Performance results of the top four models in PyCaret (with remaining 30% of the data, the test data).  

Model Accuracy AUC Recall Prec. F1 Kappa MCC 

ET 0.9315 0.9874 0.9374 0.9356 0.9314 0.9204 0.9208 
LR 0.8082 0.9764 0.8622 0.8455 0.8139 0.7790 0.7843 
RF 0.9178 0.9945 0.9318 0.9260 0.9187 0.9046 0.9056 
LightGBM 0.8493 0.9867 0.7658 0.8542 0.8442 0.8241 0.8247  

M.-T. Fröhlich-Wyder et al.                                                                                                                                                                                                                   



LWT 184 (2023) 115095

6

inhibition of FHL from the raw milk. 
The FVCAs C3, iso-C4, and C6 were among the next most important 

features; however, the order of their importance was different for each 
model. C3 is a very specific FVCA originating mainly from propionic 
acid fermentation, as outlined in section 3.1. Emmentaler contains very 
high amounts of C3 (>60 mmol kg-1); all the other cheese varieties 
contain much lower amounts (Figs. 2 and 3). The branched-chain fatty 
acid iso-C4 is a product of the catabolism of the branched-chain amino 
acid valine. Aspartic acid, glutamic acid, methionine, and serine can also 
be precursors of iso-C4, depending on the microbiota present in cheese 
(Ganesan & Weimer, 2017). The Appenzeller® and both Etivaz varieties 
contain the most branched-chain fatty acids. They seem to be a 
distinctive feature of the Etivaz cheese varieties, as Fig. 3 shows. In 
contrast, C6 is a typical product of lipolysis and is primarily found in 
long-ripened cheeses, such as Berner Hobelkäse and L’Etivaz à rebibes 
(Figs. 2 and 3). LightGBM judged C6 to be the most important feature for 
classification. C2 and C4 are of rather low importance; the reason for the 
low importance of C4 lies in its high variance, whereas the high prev-
alence of C2 in all the cheese varieties renders this FVCA less important. 
The high variance of C4 is due to its two likeliest origins, namely clos-
tridia and lipolysis. Clostridia are considered highly undesirable con-
taminants but may still be present in very low concentrations in cheeses 
that form low and changing amounts of C4, whereas lipolysis is 
dependent on milk quality and is influenced, among others, by feeding 
and animal breed (Arias-Roth et al., 2022). C2 is formed in many 
different processes and therefore reaches high concentrations in all the 
cheeses. In Emmentaler cheeses, it may originate from a specific 
pathway – propionic acid fermentation – where C2 is produced in par-
allel to C3 (Fröhlich-Wyder et al., 2022). Finally, the role of iso-C5 seems 
to be ambiguous, as is the role of iso-C6, an FVCA present in very few 
cheese varieties if at all, and therefore unimportant for classification. 

3.4. SHAP values 

In order to understand the contribution of each feature to the pre-
diction of every cheese variety, the SHAP values were calculated based 
on the top three tree-based models (i.e., ET, RF, and LightGBM). The 
results for the relative mean SHAP values are shown in Fig. 4. The values 
from the ET and RF models are similar, which is not surprising since they 
are very close ensemble methods. LightGBM is a boosting method that 
seems to increase the values of the most important features (e.g., iso-C4 
in both Etivaz varieties and Sbrinz). The role of the features will be 
discussed separately for each variety. 

Appenzeller® is a semi-hard, smear-ripened cheese made with an 
adjunct culture of FHL. This is why C1 is an important characterising 
feature of this cheese. Furthermore, the iso-FVCAs seem to be important 
features, indicating the impact of smear ripening on proteolysis, where 
the microbiota catabolise branched-chain amino acids into the corre-
sponding FVCA (Williams, Beattie, & Banks, 2004). LightGBM increases 

Table 5 
Cross table of the true values (columns) and the predicted values (rows) from the top three tree-based models obtained from the modelling process in PyCaret (ET, RF, 
LightGBM). Example for Le Gruyère: With ET, 16 out of the 17 samples in the test set had been classified correctly and one sample had been misclassified as Berner Alpkäse.   

Appenzeller Berner 
Alpkäse 

Berner 
Hobelkäse 

Emmentaler L’Etivaz L’Etivaz à 
rebibes 

Formaggio  
d’Alpe 
Ticinese 

Le 
Gruyère 

Raclette du 
Valais 

Sbrinz 

Appenzeller 4, 4, 4          
Berner Alpkäse  9, 9, 8      1, 1, 2  1, 1, 1 
Berner Hobelkäse  1, 1, 2 2, 2, 1        
Emmentaler    10, 10, 10       
L’Etivaz     3, 3, 1   0, 0, 1   
L’Etivaz à rebibes   0, 0, 1   2, 2, 1     
Formaggio d’Alpe 

Ticinese       
6, 6, 6    

Le Gruyère 0, 0, 1 2, 3, 1      16, 15, 16   
Raclette du Valais         8, 8, 8  
Sbrinz          8, 8, 7  

Table 6 
Ranking of the features according to the attribute ‘feature importance’ of the 
three top tree-based models (see Table 3), in descending order of importance. 
‘Feature importance’ is a return parameter of all tree-based models.  

ET RF LightGBM 

C1 C1 C6 
iso-C4 C3 C1 
C3 iso-C4 C3 
C6 iso-C5 iso-C4 
iso-C5 C6 C4 
C2 C2 C2 
C4 C4 iso-C5 
iso-C6 iso-C6 iso-C6  

Fig. 3. Stacked bar chart of the mean molar FVCA fraction (mol%) grouped by 
cheese variety. The number of observations can be found in Table 1. Colours 
represent the main origins; blue: fermentation; yellow: lipolysis; red; proteol-
ysis. (FVCA, free volatile carboxylic acids; C1, formic acid; C2, acetic acid; C3, 
propionic acid; C4, butyric acid; iso-C4; isobutyric acid; iso-C5, isovaleric acid; 
iso-C6, isocaproic acid). 
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the SHAP value of C1, confirming its importance in Appenzeller®. 
Berner Alpkäse and Berner Hobelkäse are both hard, smear-ripened 

cheeses produced in the Bernese Alps. For the correct classification of 
Berner Alpkäse, the presence of low amounts of both C3 and iso-FVCAs 
plays a major role. Berner Hobelkäse is a long- and dry-ripened Berner 
Alpkäse which can be eaten as shaved cheese. An important feature for 
Berner Hobelkäse is the contribution of lipolysis to the FVCAs as a result 
of the long ripening time (Figs. 3 and 4). 

As could be expected, the high content of C2 and C3 is typical of 
Emmentaler. It is worth noting that iso-C4 and iso-C5 accounted for 
approximately 25% of the SHAP value, even though these acids had not 
been determined (Figs. 2 and 3). It can be concluded that the absence of 
these acids contributes to the correct classification of Emmentaler. The 
cheese variety is dry ripened; thus, no surface microbiota can influence 
the catabolism of branched-chain amino acids. 

Similar to the Berner Alpkäse and Berner Hobelkäse, the extra-hard 
L’Etivaz à rebibes is a long-ripened L’Etivaz (hard cheese). As already 
observed for Berner Hobelkäse, the contribution of lipolysis to the 
FVCAs in L’Etivaz à rebibes is of importance, but so is the presence of 
iso-C4. Compared to the other cheese varieties, the Etivaz cheeses show 
high proportions of iso-FVCAs, which seem to be important for classi-
fication: they account for up to 70% of the SHAP value of L’Etivaz. In 
contrast to Berner Alpkäse and Berner Hobelkäse, the smear-ripening is 
performed at significantly higher relative humidity in common central 
ripening rooms (FOAG, 2022), which explains the stronger impact of the 
smear on these acids. Furthermore, a certain amount of C3, probably 
originating from propionic acid fermentation, also plays an important 
role in classification. Although propionic acid fermentation is primarily 
desirable in Swiss-type cheeses, such as Emmentaler, C3 is found to be 
typical in L’Etivaz. This is not surprising since it is a variety produced 
from raw milk, which often contains Propionibacteria to some degree. 
Surprisingly, C3 is not abundant in Berner Alpkäse, which seems to be 
characteristic of this variety (Fig. 4). 

Formaggio d’Alpe Ticinese is a semi-hard cheese with a natural rind 

with ubiquitous moulds. The formation of C1 by FHL and the absence of 
significant quantities of the iso-FVCAs as a result of the absence of 
smear-ripening was found to be a typical combination for this cheese 
variety (Figs. 3 and 4). 

The hard cheese variety Le Gruyère, also a smear-ripened cheese, has 
a similar pattern to Berner Alpkäse. In fact, the models misclassified 
these two cheese varieties repeatedly (Table 5). Interestingly, smearing, 
much more prevalent in Le Gruyère than in Berner Alpkäse, did not have 
a strong enough effect on the FVCA pattern to guarantee correct clas-
sification. These are the only varieties in this study which are produced 
with back-slopping cultures. 

Raclette du Valais is a smear-ripened semi-hard cheese. Besides C1 
and, to a lesser degree, iso-FVCAs, C6 was shown to have the largest 
SHAP value for this variety. As is evident in Fig. 3, it is the absence of C6, 
and therefore of lipolysis, which seems to be unique for Raclette du 
Valais. 

Finally, the extra-hard, dry-ripened cheese Sbrinz is differentiated 
from other cheese varieties by a strong contribution of iso-C4 to a correct 
classification: its SHAP value was the highest. Similar to Emmentaler, 
Sbrinz is primarily characterised by the absence of iso-FVCAs but also by 
low amounts of C1. 

4. Conclusion 

In the present work, 241 samples of 10 different cheese varieties 
from Switzerland were classified with different ML algorithms on the 
basis of their FVCA profiles. It was possible to classify 90% of the sam-
ples correctly with two ensemble algorithms, ET and RF. The third-best 
algorithm, LightGBM, was able to classify 84% of the test data correctly. 
The fewest misclassifications were observed for Emmentaler, Raclette 
du Valais, and Formaggio d’Alpe Ticinese, whereas most mis-
classifications occurred between Le Gruyère and Berner Alpkäse. The 
analysis of the feature importance attributes revealed that C1 was the 
most important feature, followed by C3, C6, and iso-C4. In order to 

Fig. 4. Relative mean SHAP values from the top three tree-based models for each FVCA grouped by cheese variety. The number of observations can be found in 
Table 1. (SHAP, SHapley Additive exPlanations; FVCA, free volatile carboxylic acids; C1, formic acid; C2, acetic acid; C3, propionic acid; C4, butyric acid; iso-C4; 
isobutyric acid; iso-C5, isovaleric acid; iso-C6, isocaproic acid). 
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understand the impact of each feature on the classification of the cheese 
varieties, the SHAP value was calculated for the top three tree-based 
models. The interpretation of the SHAP value is a first step towards 
the differentiation of the cheese varieties. By comparing the relative 
amount of individual FVCAs with the relative SHAP value, a specific 
pattern can be recognised for each cheese variety (Fig. 5). Thus, it was 
possible to identify key FVCAs that could be applied as differentiating 
features as follows:  

- Appenzeller®: the detection of C1 and of the iso-FVCAs;  
- Berner Alpkäse: the detection of only low amounts of C3 and of the 

iso-FVCA;  
- Berner Hobelkäse: the detection of C6 (and C4) and low proportions 

of C1;  
- Emmentaler: the detection of high amounts of C2 and C3 and the 

absence of iso-FVCAs;  
- L’Etivaz: the detection of C3 and iso-FVCAs;  
- L’Etivaz à rebibes: the detection of C6 (and C4) and iso-FVCAs;  
- Formaggio d’Alpe Ticinese: the detection of C1 and the absence of 

iso-FVCAs;  
- Le Gruyère: the detection of C1, C3, and small amounts of iso-FVCA;  
- Raclette du Valais: the detection of C1 and iso-FVCAs, as well as the 

absence of C6; and  
- Sbrinz: the detection of low amounts of C1 and the absence of iso- 

FVCAs. 

These unique feature combinations are always the result of specific 
characteristics of the cheese varieties: the detection of C1 is linked to the 
activity of citrate-metabolising lactic acid bacteria; the detection of iso- 
C4, iso-C5, and iso-C6 can be linked to the proteolytic activity of smear 
microbiota; and the detection of C6 is the result of lipolysis during 
ripening. Furthermore, C3 is a characteristic metabolite of propionic 
acid fermentation. 

In conclusion, it was possible to classify 90% of the test data correctly 
by means of ML algorithms based on their FVCA profile. The application 
of the PyCaret library proved to be a simple, efficient, and promising 
tool for employment in research. The evaluation of the feature impor-
tance and especially of the calculated SHAP values proved to be highly 
informative. For similar ML applications, we recommend always eval-
uating the SHAP values, as they contributed substantially to the differ-
entiation of the investigated cheese varieties. 
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Gruyère, sa caractérisation. Agroscope Interner Bericht, 6 (In German). 
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Koren, D., Lőrincz, L., Kovács, S., Kun-Farkas, G., Vecseriné Hegyes, B., & Sipos, L. 
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