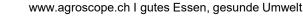


Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF

Agroscope


A Comparative Nutritional Life Cycle Assessment of Processed and Unprocessed Soy-Based Meat and Milk Alternatives Including Protein Quality Adjustment

Moritz Herrmann, <u>Eric Mehner</u>, Lotti Egger, Reto Portmann, Laila Hammer, Thomas Nemecek

LCAFood, Barcelona, 09.09.2024

Combined nutritional and environmental assessment of foods and diets (III)

Agroscope

Background V

- Food system and especially animal-based products are associated to large environmental impacts
- One popular mitigation approach \rightarrow replacement with alternative products
- Raises several questions:
 - Are they suitable replacements in terms of nutrient content and nutritional quality?
 - Can they fulfil the same function as the original?
 - How do they perform environmentally related to their function?
 - Is processing beneficial or not?

V Nutritional Life Cycle Assessment

GoalFunctional unitCompare the environmental impacts of
soy-based alternatives to their
references considering the nutritional
quality and nutrient density• g qc-protein
• NRprot7

Scope

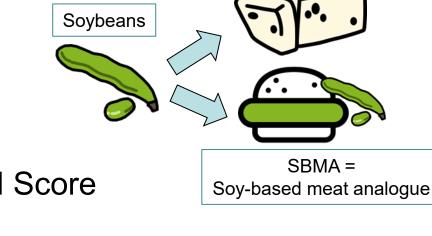
- Agricultural production and processing in Switzerland
 - Cradle-to-gate

Impact assessment

- SALCA v2.01¹
- CED, GW, WS, LO, AT, EF

LCAFood, Barcelona 2024 – 09.09.2024 – Combined nutritional and environmental assessment of foods and diets (III)

Eric Mehner



3

¹ Douziech et al. (2024) <u>doi.org/10.34776/as183e</u>

Quality of Plant Proteins

- Often lower than that of animal proteins
- Can be improved by combining different sources
- Processing may alter digestibility
- Influence on the <u>function</u> as protein sources
- How can the protein quality be quantified?
 - DIAAS Digestible Indispensable Amino Acid Score
 - \rightarrow Amino Acid content and digestibility
 - Method for in vitro analysis¹

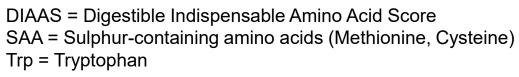
Tofu

 $DIAAS = rac{ ext{mg of limiting indispensable amino acid in the dietary protein}}{ ext{mg of the same amino acid in the reference protein (usually egg protein)}}$

LCAFood, Barcelona 2024 – 09.09.2024 – Combined nutritional and environmental assessment of foods and diets (III)

Eric Mehner

Soy drink


imes 100

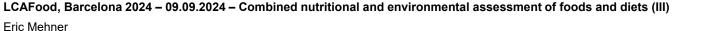
¹ Sousa et al. (2023) <u>doi.org/10.1016/j.foodchem.2022.134720</u>

Protein Quality

Table 1: The *in vitro* DIAAS values. Limiting amino acids in parentheses. The corresponding **qc-protein** is calculated by multiplying the protein content with the DIAAS.

Food item	Protein content [g/100g]	DIAAS [%]	qc-protein [g/100g]
Soybeans, cooked	16.3	51 (Trp)	8.3
Tofu, plain, fresh	14.4	84 (SAA)	12.0
SBMA, grilled	13.9	94 (SAA)	13.0
Beef, minced, grilled	32.6	124	40.6
Chicken breast, grilled	30.1	113	34.0
Soy drink, UHT	2.6	85 (SAA)	2.2
Cow milk, 3.5%, UHT	3.3	121	4.0

) Excellent DIAAS Score (≥ 100)


fully digestible

Good DIAAS S	core	(75 - 99 <u>)</u>
	SOY	

Poor DIAAS Score (< 75)

rocessing

Funded by the European Union Quality

Ð

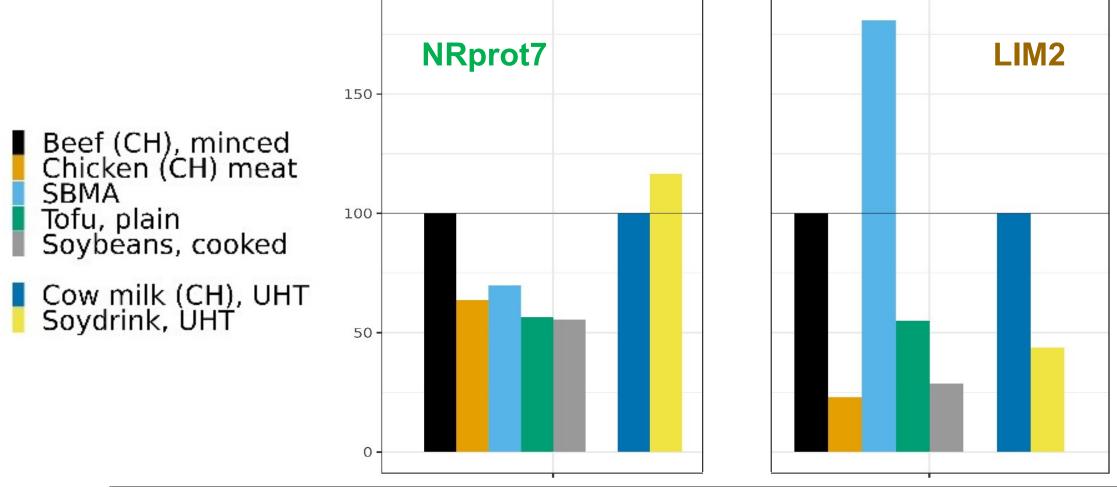
Nutrient Density U

- Consider the nutrient content as an index \rightarrow NRF7.2 (nutrient rich food) index
- Based on content of qualifying and disqualifying nutrients
- Related to Dietary Reference Intake (DRI) and normalised to energy content
- Adjusted to protein-rich foods (Green et al., 2023) \rightarrow NRprot7 & LIM2
 - Protein
 - **Dietary fibers**
 - Unsaturated fatty acids
 - Calcium
 - Iron
 - Zinc
 - Vitamin B12
 - Sodium
 - Saturated fatty acids

$$NRprot7 = \left(\sum_{i=1}^{i=7} \frac{nutrient_i}{DRI_i}\right) \times \frac{2000 \ kcal}{E_j}$$
$$LIM2 = \left(\sum_{i=1}^{i=2} \frac{nutrient_i}{DRI_i}\right) \times \frac{2000 \ kcal}{E_j}$$

where: i = nutrient, j = food item

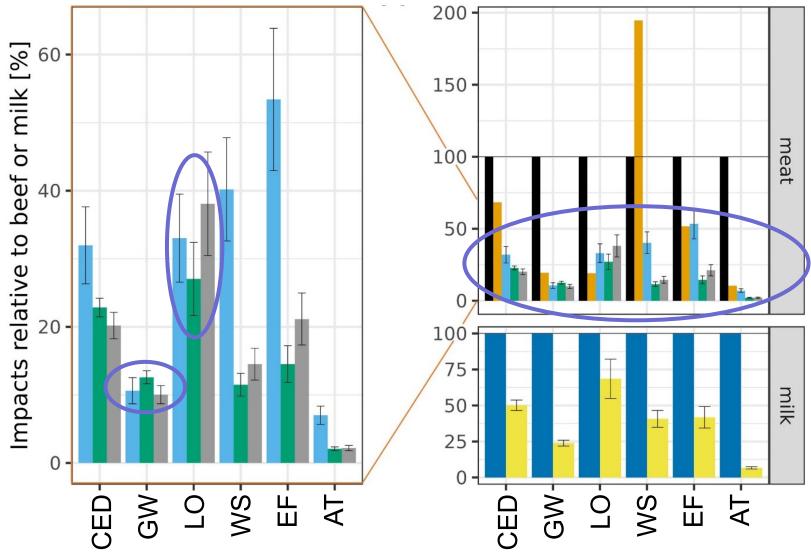
DRI = Dietary Reference Intake; E = Energy



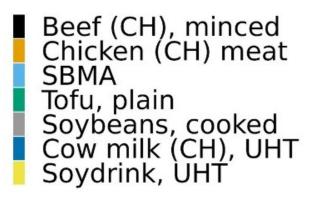
NRF7.2 = (NRprot7 - LIM2) * 100

LCAFood, Barcelona 2024 – 09.09.2024 – Combined nutritional and environmental assessment of foods and diets (III) Eric Mehner

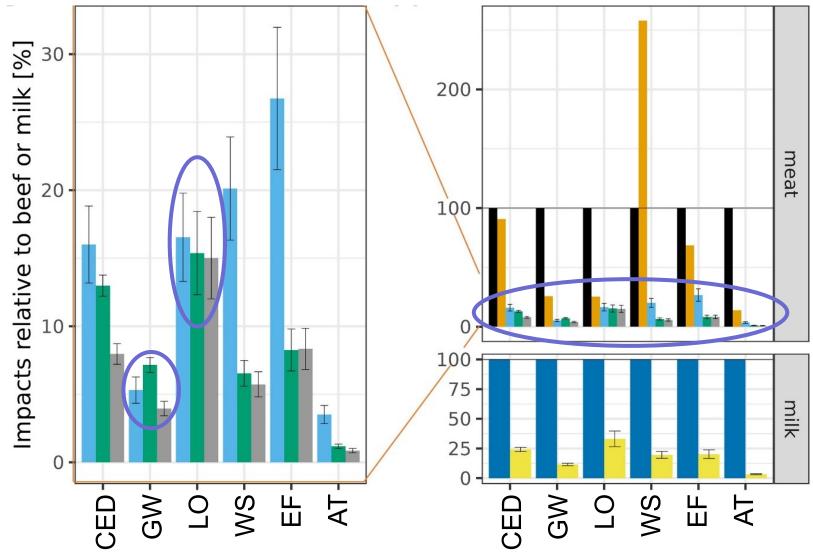
Nutrient Density - Comparison of the NRprot7 and LIM2 sub-scores relative to beef and cow milk [%]

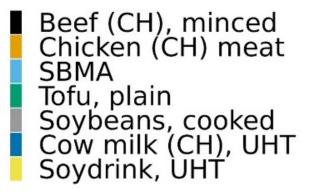

LCAFood, Barcelona 2024 – 09.09.2024 – Combined nutritional and environmental assessment of foods and diets (III)

Fric Mehner



7


Comparison between alternative and reference products per [g qc-protein]. Range bars represent the sensitivity analysis.


LCAFood, Barcelona 2024 – 09.09.2024 – Combined nutritional and environmental assessment of foods and diets (III)

Funded by the European Union 8

Comparison between
alternative and
reference products per
[NRprot7]. Range
bars represent the
sensitivity analysis.

LCAFood, Barcelona 2024 - 09.09.2024 - Combined nutritional and environmental assessment of foods and diets (III)

Eric Mehner

Agroscope

9

Discussion

- Soy-based meat and milk alternatives can contribute to lowering the environmental footprint of nutrition
- High levels of disqualifying nutrients in processed soy-based alternatives require careful food (re)formulation, including micronutrient supplementation
- When nutritional functional units are used, nutritional quality adjustments are relevant

C Take Home Message

- The n-LCA showed that the environmental impact of all soy-based alternatives was
 4–20 times lower than that of beef or cow milk.
- The higher protein quality and quantity of the processed SBMA compared to unprocessed soy-based alternatives were not sufficient to offset its higher environmental impact in this case study.
- Fostering standardization in nutritional LCA methodologies is crucial to ensure consistent, reliable, and comparable results across studies.
- Publication of the study available at: Herrmann et al. (2024) <u>doi.org/10.3389/fsufs.2024.1413802</u> eric.mehner@agroscope.admin.ch

LCAFood, Barcelona 2024 – 09.09.2024 – Combined nutritional and environmental assessment of foods and diets (III) Eric Mehner

Thank you for your attention!

Eric Mehner – eric.mehner@agroscope.admin.ch

Agroscope good food, healthy environment www.agroscope.admin.ch

