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Abstract

Insects are essential not only for ecosystem functioning and food security but

also comprise some of the world's most destructive invasive species. Therefore,

both insect declines and invasions raise major conservation concerns globally

and call for respective conservation or mitigation measures. However, studies

of insects are hampered by intrinsic biological features of these organisms,

which include extreme population fluctuations, a huge diversity of ecological

strategies, and common cryptic species. Population genetics provides a large

toolkit to adequately accommodate those features, thereby enabling

researchers to inform and monitor the efficacy of conservation and mitigation

programs. Here, we provide an overview of the molecular and analytical

methods that are relevant to insect conservation or mitigation and highlight

the challenges involved in their implementation. We detail how and why tem-

poral changes in genetic diversity, population structure and migration, and the

genetic basis of adaptation should be taken into account to inform insect man-

agement programs. Finally, we review the barriers to the broad adoption of

population genetics in insect research and provide guidelines to facilitate the

use of these methods by stakeholders. Overall, this review provides theoretical

and practical guidelines for implementing population genetics in both insect

conservation and control.
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1 | INTRODUCTION

Insects comprise the most diverse class of the animal
kingdom (Stork et al., 2015). These species are key com-
ponents of natural ecosystem functioning and human
food security by providing a wide range of services rang-
ing from pollination, natural pest control, and soil fertili-
zation (Basset & Lamarre, 2019; Straub et al., 2015).
However, insect diversity is crumbling in many regions
globally (Powney et al., 2019; Wagner, 2020). Although

we currently ignore the conservation statuses of most
insects, alarming reports suggest an ongoing global mass
extinction (Hallmann et al., 2017; S�anchez-Bayo &
Wyckhuys, 2019). In sharp contrast, some insects consti-
tute the worst invasive species, causing massive ecologi-
cal and economic damages globally (Bradshaw
et al., 2016; Vaes-Petignat & Nentwig, 2014), as well as
increasing public health hazards (Cuthbert et al., 2023).

To adequately solve the challenges associated with
both insect declines and invasions, it is mandatory to
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understand the ecological and evolutionary processes
involved (Pyšek & Richardson, 2010). Effective conserva-
tion or mitigation strategies rely on sound understanding
of population diversity and dynamics (Perry et al., 1997),
for example, the resilience or invasiveness potential of
populations is often directly linked to their levels of
genetic diversity (Chaturvedi et al., 2021; Ochocki &
Miller, 2017). Therefore, population genetics is highly
informative to guide conservation practitioners (Allendorf
et al., 2013). However, at present, this discipline is not suf-
ficiently applied for entomology. Here, we provide guide-
lines for scientists and stakeholders aiming at using
population genetics for the conservation or the mitigation
of insects.

2 | CHALLENGES IN INSECT
PROTECTION AND CONTROL

In contrast to other organisms for which conservation
genetics is established, this field is not well developed for
insects. This can possibly be explained by insects' intrinsic
features (such as their inconspicuous nature), rendering
them particularly challenging to study (Luke et al., 2023).

First, visually tracking and identifying insects can be
far more complex than or other animals (Samways
et al., 2010). Due to the large number of cryptic species,
correctly recognizing target insect species is challenging,
even in common and well-studied systems. Because tradi-
tionally trained entomologists are becoming scarcer, this
challenge is likely to grow in the next years (Drew, 2011).
Therefore, most studies on insect conservation have
grouped multiple insect taxa under the same umbrella
and drawn general conclusions based on field observa-
tions (Simmons et al., 2019). Consequently, novel extinc-
tion or invasion events may remain hidden.

In parallel, the migration patterns of insects are often
poorly understood (Kral-O'Brien & Harmon, 2021).
Because a single insect population can comprise
both migratory and non-migratory individuals (Yadav
et al., 2019), correctly apprehending the movements of
individuals in space and time is challenging (Menz
et al., 2019). This aspect is of the utmost importance when
designing conservation plans to protect their habitats. The
ecological preferences of target insect species should also
be carefully considered when planning conservation study
designs. While some species may be highly conspicuous,
others remain difficult to observe and/or capture, leading
to potential differences in the attractiveness of the traps
used to conduct population censuses, thereby biasing esti-
mates (Didham et al., 2020).

Insects are also known for their general propensity to
be r-strategists (i.e., displaying high levels of reproduction)

and to undergo extreme population fluctuations across
space and time (Hassell et al., 1991). This creates a need to
study populations over large spatio-temporal scales and
questions the precision of surveys based on single snap-
shot censuses, that is, those that do not sufficiently take
into consideration these fluctuations.

In addition to this, insects use very diverse mating sys-
tems that can vary not only between but also within spe-
cies and populations. They display extreme differences in
mating levels, ranging from zero (i.e., asexual reproduc-
tion) to up to �100 mates (Boomsma & Ratnieks, 1996). A
prominent example of this is the polyphenism displayed
by aphids, in which asexual and sexual reproduction can
be found in the same population (Le Trionnaire
et al., 2008). Such fluctuating mating systems can signifi-
cantly complicate assessments of population dynamics and
conservation statuses, as not all individuals of a population
contribute to mating similarly.

3 | POPULATION GENETICS TO
GUIDE INSECT CONSERVATION
AND CONTROL

Population genetics comprise diverse tools to diagnose
health statuses and understand the dynamics of popula-
tions (Figure 1). Traditional population genetic approaches
are sufficient for a large number of goals in conservation
genetics (Hauser et al., 2021), for example, estimating
parameters such as effective population size, levels of gene
flow, and inbreeding. This can be used to determine
aspects of demographic history such as genetic structure,
population bottlenecks, and introgression between species.
In parallel, the use of genomics, in which thousands of loci
or whole genomes can be analyzed simultaneously, can
add additional precision to these analyses, such as the
accurate dating of population splits and the precise charac-
terization of hybridization events (Webster et al., 2023).
Genomics also enables analyses that go beyond the basic
measures of genetic variation and allows identifying the
genes involved in evolutionary processes. For example,
genomic analyses can pinpoint the molecular bases of
adaptations to environments and define locally adapted
subpopulations. With information on the genetic basis of
local adaptation, it becomes possible to predict the degree
of maladaptation that a population will face under future
environmental changes (Waldvogel et al., 2020) or the
mechanisms allowing invasive species to spread in new
environments (Parvizi et al., 2023).

To study genetic variation with next-generation
sequencing data, a reference genome assembly is helpful.
This may lead to the overrepresentation of studies on spe-
cies with available genomes, or further complicate studies
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on less common organisms due to the need for de
novo assembly steps. However, several initiatives such as
the i5k Earth BioGenome Project (Robinson et al., 2011),
the European Reference Genome Atlas (Mazzoni
et al., 2023), and the Darwin Tree of Life (Blaxter, 2022),
aim at producing tens of thousands of insect genomes in
the coming years and will facilitate the use of nonmodel
biological organisms. It is therefore likely that high-
throughput technologies will become more standard,
even when traditional population genetics with only a
few loci would be sufficient.

Both traditional and novel molecular tools are very
useful to inform conservation and mitigation strategies.
For instance, molecular tools can help defining Evolu-
tionarily Significant Units (ESUs), which can be defined
as “populations exhibiting discontinuous genetic diver-
gence patterns, geographic isolation, and significant
genetic distance” (Dizon et al., 1992). ESUs have been
widely adopted in conservation genetics as such units
are considered pertinent entities to measure and moni-
tor diversity (Casacci et al., 2014). However, population
genetics is not limited to defining ESU and can provide

a wide diversity of insights into insect populations
dynamics and dispersal. In the next paragraphs, we
detail how traditional and recent population genetics
approaches can help in answering questions related to
the status and dynamics of insect populations to
enhance the accuracy of conservation and mitigation
strategies.

4 | ASSESSING GENETIC
DIVERSITY

A general consensus in ecology is that genetic diversity
fosters the resilience of communities, species, and popu-
lations by buffering the impact of stressors (Oliver
et al., 2015). Surveying populations using solely mor-
phological analyses may be unsuitable for predicting
conservation statuses or invasive potentials. Assessing
the genetic diversity of insect populations is, therefore,
central to understanding the health and viability of
populations and to guiding conservation or mitigation
decisions (Box 1).

FIGURE 1 Overview of genetics and genomics for the mitigation or conservation of insects. The main items involved when designing a

research study are displayed. General aim, focus, biological scale, and technologies are shown. The thickness of the black lines represents

the relative importance of the items for mitigation and conservation, respectively. For instance, using genetic data to assess the population of

origin can be of significant interest to mitigate an invasive species, while this information might not be as relevant when aiming to conserve

a population. Once the focus is determined, the aim should be to select the relevant biological scale for the question to be answered. The

choice of level directly derives from the research objectives and will determine the subsequent methods to be used. Finally, once the

biological scale is determined, the choice of the relevant technologies can be made. NGS, next-generation sequencing; SSRs, simple sequence

repeats.
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4.1 | Estimating species diversity

Molecular analyses allow quantifying genetic diversity at
different levels, from communities to individuals. A level
that is often used in conservation is the species level, for
example, to compare diversity between communities.
However, boundaries between species are not always
easy to define. Although genetics can help in this tremen-
dously, finding clear genetic cutoff between species is dif-
ficult and necessitate in-depth studies. Consequently,
this information is only available for a restricted number
of species, including pests threatening public health
(e.g., malaria-vectoring mosquitoes from the Anopheles
gambiae species complex, Neafsey et al., 2010) or the
global economy (e.g., Bactrocera dorsalis fruit flies, San
Jose et al., 2023).

Conventional methods to assess species diversity are
analyses of the taxonomic richness or abundance through
field collections and morphological identification. These
techniques are highly dependent on the biology of the
species studied and on the availability of experts for

the target organisms. However, such experts have
become scarce due to a shift in interest in the research
community (Drew, 2011). Additionally, the insect class
comprises a multitude of cryptic species (Bickford
et al., 2007), making the identification of species using
morphology impossible. Indeed, distinguishing cryptic
taxa is, by definition, not possible with morphology alone
and must rely on molecular techniques. Identifying the
presence of cryptic species is of the utmost importance in
conservation. Cryptic species living in sympatric condi-
tions generally display distinct ecological traits, meaning
that conservation measures can have very different out-
comes on two seemingly identical species (Friberg
et al., 2013). Additionally, the use of incorrectly identified
species may create involuntary introductions (Morais &
Reichard, 2018) and result in biological invasions and/or
unwanted introgressions (Williams et al., 2012).

DNA barcoding is routinely used in modern taxonomy
(Orr et al., 2020). The individual barcoding by Sanger
sequencing of a short gene portion (usually a portion of
the mitochondrial Cytochrome Oxidase I gene, or CoxI)
can be easily performed and quickly analyzed but may
become costly and time consuming when large sample
sizes are to be analyzed. In contrast, DNA barcoding based
on next-generation sequencing (NGS) can be used to iden-
tify species from bulk samples (Morinière et al., 2016),
thereby allowing the characterization of communities.
Likewise, sequencing environmental DNA (eDNA) can be
used to analyze species diversity without the need for
species-specific sampling design (e.g., using malaise traps),
making the collection of data and categorization of species
communities easier (Thomsen & Sigsgaard, 2019). Nota-
bly, assaying insect species diversity from eDNA will be
vastly aided by initiatives to massively sequence the full
genomes of insects (e.g., Robinson et al., 2011).

4.2 | Quantifying population-level
diversity

Direct estimates of the number of organisms in insect
populations can provide information about the distribu-
tion of species and allow the measuring of census popula-
tion sizes (Nc). However, such estimates require great
resources, and obtaining accurate data is severely ham-
pered by many of the intrinsic traits of insects, such as
large population fluctuations. Furthermore, such surveys
may be inadequate to decide whether populations need
protection, as estimates of abundance or richness alone
do not allow assessing the reproductive potential of indi-
viduals, the past and/or the ongoing dynamics of target
populations, and the adaptive potential and viability of
insect populations (Hoffmann et al., 2017).

BOX 1 Genetic diversity to drive
conservation policies

The rate of ongoing insect losses urgently calls
for adequate conservation measures. Since finite
supplies can be used for insect protection, this
implies careful maximization of the resources
available. In this regard, the determination of
optimal conservation units is a central step
(Casacci et al., 2014). To do so, analyses of
genetic diversity can be used, but the categoriza-
tion of genetic data into such units can be com-
plex (Coates et al., 2018). Although this issue
remains problematic in protecting a single target
species, conservation strategies generally aim at
restoring and protecting habitats in order to pre-
serve communities (Possingham et al., 2015).
When it comes to choosing which habitats to pre-
serve and which to abandon, we argue that prior-
ity should be given to those hosting the insect
communities harboring the most genetically
diverse populations. Indeed, diverse populations
are generally more resilient and more likely to
cope with future challenges (Maebe et al., 2021).
In parallel, genetic diversity estimates are critical
to understanding if and how invasive insects will
prosper in their new range (Parvizi et al., 2023).
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Genetic analyses can help overcoming the limitations
of traditional insect monitoring approaches (i.e., surveys).
For instance, levels of genetic variation can be used to
estimate effective population size (Ne) (Wright, 1931). In
contrast to Nc, which focuses on the number of individ-
uals in a population, Ne reflects the impact of genetic
drift on the composition of populations, which can be
used to assess the level of genetic variability in a popula-
tion (Charlesworth, 2009). Populations with Ne < 500 are
commonly considered to be vulnerable to extinction in
the long term and in need of protection (Allendorf
et al., 2013; Franklin, 1980). However, the calculation
and the interpretation of these estimates is complex. The
measures of Ne derived from the levels of genetic varia-
tion, based on measures such as Watterson's theta
(Watterson, 1975), reflect both long-term population size
over evolutionary timescales, recent population fluctua-
tions due to anthropogenic effects, and intrinsic biologi-
cal features. The relative importance of these effects may
be difficult to ascertain.

Across multiple species of vertebrates, it is well
known that those threatened tend to have lower levels of
variation (Genereux et al., 2020). However, it has also
been shown that the life history and ecological traits of
an organism are important determinants of their Ne
(Romiguier et al., 2014), and species that are highly eco-
logically specialized may have intrinsically low Ne, not
reflective of recent declines. The interpretation of Ne is,
therefore, problematic and the differences in Ne between
species are not necessarily informative of their conserva-
tion status (Díez-del-Molino et al., 2018). Estimates of Ne
are often discordant with Nc; this can inform us about
the health of a population. It has been suggested that
populations of conservation concern have vastly lower
Nc than predicted by their Ne, indicating that population
bottlenecks do not have an immediate effect on Ne (Peart
et al., 2020).

The use of traditional population genetics can provide
valuable information about genetic diversity levels and
the distribution of this genetic variation within popula-
tions simply from assaying the levels of sequence varia-
tion at a subset of neutral loci. More recently, a large
number of approaches relying on population genomic
data can allow inferring the entire temporal continuum
of Ne (Nadachowska-Brzyska et al., 2022). Such methods
provide a window into the demographic changes that
occurred in the evolutionary history of a species and how
they have been affected by past population fluctuations.
For example, the Pairwise Sequentially Markovian Coa-
lescent method and related methods estimate variation in
time to the most recent common ancestor along the
genome (Mather et al., 2020), which allows past fluctua-
tions in Ne to be inferred in detail. This can also be

achieved by modeling the allele frequency spectrum
using approaches such as ∂a∂i (Gutenkunst et al., 2009).
Furthermore, recent demography can be inferred from
the genome-wide patterns of linkage disequilibrium or
the distribution of blocks of identity-by-descent along the
genome (Browning & Browning, 2015; Nadachowska-
Brzyska et al., 2022; Santiago et al., 2020).

Whole-genome sequence data can also be used to
directly measure the levels of harmful genetic variation
in populations that can result from inbreeding or the
accumulation of deleterious variation. Inbreeding leads
to runs of homozygosity, in which harmful recessive
mutations can be exposed. Runs of homozygosity can be
directly detected in sequence data. Several approaches
are available to estimate the proportion of harmful
genetic variants in a population (Kumar et al., 2009). For
instance, the effect of genetic variants can be predicted
from the levels of sequence conservation in noncoding
regions or by computationally predicting the effects of
amino acid changes (Bertorelle et al., 2022). Using these
methods, it is possible to determine whether populations
have suffered the deleterious effects of population
declines and to assess the need for and feasibility of spe-
cific measures to restore their level of diversity, for exam-
ple, using genetic rescue (Frankham, 2015). These
methods have also been used to investigate the genomic
signals of population decline leading to the extinction of
the Xerces Blue butterfly, Glaucopsyche xerces (De-Dios
et al., 2023). Screening for such signals might be very use-
ful to detect and prevent future extinctions. Additionally,
gathering data on the diversity of invasive insect popula-
tions can allow estimating their origin and predict their
adaptability potential in their new habitats (Tay &
Gordon, 2019). Indeed, genetic diversity might promote
successful colonization of new habitats, as was suggested
for the black locust gall midge, Obolodiplosis robiniae
(Yao et al., 2020).

5 | ESTIMATES OF MIGRATION

Tracking the movement of individuals through gene flow
analyses can allow understanding how to protect habitats
that are relevant for populations, for example, through
inferring the optimal geographical scales to be preserved
(Manel et al., 2003). In contrast, studying migration
allows estimating the origin and dispersion patterns of
invasive populations (Idrissou et al., 2019). Although it is
possible for larger organisms, direct tracking of the move-
ment of insects is often challenging and costly (e.g., the
use of radar to track invasive hornets, Maggiora
et al., 2019). Consequently, there is currently a consider-
able lack of understanding of the seasonal migration
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patterns of many insects (Satterfield et al., 2020). Yet the
assessment of the individual movements and boundaries
between populations is possible through analyses of
genetic structure. In addition to providing information on
the migration of individuals, these analyses can allow the
assessment of the environmental factors representing
barriers to gene flow.

Identifying the origin, distribution, and movement of
species is particularly relevant in the context of biological
invasions. Insect introductions have been strongly
enhanced by anthropogenic activities in the last century
and are expected to continue expanding in the short and
medium terms (Bertelsmeier et al., 2017). Identifying the
routes of introductions and further spread of invasive
species is key to adopting and applying strategies to miti-
gate the damages caused and to understand the factors
driving unwanted introductions. For example, the spread
of small hive beetles, Aethina tumida, has recently been
linked to global beeswax export patterns (Idrissou
et al., 2019), showing the need for stricter regulations of
the commerce of this good.

Although barcoding may help in identifying the
sources of introductions, tracking the dispersion of inva-
sive species with these tools is limited due to bottleneck
events restricting the genetic diversity, resulting in a lack
of variability for the analyses. Using population genetic
studies with markers displaying higher resolution
(e.g., microsatellites) can allow for overcoming these
issues. Because of their higher mutation rates,
these markers are more adapted for categorizing the
strength of bottlenecks (Yang et al., 2012) and differenti-
ating between single versus multiple introductions
through, for example, analyses of population structure
(Pritchard et al., 2000). The use of genomics in this con-
text can provide very detailed information about gene
flow at the population and individual levels and help in
understanding local adaptation patterns (see next part).

6 | ADAPTATIONS

Conservation strategies are often directed at habitats, not
specifically to species or populations (see Box 1). Under-
standing the adaptation of organisms to their habitats is
key to designing pertinent conservation strategies
(Hällfors et al., 2016). Moreover, predicting how species
and populations will change in response to environmen-
tal conditions is fundamental to better understand their
resilience and to design applicable conservation mea-
sures. To do this, NGS studies are particularly appropri-
ate, as they can precisely reveal which genomic regions
are involved in adaptations (Christmas et al., 2019). Com-
paring different populations facing similar environmental

conditions also allows the researcher to pinpoint the gen-
eral molecular mechanisms responsible for the status of
organisms in their habitats (Adrion et al., 2015).

A particularly exciting prospect in this field is the
ability to predict the population response to environmen-
tal changes based on the genomic variation correlated
with these responses. There is much evidence for genetic
variation in climate responses in nature, beginning with
the classic observations that the frequencies of chromo-
somal inversions in Drosophila fruit flies vary along lati-
tudinal clines (Adrion et al., 2015). For example, the
analysis of genomic variation in a species of coral showed
that the degree of bleaching expected due to warming
oceans is dependent on local genotypes at specific loci
(Fuller et al., 2020). Furthermore, new statistical
approaches have been developed to use variation at these
loci to predict genomic vulnerability (also called genetic
offset), which is the difference between existing allele fre-
quencies in a population and those predicted to be most
adaptive in a local environment (Fitzpatrick &
Keller, 2015).

7 | GENETIC MONITORING

Monitoring genetic changes through time allows asses-
sing the evolution of populations and their dynamics,
which are essential for the estimation of conservation sta-
tuses (Hansen et al., 2012). Analyzing the continuity in
lineages and changes in genetic variation is particularly
useful to protect the genetic pool of native species or to
evaluate the risk associated with the spread of invasive
species, for example, by studying genetic introgression.
Although hybridization might be used to rescue endan-
gered populations by increasing genetic diversity
(Frankham, 2015), the anthropogenic movement of spe-
cies can lead to increased instances of undesired and
potentially detrimental hybridization (Larson
et al., 2019). It is generally believed that hybridization
can drive taxa to extinction through the production of
nonviable or nonreproductive offspring. Although there
is some knowledge about the detrimental impact of such
introductions, for example, of social bees (Byatt
et al., 2016) and invasive mosquitoes (Gomes et al., 2012),
the extent and consequences of this phenomenon in
other insects is currently not known due to a lack of
studies.

Population genetics analyses can provide accurate
measures of the extent of hybridization in insects. This
can be useful to detect events of genetic introgression or
to measure the success of targeted gene flow strategies. In
addition, NGS methods can be used to study the molecu-
lar patterns of introgression and how these are involved
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in successful outbreeding events (Anderson et al., 2018).
This can, in turn, help in understanding the molecular
mechanisms behind species and population boundaries
(Twyford & Ennos, 2011). Furthermore, this will enable
the estimation of the efficacy of conservation measures,
that is, whether population size has actually increased
or not.

Genetic monitoring can also help in understanding
the molecular mechanisms behind local adaptation in
invasive and native species. Recent advances in paleoge-
netics (i.e., the study of ancient DNA) have allowed dee-
per insights into the evolution of species. Recently
developed methods to extract and sequence ancient DNA
allow for the comparison of changes in the genome
between historical and current samples to analyze
changes in population sizes and adaptation to novel
stressors. In recent years, a growing number of studies
have used insect museum specimens to investigate the
temporal patterns of molecular evolution over longer
time scales (e.g., Gauthier et al., 2020; Parejo et al., 2020).

8 | ADOPTING GENETICS FOR
INSECT CONSERVATION AND
MITIGATION

Designing strategies to protect or mitigate insects is chal-
lenging due to a number of factors (see Section 2). Here,
we provide some general guidelines to help scientists and
stakeholders to design projects involving molecular tools
to protect or control insect populations and identify some
barriers to their successful adoption.

Acquiring pertinent data to inform conservation or
mitigation strategies is a lengthy task with multiple steps
and obstacles (Figure 2). First, the collection of individ-
uals can prove particularly challenging in the field.
Studying endangered insect populations requires the
development of nonlethal methods, which may be more
trivial when using field assessment (e.g., capture–recap-
ture) compared with molecular work (e.g., DNA extrac-
tion). The recent improvements of DNA isolation kits,
nonlethal sampling, and eDNA analyses offer a growing
number of options to overcome this obstacle. Once the
samples are collected, appropriate measures to preserve
the biological material for later use should be implemen-
ted, thereby allowing researchers to further process speci-
mens in the near or distant future. Efforts to compare
and standardize methods are underway (e.g., Evans
et al., 2013), and an increasing number of studies com-
paring storage, extraction, and library preparation
methods in a growing diversity of insects are being con-
ducted (e.g., Ballare et al., 2019).

In addition, the comparatively greater infrastructural
and financial resources needed to use molecular tools
compared with morphological analyses are clearly a sig-
nificant obstacle to their adoption. However, the increas-
ing outsourcing options and the sizable decrease in costs
over the last decades render molecular tools more acces-
sible. Additionally, recent advances, such as the develop-
ment of portable sequencing technologies, have
drastically changed how genomics can be implemented
(Watsa et al., 2020). Yet once data are acquired, their
analysis can represent another barrier.Although some
sequencing companies offer bioinformatics assistance,

FIGURE 2 Step by step guide to

population genetics for insect

conservation of mitigation. The main

steps involved to conduct a research

study about insect conservation or

mitigation. The decision-making process

involves the choice of (1) target model

species; (2) collection methods;

(3) adequate sample storage;

(4) preprocessing and sequencing of

sample; (5) bioinformatic analyses;

(6) result visualization;

(7) dissemination and exploitation of

results. Figure made with Biorender.
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these remain costly and, thus, cannot be broadly used.
Here, the development of accessible and user-friendly
analysis pipelines, as well as the training of bioinformati-
cians for insect conservation purposes, is urgently needed
to guide and assist unfamiliar scientists and stakeholders.
Some notable efforts are underway (e.g., Hoban
et al., 2022) and will hopefully drive the research commu-
nity to move in this direction.

The availability of molecular resources to compare and
interpret results (e.g., the availability of high quality and
annotated genomes) may also limit the extent of possible
analyses and constrain studies to the most studied organ-
isms. However, diverse projects aim at filing these knowl-
edge gaps in the short and medium term (Robinson
et al., 2011) and will greatly facilitate the use of genetics
and genomics tools, even in nonmodel species.

Finally, as genomes are being produced exponen-
tially, storage capacity is becoming increasingly challeng-
ing. Given the impact of data storage issues, research on
this topic is quickly advancing and exciting progress has
been made in the past years, including the molecular dig-
ital storage of data using DNA (Ceze et al., 2019). While
this may solve the issues of capacity, it is also essential to
optimize and homogenize the information provided
about the origin and processing of the data to guarantee
that pipelines can be rerun, repeated, reproduced, reused,
and replicated (Benureau & Rougier, 2018). The develop-
ment of tools to help in guiding the acquisition and stor-
age of such meta-data, such as workflow engines used for
human genomics (Tanjo et al., 2021), is urgent.

9 | CONCLUSIONS

Given the key role of insects in food security and ecosys-
tem functioning and their impact on the world's economy
and public health, genetic studies should be included
routinely in field surveys. While population genetics stud-
ies are inarguably demanding in terms of finances and
work efforts, many aspects relevant to conservation or
mitigation can only be addressed using molecular tools.
Taking into account molecular estimates, in addition to
traditional field surveys, will lead to more holistic and
efficient insect conservation strategies. Population genet-
ics do not rely on knowledge on specific taxa but rather
on general skills and methods that can be used over a
diverse range of species, it seems molecular analyses for
insect conservation and mitigation have a very promising
future. Yet given the tremendous diversity of insects and
the finite resources to study them, it seems more realistic
to perform baseline molecular studies on selected indica-
tor species reflecting the range of insect life histories and
functional roles in given habitats.
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