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Abstract

Visible and near-infrared (vis–NIR) spectroscopy is a promising technology for

the analysis of different soil quality parameters. In this study, we used in-situ

vis–NIR spectroscopy in association with partial least squares regression to

predict the total and the mineral (nitrate + ammonium) nitrogen content, the

permanganate oxidizable carbon (POXC), as well as the ratio of soil organic

carbon-to-clay content in different agricultural soils in Switzerland. These

parameters can indeed be used as indicators of soil quality in response to agro-

nomic practices. To this goal, a total number of 134 soil samples were used for

carbon-, total nitrogen- and clay-related parameters, whereas 69 soil samples

were used for the mineral nitrogen-related parameters. We found that the par-

tial least squares regression model can successfully predict the total nitrogen

and the POXC content as well as the ratio of soil organic carbon-to-clay con-

tent (ratio of performance to interquartile range, RPIQ > 2.62, R2 > 0.73, Lin's

concordance correlation coefficient > 0.83). As concerns the mineral nitrogen,

it was not possible to successfully predict this parameter by vis–NIR spectros-

copy. By demonstrating the possibility to reliably predict POXC content and

the soil organic carbon-to-clay ratio, we show that vis–NIR can be also used to

analyse soil parameters associated with both the quality of organic carbon and

the structural quality of agricultural soils.
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1 | INTRODUCTION

Nitrogen (N) is a crucial element for crops, but it has also
negative environmental impacts when lost into the envi-
ronment (Guerrero et al., 2021). Nitrogen exists in two
main forms in the soil, i.e., as organic and inorganic N,

which change dynamically through nitrification, denitri-
fication, mineralisation, immobilisation and volatilisa-
tion. Most of total soil N (over 90%) is found within the
organic matter (i.e., as organic N) where it is immobilised
primarily in form of proteins that, once mineralised, can
become a source of plant-available N (Bingham &
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Cotrufo, 2016; Li et al., 2014). In the mineral form of
nitrate (NO3

�), N is readily available for plants and
microbes, but it is also soluble and can be leached. In the
mineral form of ammonium (NH4

+), N is available to
the plants usually after nitrification but, differently from
nitrate, it can be absorbed on soil particles depending on
soil cation exchange capacity (Fowler et al., 2013;
Grossrieder et al., 2022; Guerrero et al., 2021; Podlasek
et al., 2021; Sinaj et al., 2017). To optimize the N fertiliza-
tion for crops, the quantification of the amount of soil
mineral N (i.e., NO3

� + NH4
+) or, more generally, the

soil capability to provide plant-available N is crucial for a
site-specific strategy of nutrient management that aims at
both improving crop N use efficiency and reducing the
environmental losses (Mahmud et al., 2021).

Soil organic carbon (SOC) is crucial for crop nutrition
as well as for storing atmospheric C (Gerke, 2022;
Minasny et al., 2017). Although the amount of SOC in
agricultural soils is considered a primary indicator of soil
quality (Krause et al., 2022), SOC reacts very slowly to
any practice aiming at increasing its concentration and
stock (Bongiorno et al., 2019; Pulleman et al., 2021). An
alternative approach to investigate SOC content is to look
at the different forms of SOC, such as permanganate oxi-
dizable carbon (POXC), also called active C (Culman
et al., 2012; Wade et al., 2020). This SOC form represents
the fraction of SOC that is biologically active, i.e., readily
available for soil life and highly involved in SOC cycling
(Awale et al., 2017; Stott, 2019). A study conducted by
Vonk et al. (2020) did not find a clear correlation between
increased SOC and yield, but Weil et al. (2003) showed a
positive correlation between POXC and yield among
other soil quality indicators.

In agricultural soils, SOC also affects multiple physical
properties, such as bulk density, water holding capacity and
hydraulic conductivity (Palmer et al., 2017). To characterise
the physical quality of agricultural soils, the ratio of the
SOC content (g/100 g) to clay content (g/100 g), i.e., the
SOC:clay ratio, has been proposed as an indicator of soil
structural stability or soil degradation (EEA—European
Environment Agency, 2023; Johannes, Matter, et al., 2017;
Prout et al., 2021), being well correlated with the scores of
soil structural quality assessment, i.e., the CoreVESS
(Johannes, Weisskopf, et al., 2017). Accordingly, a SOC:clay
ratio of 1:8 (= 0.12) is suggested as a threshold for optimum
soil structure, whereas a SOC:clay ratio <1:13 (< 0.07) indi-
cates an unacceptable soil structural quality (Johannes,
Matter, et al., 2017). A SOC:clay ratio of >1:10 (i.e. >0.1)
can also be used as a target to aspire to when increasing the
amount of C in arable soils for C sequestration, whereas
soils with a good SOC:clay ratio of 1:8 might be prone to
SOC losses (Guillaume et al., 2022; Johannes et al., 2023;
Prout et al., 2021, 2022).

In recent decades, visible and near-infrared (vis–NIR)
spectroscopy has emerged as a technique for a rapid char-
acterisation of some chemical and mineralogical parame-
ters related to soil fertility (Ahmadi et al., 2021; Barra
et al., 2021; Zeng et al., 2022). The best calibration models
linking soil spectra with laboratory analyses are usually
obtained for SOC, clay content, and total nitrogen (Ntot)
(Guerrero et al., 2021; Nawar & Mouazen, 2017; Nocita
et al., 2015; Stenberg et al., 2010; Viscarra Rossel
et al., 2022). This is due to the interaction of vis–NIR
radiation (350–2500 nm) with chemical bonds such as C–
H, O–H, C–N that make up the soil parameters listed
above (Ben-Dor & Banin, 1995; Nocita et al., 2015). In
addition, other studies have also reported a rather good
relationship for other parameters such as extractable
macronutrient concentration, iron and iron oxides, pH
and cation exchange capacity (Barra et al., 2021), even
though it is still under debate to what extent vis–NIR
spectroscopy provide reliable information for some of
these parameters (McBride, 2022; Viscarra Rossel
et al., 2022). However, concerning the possibility to pre-
dict the amount of different N forms by vis–NIR spectros-
copy, the results are sometimes contradictory
(Fystro, 2002; Soriano-Disla et al., 2014; Stenberg
et al., 2010). Recently, Chen et al. (2022) conducted a
small-scale study where they mixed different types of fer-
tilizers with two soil types and were able to predict the
levels of N fertilizer based on vis–NIR imaging spectros-
copy, whereas Tsakiridis et al. (2017) successfully pre-
dicted the amount of NO3

� from diffuse reflectance
spectra. These studies showed promising results on dried
soils and raise the question about whether good correla-
tions can be found with vis–NIR spectra recorded in situ.
Contrarily, Guerrero et al. (2021) stated that only total N
can be predicted with vis–NIR but not the N mineral
forms. With regard to POXC, still a limited number of
studies have predicted POXC with vis–NIR spectros-
copy. For example, Calderon et al. (2017) found good
correlations between spectra from dried and sieved soil
samples suggesting to further examine the possibility
of detecting POXC using in-situ portable vis–NIR spec-
trometers. With its potential to show dynamic changes
incurred by management practices, POCX is a helpful
indicator for soil health (Stott, 2019) and a reliable pre-
diction from vis–NIR spectra would greatly benefit its
applicability. To our knowledge, no study has tried to
predict the SOC:clay ratio directly from in-situ vis–NIR
spectra, while numerous studies have already been
able to predict SOC and clay separately by spectroscopy
(e.g., Ahmadi et al., 2021; Metzger et al., 2023). Con-
sidering that this ratio has been recently included into the
European Union soil monitoring framework (EEA—
European Environment Agency, 2023), it would be helpful
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to assess if the error is smaller when the SOC:clay ratio is
predicted directly from vis–NIR spectra as compared to cal-
culating the ratio from already predicted SOC and clay
values.

The main goal of this study is to test the possibility to
predict nitrate, ammonium, mineral N, easily oxidizable
C and the SOC:clay ratio based on vis–NIR spectra
directly collected in the field, i.e., in-situ. We hypothesise
that, due to the chemical composition, the mineral forms
of N, i.e., Nmin, NO3

� and NH4
+, cannot be satisfactorily

predicted even from field-collected soil spectra, whereas
the amount of POXC and the soil structural quality
(i.e., the SOC:clay ratio) can be reliably predicted by in-
situ vis–NIR spectroscopy.

2 | MATERIALS AND METHODS

2.1 | Soil samples

During a sampling campaign in 2021, 134 soil sam-
ples were collected from nine long-term experimental tri-
als in Switzerland to include a wide variety of tillage
practices (i.e., from plough tillage to no-till), fertilisation
inputs (no fertilisation, mineral fertilisers only and
organic fertilisers only), and crop rotations (mono-
cropping and rotation) under different physico-chemical
characteristics (i.e. texture, SOC content, pH). A detailed
description of the experimental trials can be found in the
Table S1, whereas a description of the correspondent soil
types and geographical locations can be found in Metzger
et al. (2023). Soil samples were collected using an Edel-
man auger (Eijkelkamp, NL) at a depth of 0–20 cm at the
centre of each treatment plot.

2.2 | Laboratory analyses

After sampling, the soil samples were dried (40�C � 24 h)
and then sieved at 2 mm for further analyses. Soil mois-
ture content (105�C � 24 h) was determined gravimetri-
cally on a subsample of fresh soil and the following
physico-chemical parameters were analysed: clay con-
tent, SOC, POXC, Ntot, NO3

�, and NH4
+. The clay

content was determined using the pipette method
(Gee & Bauder, 1986), the SOC content by sulfochro-
mic oxidation (NF ISO 14253), and the Ntot by dry
combustion using an elemental analyser (NF ISO
13878). The concentration of POXC was determined
following the protocol by Weil et al. (2003) and
Culman et al. (2014) in which the readily available
C (= active C) is oxidised with 0.02 M KMnO4. The
concentration of nitrate and ammonium was measured

according to the indophenol blue colorimetric method
(Ringuet et al., 2011) and the Griess reaction (Doane &
Horw�ath, 2003) in a subset of 69 soil samples from four
trials that were immediately frozen after field sampling
until analysis. A more detailed description of the mea-
surements of POXC, nitrate and ammonium can be
found in the Supporting information.

2.3 | Spectral measurements and
processing

Vis–NIR spectra of soil samples were taken in-situ
according to the protocol proposed by Metzger et al.
(2023). Briefly, after the sampling of the soil, one side of
the Edelman auger was smoothed with a knife and five
replicate scans were performed over the entire side of the
soil core. The scans were performed by means of a con-
tact probe with a 5 W tungsten-halogen lamp using a
Spectral Evolution PSR+ 3500 portable spectrophotome-
ter (Spectral Evolution, Haverhill, MA, USA) charac-
terised by a spectral range of 350–2500 nm and a spectral
resolution of 2.8–8 nm.

The raw spectra were reported in reflectance with a
wavelength interval of 1 nm. In order to check the stabil-
ity of the five replicate scans, the spectral standard devia-
tion was calculated according to Metzger et al. (2020) and
only when the spectral deviation was below 0.01 then all
the spectra were included. In our case, all the five repli-
cate scans were accepted. We would like to underline
that, for the goals of this study, the spectra were not pro-
cessed further to remove the influence of soil moisture
(e.g. external parameter orthogonalisation or direct
standardisation).

2.4 | Calibration models

In order to relate the laboratory results to the spectral
information, partial least squares regression (PLSR) was
applied to predict SOC, clay content, Ntot, Nmin, NO3

�,
NH4

+, POXC, and SOC:clay ratio: (Barra et al., 2021;
Wold, 1973). We used a 100-times repeated double-cross--
validation approach to prevent over optimistic model per-
formances (Filzmoser et al., 2009) and the number of
latent variables for the PLSR was determined by selecting
the model with the first minimum of the standard error
of prediction for each soil property and spectral prepro-
cessing. Spectral preprocessing methods are used to bet-
ter extract the signal in the spectra and contain both
smoothing and derivatives (Savitzky–Golay smoothing
and first and second derivatives; see Savitzky &
Golay, 1964), normalization (Standard Normal Variate
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SNV; see Barnes et al., 1989) and multiplicative scatter
correction or MSC (Geladi et al., 1985). A more detailed
description of the model can be found in Metzger et al.
(2023). The best model for each parameter was then cho-
sen based on the following model parameters: coefficient
of determination (R2), root mean squared error of the pre-
diction (RMSEP), ratio of performance to interquartile
range (RPIQ = IQR/RMSE, IQR = Q3 � Q1), the bias
and Lin's concordance correlation coefficient (CCC)
(Mendes et al., 2021). All data analysis was performed in
R version 4.1.3 (R Core Team, 2022) and the used pack-
ages are listed in the Supporting information.

3 | RESULTS

The variability of the selected chemical and physical soil
parameters spans a range representative of main condi-
tions of agricultural soils in Switzerland (see the Table S2
for a summary). The results for the PLSR model are in
Table 1. For clay, SOC and Ntot the PLSR shows accept-
able values of R2, RMSEP, RPIQ and Lin's CCC, with R2

and Lin's CCC being close to 1, and RPIQ >1.89 (Ludwig
et al., 2019). Nmin and NO3

� show somewhat promising
results (RPIQ > 1.86, but Lin's CCC < 0.8 and R2 ≤ 0.62)
while for NH4

+ the indicators of model performance are
unfavourable. The content of POCX is also successfully
predicted based on the values of RMSEP (96.5), R2 (0.75),
RPIQ (2.71), bias (0.13) and Lin's CCC (0.86). The
SOC:clay ratio was initially predicted directly and then it
was also calculated from the individually predicted SOC
and clay values. For the directly predicted ratio, the PLSR
model is able to successfully predict the SOC:clay ratio,
considering the values of RMSEP (0.01), R2 (0.73), RPIQ
(2.62), bias (<0.01) and Lin's CCC (0.83). The individually
predicted SOC:clay ratio shows a lower performance,
with a low Lin's CCC of 0.75 and R2 of 0.55. The

predicted versus the reference values of all the studied
soil parameters are plotted in Figure 1. An overview over
the model parameters is also given in Table S3.

4 | DISCUSSION

In accordance with previous studies (e.g., Debaene
et al., 2023; Guerrero et al., 2021; Viscarra Rossel
et al., 2009; Wang et al., 2021), we confirm that it is possi-
ble to reliably predict the amount of clay, the content of
SOC and the content of total N from in-situ spectra. The
prediction of soil Ntot content by vis–NIR spectros-
copy from in-situ spectra is particularly important in
terms of site-adapted fertilisation considering the
importance of organic N pool for the provision of
available N to crops (Farzadfar et al., 2021;
Mittermayer et al., 2021; Yan et al., 2020). Such good
predictive performance can be explained by the strong
correlation between Ntot and SOC content (partial cor-
relation coefficient = 0.98, p < 0.01, n = 134). The pre-
diction of NO3

� with R2 of 0.62 and RPIQ of 2.18
shows some potential, even if in the laboratory versus
the reference plots show two clear clusters that may
have artificially improved the performance (Figure 1).
Additionally, an unsuccessful prediction of NH4

+

(RPIQ 1.16) means that the use of vis–NIR for Nmin
prediction remains unattainable. Our results, although
based on a relatively low number of soil samples, seem in
line with other works reporting a possible prediction of
nitrate using vis–NIR spectroscopy from sieved and dried
soil samples (Amirul et al., 2020; Ehsani et al., 1999; Zhou
et al., 2023), whereas ammonium was only reliably pre-
dicted by vis–NIR in soil pore-water samples (Yupiter
et al., 2023). Further studies are necessary to better clarify
the possibility to predict nitrate content in agricultural
soils based on in-situ vis–NIR spectroscopy.

TABLE 1 Model performance indicators, i.e., root mean squared error of prediction (RMSEP), coefficient of determination (R2), ratio of

performance to interquartile distance (RPIQ), Lin's concordance coefficient (CCC) and bias for the studied soil parameters.

Parameter R2 R2_sd RMSEP RMSEP_sd RPIQ RPIQ_sd Lin's CCC Lin's_sd Bias Bias_sd

Nmin (mg/kg) 0.62 0.027 5.58 0.191 2.03 0.067 0.77 0.016 0.04 0.115

NO3
� (mg/kg) 0.59 0.033 4.67 0.183 2.18 0.080 0.75 0.021 0.04 0.116

NH4
+ (mg/kg) 0.37 0.031 1.89 0.046 1.16 0.028 0.56 0.022 0.01 0.024

Clay (%) 0.94 0.004 3.27 0.095 4.63 0.131 0.97 0.002 0.01 0.061

SOC (%) 0.82 0.015 0.30 0.012 3.13 0.120 0.89 0.009 0.00 0.008

Ntot (%) 0.79 0.009 0.04 0.002 3.10 0.123 0.87 0.012 0.00 0.001

SOC:clay_directly 0.73 0.001 0.01 <0.001 2.62 0.106 0.83 0.015 0.00 <0.001

SOC:clay_individually 0.55 0.01 2.12 0.75 0.00

POXC (mg/kg) 0.75 0.011 96.42 2.054 2.71 0.056 0.86 0.007 0.13 2.153

Note: For each accuracy metrics of each parameter, the standard deviation (sd) resulting from the 100 repetitions is reported.
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For the POXC, our results indicate that vis–NIR spec-
troscopy can well predict the amount of soil active C
(Calderon et al., 2017; Omer et al., 2020; Reijneveld
et al., 2023). As previously observed (e.g., Plaza-Bonilla
et al., 2014), in our dataset, there was a positive correla-
tion between SOC and POXC (r = 0.88) suggesting that,
as recently highlighted by Woodings and Margenot
(2023), POXC may indeed reflect a more processed frac-
tion of soil C. After taking into account the standardiza-
tion of analytical methods for measuring POXC in soil
samples (Wade et al., 2020), the reliable estimation of
POXC by vis–NIR can represent a helpful tool to easily
follow the temporal and spatial trends of a soil quality
indicator that is expected to react more rapidly to agro-
nomic management (Lucas & Weil, 2021; Plaza-Bonilla
et al., 2014; Singh et al., 2023; Zhao et al., 2022).

Our study clearly shows that SOC:clay ratio can be
reliably predicted by in-situ vis–NIR spectroscopy
with better results in terms of R2, RPIQ and
Lin's CCC compared with an indirect calculation
based on individual prediction of SOC and clay

values. This result can be explained by a lower error
propagation. Indeed, looking at the plot of both
types of SOC:clay prediction (Figure 1) it is clear that
the individually predicted values deviate much more
from the 1:1 line, very likely due to the added inaccu-
racy from the individual predictions of both SOC
and clay.

5 | CONCLUSIONS

Our study shows that the SOC:clay ratio as well as the
POXC content can be successfully predicted from in-situ
vis–NIR soil spectra. This opens the possibility to use in-
situ soil spectroscopy to predict additional soil indicators
that are related, respectively, the active forms of SOC and
the structural stability of agricultural soils.
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Plaza-Bonilla, D., Álvaro-Fuentes, J., & Cantero-Martínez, C.
(2014). Identifying soil organic carbon fractions sensitive to
agricultural management practices. Soil and Tillage Research,
139, 19–22. https://doi.org/10.1016/j.still.2014.01.006

Podlasek, A., Koda, E., & Vaverkov�a, M. D. (2021). The variability
of nitrogen forms in soils due to traditional and precision agri-
culture: Case studies in Poland. International Journal of Envi-
ronmental Research and Public Health, 18, 1–28. https://doi.
org/10.3390/ijerph18020465

Prout, J. M., Shepherd, K. D., McGrath, S. P., Kirk, G. J. D., &
Haefele, S. M. (2021). What is a good level of soil organic
matter? An index based on organic carbon to clay ratio.
European Journal of Soil Science, 72, 2493–2503. https://doi.
org/10.1111/ejss.13012

Prout, J. M., Shepherd, K. D., McGrath, S. P., Kirk, G. J. D.,
Hassall, K. L., & Haefele, S. M. (2022). Changes in organic car-
bon to clay ratios in different soils and land uses in England
and Wales over time. Scientific Reports, 12, 1–13. https://doi.
org/10.1038/s41598-022-09101-3

Pulleman, M., Wills, S., Creamer, R., Dick, R., Ferguson, R.,
Hooper, D., Williams, C., & Margenot, A. J. (2021). Soil mass
and grind size used for sample homogenization strongly
affect permanganate-oxidizable carbon (POXC) values, with
implications for its use as a national soil health indicator.
Geoderma, 383, 114742. https://doi.org/10.1016/j.geoderma.
2020.114742

R Core Team. (2022). R: A language and environment for statistical
computing. R Foundation for Statistical Computing.

Reijneveld, J. A., van Oostrum, M. J., Brolsma, K. M., &
Oenema, O. (2023). Soil carbon check: A tool for monitoring
and guiding soil carbon sequestration in farmer fields. Frontiers
of Agricultural Science and Engineering, 10, 248–261. https://
doi.org/10.15302/J-FASE-2023499

Ringuet, S., Sassano, L., & Johnson, Z. I. (2011). A suite of micro-
plate reader-based colorimetric methods to quantify ammo-
nium, nitrate, orthophosphate and silicate concentrations for
aquatic nutrient monitoring. Journal of Environmental Monitor-
ing, 13, 370–376. https://doi.org/10.1039/c0em00290a

Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation
of data by simplified least squares procedures. Analytical Chem-
istry, 36(8), 1627–1639.

Sinaj, S., Charles, R., Baux, A., Dupuis, B., Hiltbrunner, J., Levy, L.,
Pellet, D., Blanchet, G., & Jeangros, B. (2017). 8/Düngung von
Ackerkulturen. Agrarforschung Schweiz, 8, 163–165.

Singh, G., Sharma, K. R., Bhatt, R., Singh, J., Wani, O. A.,
Dewidar, A. Z., & Mattar, M. A. (2023). Soil carbon and bio-
chemical indicators of soil quality as affected by different

conservation agricultural and Weed Management options.
Land, 12, 1783. https://doi.org/10.3390/land12091783

Soriano-Disla, J. M., Janik, L. J., Viscarra Rossel, R. A.,
MacDonald, L. M., & McLaughlin, M. J. (2014). The perfor-
mance of visible, near-, and mid-infrared reflectance spectros-
copy for prediction of soil physical, chemical, and biological
properties. Applied Spectroscopy Reviews, 49, 139–186. https://
doi.org/10.1080/05704928.2013.811081

Stenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., &
Wetterlind, J. (2010). Visible and near infrared spectroscopy in
soil science. Advances in Agronomy, 107, 163–215. https://doi.
org/10.1016/S0065-2113(10)07005-7

Stott, D. E. (2019). Recommended soil health indicators and associ-
ated laboratory procedures. Soil Health Technical Note No. 450–
03 (p. 76). USDA NRCS.

Tsakiridis, N. L., Tziolas, N., Dimitrakos, A., Galanis, G.,
Ntonou, E., Tsirika, A., Terzopoulou, E., Kalopesa, E., &
Zalidis, G. C. (2017). Predicting soil properties for sustainable
agriculture using vis–NIR spectroscopy: A case study in north-
ern Greece. In Fifth international conference on remote sensing
and geoinformation of the environment (RSCy2017) (pp. 451–
458). SPIE.

Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Chabrillat, S.,
Demattê, J. A. M., Ge, Y., Gomez, C., Guerrero, C., Peng, Y.,
Ramirez-Lopez, L., Shi, Z., Stenberg, B., Webster, R.,
Winowiecki, L., & Shen, Z. (2022). Diffuse reflectance spectros-
copy for estimating soil properties: A technology for the 21st
century. European Journal of Soil Science, 73, 1–9. https://doi.
org/10.1111/ejss.13271

Viscarra Rossel, R. A., Cattle, S. R., Ortega, A., & Fouad, Y. (2009).
In situ measurements of soil colour, mineral composition and
clay content by vis–NIR spectroscopy. Geoderma, 150, 253–266.
https://doi.org/10.1016/j.geoderma.2009.01.025

Vonk, W. J., van Ittersum, M. K., Reidsma, P., Zavattaro, L.,
Bechini, L., Guzm�an, G., Pronk, A., Spiegel, H.,
Steinmann, H. H., Ruysschaert, G., & Hijbeek, R. (2020).
European survey shows poor association between soil
organic matter and crop yields. Nutrient Cycling in Agroeco-
systems, 118, 325–334. https://doi.org/10.1007/s10705-020-
10098-2

Wade, J., Maltais-Landry, G., Lucas, D. E., Bongiorno, G.,
Bowles, T. M., Calder�on, F. J., Culman, S. W., Daughtridge, R.,
Ernakovich, J. G., Fonte, S. J., Giang, D., Herman, B. L.,
Guan, L., Jastrow, J. D., Loh, B. H. H., Kelly, C., Mann, M. E.,
Matamala, R., Miernicki, E. A., … Margenot, A. J. (2020). Asses-
sing the sensitivity and repeatability of permanganate oxidiz-
able carbon as a soil health metric: An interlab comparison
across soils. Geoderma, 366, 114235. https://doi.org/10.1016/j.
geoderma.2020.114235

Wang, Y., Li, M., Ji, R., Wang, M., & Zheng, L. (2021). A deep
learning-based method for screening soil total nitrogen char-
acteristic wavelengths. Computers and Electronics in Agricul-
ture, 187, 106228. https://doi.org/10.1016/j.compag.2021.
106228

Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B., & Samson-
Liebig, S. E. (2003). Estimating active carbon for soil quality
assessment: A simplified method for laboratory and field use.
American Journal of Alternative Agriculture, 18, 3–17. https://
doi.org/10.1079/AJAA2003003

8 of 9 METZGER and BRAGAZZA

 13652389, 2024, 3, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/ejss.13508 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [03/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.3390/soilsystems4030042
https://doi.org/10.3389/fpls.2017.00731
https://doi.org/10.3389/fpls.2017.00731
https://doi.org/10.1016/j.still.2014.01.006
https://doi.org/10.3390/ijerph18020465
https://doi.org/10.3390/ijerph18020465
https://doi.org/10.1111/ejss.13012
https://doi.org/10.1111/ejss.13012
https://doi.org/10.1038/s41598-022-09101-3
https://doi.org/10.1038/s41598-022-09101-3
https://doi.org/10.1016/j.geoderma.2020.114742
https://doi.org/10.1016/j.geoderma.2020.114742
https://doi.org/10.15302/J-FASE-2023499
https://doi.org/10.15302/J-FASE-2023499
https://doi.org/10.1039/c0em00290a
https://doi.org/10.3390/land12091783
https://doi.org/10.1080/05704928.2013.811081
https://doi.org/10.1080/05704928.2013.811081
https://doi.org/10.1016/S0065-2113(10)07005-7
https://doi.org/10.1016/S0065-2113(10)07005-7
https://doi.org/10.1111/ejss.13271
https://doi.org/10.1111/ejss.13271
https://doi.org/10.1016/j.geoderma.2009.01.025
https://doi.org/10.1007/s10705-020-10098-2
https://doi.org/10.1007/s10705-020-10098-2
https://doi.org/10.1016/j.geoderma.2020.114235
https://doi.org/10.1016/j.geoderma.2020.114235
https://doi.org/10.1016/j.compag.2021.106228
https://doi.org/10.1016/j.compag.2021.106228
https://doi.org/10.1079/AJAA2003003
https://doi.org/10.1079/AJAA2003003


Wold, H. (1973). Nonlinear iterative partial least squares (NIPALS)
modelling: Some current developments, multivariate analysis–III.
ACADEMIC PRESS, INC. https://doi.org/10.1016/b978-0-12-
426653-7.50032-6

Woodings, F. S., & Margenot, A. J. (2023). Revisiting the permanga-
nate oxidizable carbon (POXC) assay assumptions: POXC is lig-
nin sensitive. Agricultural & Environmental Letters, 8, e20108.
https://doi.org/10.1002/ael2.20108

Yan, M., Pan, G., Lavallee, J. M., & Conant, R. T. (2020). Rethink-
ing sources of nitrogen to cereal crops. Global Change Biology,
26, 191–199. https://doi.org/10.1111/gcb.14908

Yupiter, R., Arnon, S., Yeshno, E., Visoly-Fisher, I., & Dahan, O.
(2023). Real-time detection of ammonium in soil pore water.
Npj Clean Water, 6, 25. https://doi.org/10.1038/s41545-023-
00243-z

Zeng, R., Rossiter, D. G., Zhang, J., Cai, K., Gao, W., Pan, W.,
Zeng, Y., Jiang, C., & Li, D. (2022). How well can reflec-
tance spectroscopy allocate samples to soil fertility classes?
Agronomy, 12, 1964. https://doi.org/10.3390/agronomy
12081964

Zhao, J., Liu, Z., Lai, H., Yang, D., & Li, X. (2022). Optimizing resi-
due and tillage management practices to improve soil carbon

sequestration in a wheat–peanut rotation system. Journal of
Environmental Management, 306, 114468. https://doi.org/10.
1016/j.jenvman.2022.114468

Zhou, L., Yao, J., Xu, H., Zhang, Y., & Nie, P. (2023). Research on
the effects of drying temperature for the detection of soil nitro-
gen by near-infrared spectroscopy. Molecules, 28, 6507. https://
doi.org/10.3390/molecules28186507

SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Metzger, K., & Bragazza,
L. (2024). Prediction of nitrogen, active carbon, and
organic carbon-to-clay ratio in agricultural soils by
in-situ spectroscopy. European Journal of Soil
Science, 75(3), e13508. https://doi.org/10.1111/ejss.
13508

METZGER and BRAGAZZA 9 of 9

 13652389, 2024, 3, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/ejss.13508 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [03/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/b978-0-12-426653-7.50032-6
https://doi.org/10.1016/b978-0-12-426653-7.50032-6
https://doi.org/10.1002/ael2.20108
https://doi.org/10.1111/gcb.14908
https://doi.org/10.1038/s41545-023-00243-z
https://doi.org/10.1038/s41545-023-00243-z
https://doi.org/10.3390/agronomy12081964
https://doi.org/10.3390/agronomy12081964
https://doi.org/10.1016/j.jenvman.2022.114468
https://doi.org/10.1016/j.jenvman.2022.114468
https://doi.org/10.3390/molecules28186507
https://doi.org/10.3390/molecules28186507
https://doi.org/10.1111/ejss.13508
https://doi.org/10.1111/ejss.13508

	Prediction of nitrogen, active carbon, and organic carbon-to-clay ratio in agricultural soils by in-situ spectroscopy
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Soil samples
	2.2  Laboratory analyses
	2.3  Spectral measurements and processing
	2.4  Calibration models

	3  RESULTS
	4  DISCUSSION
	5  CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


