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ABSTRACT 46 

Genomic prediction for multiple environments can aid the selection of genotypes suited to 47 

specific soil and climate conditions. Methodological advances allow effective integration of 48 

phenotypic, genomic (additive, non-additive), and large-scale environmental (enviromic) data 49 

into multi-environmental genomic prediction models. These models can also account for 50 

genotype-by-environment interaction, utilize alternative relationship matrices (kernels), or 51 

substitute statistical approaches with deep learning. However, the application of multi-52 

environmental genomic prediction in apple remained limited, likely due to the challenge of 53 

building multi-environmental datasets and structurally complex models. Here, we applied 54 

efficient statistical and deep learning models for multi-environmental genomic prediction of 55 

eleven apple traits with contrasting genetic architectures by integrating genomic- and 56 

enviromic-based model components. Incorporating genotype-by-environment interaction 57 

effects into statistical models improved predictive ability by up to 0.08 for nine traits 58 

compared to the benchmark model. This outcome, based on Gaussian and Deep kernels, 59 

shows these alternatives can effectively substitute the standard G-BLUP. Including non-60 

additive and enviromic-based effects resulted in a predictive ability very similar to the 61 

benchmark model. The deep learning approach achieved the highest predictive ability for 62 

three traits with oligogenic genetic architectures, outperforming the benchmark by up to 0.10. 63 

Our results demonstrate that the tested statistical models capture genotype-by-environment 64 

interactions particularly well, and the deep learning models efficiently integrate data from 65 

diverse sources. This study will foster the adoption of multi-environmental genomic 66 

prediction to select apple cultivars adapted to diverse environmental conditions, providing an 67 

opportunity to address climate change impacts.  68 
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INTRODUCTION 69 

Since the introduction of genomic selection (Meuwissen et al., 2001), the genome-wide 70 

selection based on thousands of markers has resulted in increased genetic gain, and this 71 

approach is progressively becoming an integral component of modern crop breeding programs 72 

(García-Ruiz et al., 2016; Voss-Fels et al., 2019). To predict the genomic estimated breeding 73 

values for genomic selection, marker effects are frequently estimated using the well-74 

established genomic best linear unbiased predictor (G-BLUP) approach (VanRaden, 2008). 75 

For genomic prediction across environments, increased predictive ability has been 76 

demonstrated by utilizing G-BLUP to incorporate the main marker effects and interaction 77 

effects of markers and environments (Jarquín et al., 2014; Lopez-Cruz et al., 2015). The 78 

interaction between markers and environments provides a mathematical representation of the 79 

natural phenomenon of genotype-by-environment interaction, which results from the 80 

variability in the genotype performance ranking across different environmental conditions. 81 

Despite numerous reports of successful phenotypic performance prediction using molecular 82 

markers in perennial crops such as apple (Kostick et al., 2023; Kumar et al., 2012; 83 

Migicovsky et al., 2016; Muranty et al., 2015), genotype-by-environment interaction has been 84 

often overlooked in genomic prediction of apple traits. 85 

The most comprehensive study conducted thus far to investigate the influence of genotype-86 

by-environment interaction on genomic predictive ability in apple, conducted by Jung et al. 87 

(2022), was achieved by the establishment of the apple reference population, known as the 88 

apple REFPOP (Jung et al., 2020). Across the numerous phenotypic traits assessed in the 89 

apple REFPOP, genotype-by-environment interaction explained up to 24% of the phenotypic 90 

variance, and the incorporation of genotype-by-environment interaction into G-BLUP resulted 91 

in a predictive ability increase of up to 0.07 (Jung et al., 2022). The challenge of building 92 

multi-environmental datasets, coupled with the computational costs tied to the structural 93 

complexity of genomic prediction models accommodating genotype-by-environment 94 

interaction, has likely limited the use of such models in practice. 95 

Recent software advances that reduce computational time could enable broader adoption of 96 

multi-environmental genomic prediction models in plant breeding (Costa-Neto, Fritsche-Neto, 97 

et al., 2021; Granato et al., 2018). Empirical comparisons between the well-established R 98 

package ‘BGLR’ (Pérez & de los Campos, 2014) and the newer R package ‘BGGE’ (Granato 99 

et al., 2018), both of which apply the same model structures based on G-BLUP, revealed 100 

comparable predictive abilities, but ‘BGGE’ was up to five times faster (Granato et al., 2018). 101 

In addition to G-BLUP, covariance matrices, alternatively referred to as relationship matrices 102 

or kernels, can be estimated using approaches that capture nonlinearity in the relationships 103 

between phenotype and genotype. The nonlinear Gaussian kernel and the Deep kernel (also 104 

known as the arc-cosine kernel) have demonstrated superior performance compared to G-105 

BLUP, showing reduced computational time and increased predictive ability in maize and 106 

wheat datasets (Costa-Neto, Fritsche-Neto, et al., 2021; Cuevas et al., 2019). 107 

In addition to the commonly used genomic effects of molecular markers, the advancements in 108 

software have introduced straightforward options for incorporating additional sources of 109 

variation into genomic prediction models (Costa-Neto, Fritsche-Neto, et al., 2021; Costa-110 
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Neto, Galli, et al., 2021). Using the natural and orthogonal interactions (NOIA) approach, 111 

marker values can be split into additive values and dominance deviations that allow for 112 

orthogonal partition of variances, which implies that the proportions of additive genomic 113 

effects remain constant even when dominance effects are incorporated into the genomic 114 

prediction model (Álvarez-Castro & Carlborg, 2007). The incorporation of dominance effects 115 

into genomic prediction models is typically done by the use of relationship matrices, as 116 

proposed by Vitezica et al. (2013, 2017). Unlike other approaches to construct relationship 117 

matrices for dominance (e.g., Vitezica et al., 2013), the NOIA approach does not assume 118 

Hardy-Weinberg equilibrium, which makes it particularly suitable for populations such as 119 

those resulting from crosses (Vitezica et al., 2017). In apple, the inclusion of non-orthogonal 120 

dominance effects under the assumption of Hardy-Weinberg equilibrium did not affect 121 

predictive ability (Kumar et al., 2015). However, combining dominance effects applying the 122 

NOIA approach along with a fixed effect of inbreeding has demonstrated improved genomic 123 

predictive ability in maize and sugarcane (Roth et al., 2022; Yadav et al., 2021). Additionally, 124 

incorporating non-genetic effects derived from large-scale assessment of environmental 125 

attributes (i.e, envirotyping, resulting in environmental covariates also called enviromic 126 

markers (Cooper et al., 2014; Resende et al., 2021)) into genomic prediction models can 127 

improve the estimation of similarities between environments and genotype-by-environment 128 

interaction. This enhancement not only leads to increased predictive ability, but also offers a 129 

more comprehensive understanding of the complex interplay between genetic and 130 

environmental factors (Costa-Neto, Fritsche-Neto, et al., 2021; Jarquín et al., 2014). The 131 

enviromic-based effects, as well as the marker-based effects expressed as standard genomic, 132 

orthogonal additive and dominance effects, can all be studied as extensions of G-BLUP using 133 

conventional statistical genomic prediction model frameworks, which simplifies their 134 

integration into the modeling process. 135 

Deep learning approaches have emerged as an alternative to conventional statistical genomic 136 

prediction models. The literature review of Montesinos-López et al. (2021) on the application 137 

of deep learning for genomic selection showed no distinct superiority of deep learning 138 

approaches in terms of predictive ability compared to conventional genomic prediction 139 

models, unless very large datasets were used. However, deep learning models allow for 140 

effective integration of data from diverse sources, but they can also become impractical for 141 

datasets containing many variables, leading to computational complexity and overfitting. In 142 

plant breeding, datasets comprising thousands of markers are compiled, and dimensional 143 

reduction may help simplify marker information for deep learning (Kick et al., 2023). In the 144 

study by Jurado-Ruiz et al. (2023), the use of a small subset of associated markers was critical 145 

for accurate predictions of apple shape when deploying neural networks. The potential 146 

application of deep learning for multi-environmental genomic prediction of diverse 147 

quantitative apple traits has yet to be examined. 148 

This study aims to conduct a comprehensive comparison between conventional statistical 149 

models that integrate genomic- and enviromic-based effects and a deep learning approach for 150 

multi-environmental genomic prediction of apple traits. The subjects of prediction were 151 

eleven quantitative traits related to phenology, productivity, and fruit quality, which were 152 

measured from the apple REFPOP during five years at up to five locations, i.e., up to 25 153 
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environments (defined as combinations of location and year). The increased extent of the 154 

apple REFPOP dataset across environments allows an evaluation of different modeling 155 

techniques to harness the full potential of these data for accurate prediction of phenotypic 156 

traits. The main objectives of the study were: (i) to evaluate the relative contribution of 157 

different model components, i.e., random effects and feature streams, for the statistical and 158 

deep learning genomic prediction models, and (ii) to assess and compare predictive abilities 159 

of these models. By addressing these two crucial factors, this research aims to provide 160 

insights into the strengths and limitations of statistical models and deep learning to identify 161 

the best modelling solutions for the selection of apple cultivars adapted to diverse 162 

environmental conditions. 163 

 164 

RESULTS 165 

Dataset composition 166 

From the eleven phenotypic traits assessed in the apple REFPOP over five years and at a 167 

maximum of five locations, two environment-trait combinations were excluded due to very 168 

low values of the environment-specific clonal mean heritability (𝐻2 < 0.1). The excluded 169 

combinations included phenotypic measurements for floral emergence in Spain in 2020 170 

(𝐻2 = 0.036) and flowering intensity in France in 2021 (𝐻2 = 0.002). Consequently, 171 

phenotypic estimates were generated from a minimum of eight environments for titratable 172 

acidity, soluble solids content, and fruit firmness, while harvest date, total fruit weight, 173 

number of fruits, and single fruit weight were evaluated across the maximum number of 174 

environments, totaling 25 (Table S1). Various shapes of distributions and consistent patterns 175 

of Pearson's correlations were observed for the adjusted means of phenotypic traits over years 176 

and locations (Figure 1A, Figure S1, Figure S2). 177 

For the weather variables, moderate differences were observed in daily temperature means, 178 

daily humidity means, and daily radiation sums between years and locations (Figure 1B). 179 

Consequently, these data were summarized based on phenology, meaning the data was split 180 

into two periods: the first 80 days until 90% of the genotypes flowered, and the following 181 

days until 90% of the genotypes were harvested (Figure S3). After preprocessing the soil 182 

variables, the final enviromic dataset included 28 environmental covariates for weather and 183 

soil. 184 

Relationship matrices 185 

Implementation of the G-BLUP approach resulted in the standard genomic relationship matrix 186 

𝑲𝑮 (based on standard allele coding with allele dosage values of 0, 1, and 2), the additive 187 

genomic relationship matrix 𝑲𝑨, and the dominance genomic relationship matrix 𝑲𝑫 (Figure 188 

2A, B and C). The heatmaps of these matrices depicted a strong similarity between 𝑲𝑮 and 189 

𝑲𝑨 (Figure 2A and B). The lower-left quadrant of matrices 𝑲𝑮 and 𝑲𝑨 comprised the apple 190 

REFPOP accessions, revealing only subtle differences between these genotypes. The upper-191 

right quadrant of matrices 𝑲𝑮 and 𝑲𝑨 visualized the apple REFPOP progenies grouped 192 

according to their biparental origin. The progeny groups were evident in the matrix 𝑲𝑫, but 193 

no further strong relationships between genotypes were visually observed. 𝑲𝑨 and 𝑲𝑫 194 
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showed the mean of their matrix values close to zero and the mean of the diagonal of 1. 195 

Gaussian kernel and Deep kernel, used as alternative approaches to G-BLUP, resulted in 196 

matrices 𝑲𝑮𝑮𝑲 and 𝑲𝑮𝑫𝑲 (Figure 2D and E) that were visually similar to the 𝑲𝑮 and 𝑲𝑨 197 

matrices implemented using G-BLUP (Figure 2A and B), although some differences were 198 

observed particularly for the Gaussian kernel approach (Figure 2D). Application of the G-199 

BLUP to the enviromic dataset of 28 environmental covariates resulted in the enviromic 200 

relationship matrix 𝑲𝑾 (Figure 3). Hierarchical clustering of the matrix 𝑲𝑾 showed five 201 

clusters of environments, each cluster referring to one of the orchard locations. 202 

 203 
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Figure 1: Phenotypic and weather data distributions. A Density estimates for the adjusted 204 

means of eleven phenotypic traits from five locations and five years of measurement. The 205 

locations correspond to Belgium (BEL), Switzerland (CHE), Spain (ESP), France (FRA) and 206 

Italy (ITA). B Local regression curves spanning five years estimated from daily temperature 207 

means, daily humidity means and daily radiation sums. Colors correspond to legend in A. 208 

 209 

Figure 2: Heatmaps of the genomic relationship matrices. A Standard genomic relationship 210 

matrix 𝑲𝑮 based on a marker matrix using the standard coding for bi-allelic SNPs (allele 211 

dosage values of 0, 1, and 2). B Additive genomic relationship matrix 𝑲𝑨 based on marker 212 

matrix using the additive coefficients. C Dominance genomic relationship matrix 𝑲𝑫 based 213 

on marker matrix using the dominance coefficients. The matrices in A–C were constructed 214 

using the G-BLUP approach. D Standard genomic relationship matrix 𝑲𝑮𝑮𝑲 constructed 215 

deploying the Gaussian kernel (GK). E Standard genomic relationship matrix 𝑲𝑮𝑫𝑲 based on 216 

the Deep kernel (DK). The lower-left and upper-right quadrants show the apple REFPOP 217 

accessions and progenies, respectively. 218 ORIG
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 219 

Figure 3: The enviromic relationship matrix 𝑲𝑾 constructed from the environmental 220 

covariates for weather and soil using G-BLUP. Environments (combinations of location and 221 

year) were grouped applying hierarchical clustering. 222 

Contribution of the model components 223 

Decomposition of the phenotypic variance using linear mixed models by incorporating 224 

random effects for the vector of genotypes (i.e., genotypic effects) and genotype-by-225 

environment interaction, revealed that the proportion of phenotypic variance explained by the 226 

genotypic effects ranged from 9% for flowering intensity to 78% for harvest date (Figure 4A, 227 

Table S2). In contrast, the largest proportion of phenotypic variance explained by genotype-228 

by-environment interaction was observed for flowering intensity (29%). The lowest 229 

proportion of genotype-by-environment interaction variance (9%) was found for harvest date. 230 

The total variance explained by both genotypic and genotype-by-environment interaction 231 

effects reached 64% on average across traits (Table S3). 232 
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 233 

Figure 4: Relative contribution of different model components estimated for eleven traits. A 234 

Average proportions of phenotypic variance related to genotypic (g) and genomic (G) effects, 235 

their interactions (×) with the vector of environments (E), the enviromic effects (W), the 236 

interaction effects G×W as well as the residual effect extracted from the statistical genomic 237 

prediction model fits. The relationship matrices for the different effects in the statistical 238 

genomic prediction models were constructed using the G-BLUP approach or, where indicated, 239 

the Gaussian kernel (GK) or Deep kernel (DK). The statistical genomic prediction models 240 

were compared with a model based on phenotypic data (Phenotypic). Error bars correspond to 241 
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standard deviation around the mean. B Average proportions of phenotypic variance related to 242 

genomic (G), additive (A) and dominance (D) effects, their interactions (×) with the vector of 243 

environments (E) and the residual effect extracted from the statistical genomic prediction 244 

model fits. The model structures G and G+D were additionally extended with the fixed effect 245 

of inbreeding (inb). The relationship matrices for the different effects were based on G-BLUP. 246 

Error bars correspond to standard deviation around the mean. The results for the benchmark 247 

model G are the same as shown in A. C Relative contribution of the single nucleotide 248 

polymorphism (SNP), principal component (PC), weather, and soil feature streams estimated 249 

using Shapley additive explanations (SHAP) for the deep learning genomic prediction model. 250 

Error bars correspond to standard deviation around the mean. 251 

For the statistical genomic prediction based on G-BLUP, linear mixed model structures 252 

resulted from the application of the relationship matrices 𝑲𝑮, 𝑲𝑨, and 𝑲𝑫, representing 253 

genomic (G), additive (A), and dominance (D) effects, respectively. Various proportions of 254 

phenotypic variance related to these random effects and their interactions (×) were extracted 255 

from the model fits (Figure 4B, Table S2). Due to its model structure, the simplest genomic 256 

prediction model (used as a benchmark) was labeled as G, and its random genomic effects 257 

accounted for an average of 58% of the variance across traits (Table S3). Across all traits, 258 

model A explained ~1% more variance compared to model G (Table S3). Including the fixed 259 

effect of inbreeding in model G, leading to model G (inb), resulted in the same proportion of 260 

explained variance of 58% as for model G (Table S3). For the models G+D and G+D (inb), 261 

the average total proportion of variance explained by the model components G and D across 262 

traits was 1% lower than that of model G (Table S3). The model G+G×E+D+D×E, on average 263 

across traits, explained a proportion of variance 21% greater than that explained by model G 264 

(Table S3). 265 

The model G+G×E based on G-BLUP, including interactions with the environment, 266 

explained, on average across traits, a proportion of variance 14% greater than that explained 267 

by model G (Table S3). Specifically, the effect G accounted for variance ranging from 19% 268 

for flowering intensity to 81% for harvest date, and G×E explained variance ranging from 6% 269 

for harvest date to 23% for flowering intensity (Figure 4A, Table S2). 270 

The enviromic effects (W) and the interaction effects G×W were implemented applying the 271 

relationship matrix 𝑲𝑾 based on G-BLUP in the model structures G+W, G+W+G×W, and 272 

G+G×E+W+G×W, and these models explained, on average across traits, 24%, 25%, and 30% 273 

more variance than model G, respectively (Figure 4A, Table S3). For the most complex model 274 

G+G×E+W+G×W, the proportions of variance explained by the interaction effects G×E and 275 

G×W were modest, ranging from 4% to 9% for G×E and 2% to 4% for G×W (Table S2). 276 

When comparing models based on G-BLUP with their counterparts implementing Gaussian 277 

kernel using the relationship matrix 𝑲𝑮𝑮𝑲 (model structures labeled with GK), the models G 278 

(GK), G+G×E (GK), and G+G×E+W+G×W (GK) demonstrated an average increase in 279 

explained variance of 3%, 7%, and 3% across traits, respectively (Figure 4A, Table S3). 280 

However, the models G+W (GK) and G+W+G×W (GK) resulted in an average decrease in 281 

explained variance of up to 1% (Table S3). On average over traits, the model structures based 282 

on Deep kernel implementing the relationship matrix 𝑲𝑮𝑫𝑲 (model structures labeled with 283 
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DK) exhibited a strong decrease in the proportion of variance explained by the genomic- and 284 

enviromic-based random effects when compared to their counterparts utilizing G-BLUP, 285 

namely -22% for G (DK), -19% for G+G×E (DK), -26% for G+W (DK), -25% for 286 

G+W+G×W (DK), and -17% for G+G×E+W+G×W (Table S3). 287 

The applied deep learning genomic prediction model integrated marker and enviromic data 288 

through four feature streams, namely single nucleotide polymorphism (SNP), principal 289 

component (PC), weather, and soil streams, and the estimation of Shapley additive 290 

explanations (SHAP) revealed the relative mean importance of these feature streams (Figure 291 

4C, Table S4). Across all traits, the relative SHAP contributions were 50% for the SNP 292 

stream, 1% for the PC stream, 36% for the weather stream, and 13% for the soil stream. The 293 

relative SHAP contribution for the SNP stream ranged from 18 to 26% for floral emergence 294 

and the productivity traits (flowering intensity, total fruit weight and number of fruits) to 80% 295 

for titratable acidity. For the PC stream, the relative SHAP contribution ranged between 0% 296 

for russet frequency and 3% for number of fruits. The lowest weather stream contribution of 297 

10% was found for titratable acidity, while the largest contribution of the weather stream of 55 298 

to 63% was found for floral emergence and the productivity traits (flowering intensity, total 299 

fruit weight and number of fruits). The relative SHAP contribution for the soil stream ranged 300 

between 5% for soluble solids content and 19 to 23% for floral emergence and two 301 

productivity traits (total fruit weight and number of fruits). An abundance of SNPs displaying 302 

high absolute mean SHAP were found for harvest date, titratable acidity and red over color 303 

(Figure S4, Figure S5). For harvest date, three SNPs with the highest absolute mean SHAP of 304 

0.002 were located on chromosome 3 at 29.2 Mb (AX-115250472), 30.7 Mb (AX-305 

115366114), and 30.8 Mb (AX-115233388). The three SNPs with the highest absolute mean 306 

SHAP of 0.003 for titratable acidity were found on chromosome 8 at 10.7 Mb (AX-307 

115276534), 10.8 Mb (AX-115254093), and 11.8 Mb (AX-115519462). For red over color, 308 

the three SNPs with the highest absolute mean SHAP of 0.005 were located on chromosome 9 309 

at 33.8 Mb (AX-105213720, AX-115558498), and 35.6 Mb (AX-115370846). 310 

Predictive ability 311 

Assessment of genomic prediction model performance using five-fold cross-validation 312 

showed that the average predictive ability across traits ranged from 0.45 to 0.49 for the 313 

compared models (Figure 5, Table S5). Based on these average predictive abilities, the model 314 

G+W+G×W emerged as the least efficient, with an average predictive ability across traits of 315 

0.45. Models A, G (inb), G+W, G+W+G×W (GK), G+W+G×W (DK), G+G×E+W+G×W, 316 

G+D, and G+D (inb) demonstrated equivalent average predictive ability across traits, with a 317 

value of 0.46, comparable to the benchmark model G based on G-BLUP. Average predictive 318 

ability across traits of 0.47 was found for the models G (GK), G (DK), G+G×E, G+W (GK), 319 

G+W (DK), and G+G×E+D+D×E. The models G+G×E+W+G×W (GK), G+G×E+W+G×W 320 

(DK) and deep learning provided additional improvement with the average predictive ability 321 

across traits of 0.48. The models G+G×E (GK) and G+G×E (DK) showed the highest average 322 

predictive ability across traits of 0.49. 323 

 324 
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 325 

Figure 5: Comparison of predictive ability averaged across all studied traits. The statistical 326 

genomic prediction models were based on combinations of the genomic (G), additive (A), 327 

dominance (D), and enviromic (W) effects, interactions (×) with the vector of environments 328 

(E), and interactions between the genomic and enviromic effects (G×W). The model 329 

structures G and G+D were additionally extended with the fixed effect of inbreeding (inb). 330 

The relationship matrices for the different effects in the statistical genomic prediction models 331 

were constructed using the G-BLUP approach or, where indicated, the Gaussian kernel (GK) 332 

or Deep kernel (DK). The y-axis was truncated to provide a detailed model comparison. See 333 

Table S6 for a comparison of the predictive ability for each trait. 334 

For four models selected for an in-depth comparison with the benchmark model G based on 335 

their performance and characteristics (G (GK), G+G×E, G+G×E (GK), and deep learning), 336 

strong differences in average predictive ability were observed among the examined traits 337 

(Figure 6, Table S6). Flowering intensity and russet frequency were at the lower end of the 338 

predictive ability spectrum, while harvest date and red over color were at the upper end. 339 

Compared to model G, the model G (GK) showed an increase in average predictive ability of 340 

0.01 to 0.02 for most traits, but no improvement in predictive ability was found using this 341 

model for titratable acidity and fruit firmness. Model G+G×E led to an increase in average 342 

predictive ability of 0.07 for flowering intensity and 0.01 to 0.02 for floral emergence, 343 

number of fruits, single fruit weight, soluble solids content, and russet frequency. It showed 344 

no improvement for harvest date, total fruit weight, titratable acidity, fruit firmness, and red 345 

over color. Model G+G×E (GK) demonstrated an additional improvement in average 346 

predictive ability of 0.01 to 0.02 compared to model G+G×E for all traits, except for titratable 347 

acidity and fruit firmness. For these two traits, the incorporation of the G×E effect led to a 348 

decrease in average predictive ability by 0.01 in both tested models, G+G×E and G+G×E 349 
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(GK), compared to model G. The deep learning genomic prediction model demonstrated 350 

higher predictive abilities than model G for five out of the eleven traits studied. For harvest 351 

date, titratable acidity and red over color, the deep learning genomic prediction model 352 

outperformed all statistical genomic prediction models tested. The increase in average 353 

predictive ability compared to model G was 0.06 for harvest date, 0.07 for titratable acidity, 354 

and 0.10 for red over color. 355 

 356 

Figure 6: Boxplots of predictive abilities for eleven traits estimated using statistical and deep 357 

learning genomic prediction models. The statistical genomic prediction models were based on 358 

combinations of the genomic effects (G) and their interactions with the vector of 359 

environments (G×E). The relationship matrices for the different effects in the statistical 360 

genomic prediction models were constructed using the G-BLUP approach or, where indicated, 361 

the Gaussian kernel (GK). Twenty-five predictive ability estimates were generated for each 362 

available environment (up to 625 estimates per trait), and their average was displayed as black 363 

diamonds for each model and trait. Jittered points (grey) show all predictive ability estimates 364 

for each trait. 365 
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DISCUSSION 367 

This study provides insights into the complexities of multi-environmental genomic prediction 368 

in quantitative apple traits. The incorporation of different sources of variation in the form of 369 

model components, and the comparison of predictive abilities between statistical genomic 370 

prediction models and a deep learning approach contribute to advancing the understanding of 371 

efficient genomic prediction methodologies. The findings highlight the need for a nuanced 372 

approach, considering the specific traits and modelling approaches in plant breeding 373 

applications. 374 

Modelling genotype-by-environment interaction 375 

In the context of genomic prediction across environments (defined as combinations of 376 

location and year), this work underscored a detectable improvement in predictive ability when 377 

employing genomic prediction models based on G-BLUP that integrate both main marker 378 

effects and the interaction effects of markers and environments, as it has been described by 379 

previous studies (Jarquín et al., 2014; Jung et al., 2022; Lopez-Cruz et al., 2015). Compared 380 

to the benchmark genomic prediction model implementing exclusively the main marker 381 

effects, Jung et al. (2022) reported up to 0.07 increase in predictive ability for apple traits by 382 

integrating the random effects for G×E using the software package ‘BGLR’ (Pérez & de los 383 

Campos, 2014). In this study deploying the newer software ‘BGGE’ (Granato et al., 2018), an 384 

analogous model comparison based on the same plant material but including two additional 385 

years of phenotypic data showed comparable improvements in predictive ability of up to 0.07. 386 

Average predictive ability across eleven studied traits for models incorporating G×E using G-387 

BLUP was 0.01 lower compared to the average predictive ability for the same traits reported 388 

previously (Table S6, Jung et al., 2022). As the predictive ability of G×E models based on G-389 

BLUP was similar in ‘BGLR’ and ‘BGGE’ (Granato et al., 2018), the difference in predictive 390 

ability was likely due to the changes in the phenotypic dataset between the compared studies. 391 

The inclusion of G×E effects led to an increase in predictive ability, which was associated 392 

with a higher proportion of variance explained by the random effects (Figure 4). However, the 393 

improvement in predictive ability was disproportionately smaller compared to the increase in 394 

explained variance. This discrepancy between the substantial rise in explained variance and 395 

the modest gain in predictive ability was observed across all the statistical genomic prediction 396 

models studied, contrary to expectations (Costa-Neto, Fritsche-Neto, et al., 2021). It might be 397 

explained by the fact that variance was estimated using the training sets, while predictive 398 

ability was evaluated on the validation sets. This suggests that the model, although effectively 399 

capturing patterns in the training set, did not generalize well to the validation set, resulting in 400 

limited improvements in predictive ability for the validation set. 401 

Dominance effects 402 

Previous study by Kumar et al. (2015) showed similar predictive ability between genomic 403 

prediction models with and without dominance effects when analyzing quantitative traits in 404 

apple. In their work, dominance effects were modeled using nonorthogonal coefficients and 405 

under the assumption of Hardy-Weinberg equilibrium. In contrast, our study implemented 406 

orthogonal dominance coefficients that do not assume Hardy-Weinberg equilibrium, leading 407 
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to the expectation of improved predictive ability (Yadav et al., 2021; Roth et al., 2022). 408 

However, despite this implementation, only limited improvement in predictive ability was 409 

observed for the G+D and G+G×E+D+D×E models, as well as for models incorporating 410 

inbreeding (Table S5). 411 

Orthogonal partitioning of variances implies that the proportions of additive genomic effects 412 

remain unchanged when additional effects, such as dominance, are introduced into the 413 

genomic prediction model (Álvarez-Castro & Carlborg, 2007). Despite using the NOIA 414 

procedure for orthogonal partitioning of additive and dominant variances that does not assume 415 

Hardy-Weinberg equilibrium (Álvarez-Castro & Carlborg, 2007; Vitezica et al., 2017), our 416 

results indicate nonorthogonality when comparing models G, A and G+D. Specifically, the 417 

comparison of these models showed a 22% reduction in the average proportion of variance of 418 

the genomic effects across all studied traits for model G+D, and a 1% decrease in the total 419 

average variance explained by model G+D (Table S2, Table S3). Similar results have been 420 

found in different crops, where the extension of models analogous to G and A with dominance 421 

effects (orthogonal or nonorthogonal, assuming or not assuming Hardy-Weinberg 422 

equilibrium) has often led to reduced estimates of additive variance components, and 423 

sometimes even to a reduction in the total explained variance, falling below the levels 424 

achieved by the simpler models G and A (Amadeu et al., 2020; Costa-Neto, Fritsche-Neto, et 425 

al., 2021; Kumar et al., 2015; Roth et al., 2022; Yadav et al., 2021). While an earlier study 426 

showed that dominance variance was overestimated when inbreeding was not taken into 427 

account (Vitezica et al., 2018), our variance decomposition showed no signs of upwardly 428 

biased estimates of dominance variance in model G+D compared to G+D (inb) (Table S2). 429 

Our results likely point to potential problems in variance estimation caused by linkage 430 

disequilibrium (Roth et al., 2022; Vitezica et al., 2017), which is prevalent in breeding 431 

material such as that contained in the apple REFPOP. Beside the violation of the assumption 432 

of linkage equilibrium, the incorrect variance partitioning may have resulted from fitting 433 

multiple genetic and genotype-by-environment interaction effects within the framework of 434 

multi-environmental genomic prediction, which deserves further investigation. A preliminary 435 

analysis outside the scope of this study indicated that orthogonality was restored when 436 

conducting analyses on across-location clonal values (results not shown). 437 

Compared to other approaches to modelling non-additive effects, the NOIA approach retains 438 

the advantage of allowing deviations from the Hardy-Weinberg equilibrium (Vitezica et al., 439 

2017). In contrast, the method by VanRaden (2008) for constructing standard genomic 440 

relationship matrices assumes that the population is unselected and in Hardy-Weinberg 441 

equilibrium. However, instead of using allele frequencies from a hypothetical unselected 442 

population in Hardy-Weinberg equilibrium, the standard genomic relationship matrix 𝑲𝑮 was 443 

computed using observed allele frequencies from our training population. Although this 444 

assumption is violated for 𝑲𝑮, our study showed a strong similarity between 𝑲𝑮 and the 445 

additive genomic relationship matrix 𝑲𝑨 that was based on the NOIA approach (Figure 2), 446 

along with the near-identical average predictive abilities across traits observed for models G 447 

and A (Figure 5). These outcomes may suggest that any potential violation of Hardy-Weinberg 448 

equilibrium in the studied population had minimal impact on genomic prediction. In addition, 449 

despite the similarity between 𝑲𝑮 and 𝑲𝑨, differences in the prediction error variance of the 450 
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genomic-estimated breeding values could arise when using these matrices in genomic 451 

prediction models (Strandén & Christensen, 2011). However, these differences were not 452 

investigated in this study. 453 

Non-genetic effects from envirotyping 454 

As suggested by moderate differences in daily weather variables among years and locations, 455 

and the low differentiation between environments within a location in the enviromic 456 

relationship matrix, environmental covariates discriminated well between locations but 457 

weakly between specific environments. This could likely be explained by the larger number 458 

of soil covariates (22) than weather covariates (6), and the lack of variability between years 459 

for the soil covariates due to their single measurement at each orchard location in 2016. 460 

Additionally, the precipitation variable, which could have aided in distinguishing between 461 

environments, had to be excluded from the analysis. This decision was prompted by the 462 

confounding of precipitation with irrigation at some apple REFPOP locations. Nevertheless, 463 

the enviromic-based effects explained a substantial part of the phenotypic variance, especially 464 

for floral emergence known to be strongly affected by the environment (Jung et al., 2022). 465 

Although a large proportion of phenotypic variance was explained here by the enviromic-466 

based effects, and these effects have been shown to positively influence predictive ability in 467 

other crops (Costa-Neto, Fritsche-Neto, et al., 2021; Jarquín et al., 2014), they have not 468 

resulted in any increase in predictive ability for apple traits. For productivity traits such as 469 

flowering intensity, which depends on flower bud formation during the previous vegetation 470 

season, the models could likely benefit from including prior-year environmental data in the 471 

construction of the enviromic matrix. 472 

Alternative kernels 473 

Similar to previous reports that have shown increased predictive ability when Gaussian kernel 474 

and Deep kernel were applied (Costa-Neto, Fritsche-Neto, et al., 2021; Cuevas et al., 2019), 475 

these kernels resulted in a modest but significant improvement in predictive ability of 0.01–476 

0.02 for most of the studied traits. The Gaussian kernel proved particularly suitable for 477 

capturing variance attributed to G×E. Model structures based on the Deep kernel generally 478 

explained a smaller proportion of phenotypic variance than those using the Gaussian kernel 479 

and G-BLUP. This characteristic rendered Deep kernel less suitable for evaluating trait 480 

genetic architecture. Nevertheless, the Deep kernel-based models demonstrated improved 481 

predictive abilities, equivalent to those of Gaussian kernel-based models. Overall, both 482 

alternative kernels proved to be efficient substitutes for G-BLUP. 483 

Deep learning for genomic prediction 484 

Specifically for each trait and cross-validation fold, the dimensional reduction of the marker 485 

dataset to a subset of 1,000 SNPs selected by a gradient boosting algorithm, extended with 486 

known marker-trait associations, allowed an efficient implementation of a deep learning 487 

approach for multi-environmental genomic prediction in apple. The studied deep learning 488 

approach combined feature streams derived from marker information with streams 489 

incorporating weather and soil variables. It resulted in stream contributions that effectively 490 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T

D
ow

nloaded from
 https://academ

ic.oup.com
/hr/advance-article/doi/10.1093/hr/uhae319/7905165 by Bibliothek am

 G
uisanplatz user on 27 N

ovem
ber 2024



 

17 
 

represented trait genetic architectures described in this and previous studies using statistical 491 

genomic prediction models (Jung et al., 2022). 492 

Our study demonstrated that the applied deep learning approach was particularly well-suited 493 

for oligogenic traits. For these traits, governed by a few genes, the dimensionality reduction of 494 

the marker dataset allowed important genomic information to be effectively represented. The 495 

trait genetic architecture for harvest date was particularly well captured, with a 72% 496 

contribution from the SNP stream. Harvest date was previously described as oligogenic trait 497 

with significant large-effect marker associations found on chromosomes 3, 10 and 16 using 498 

the apple REFPOP dataset (Jung et al., 2020, 2022). The strongest of these associations on 499 

chromosome 3 at 30.7 Mb (Jung et al., 2022) was located in a major locus NAC18.1 500 

associated with harvest date and multiple ripening traits (Migicovsky et al., 2016; Watts et al., 501 

2023). The deep learning genomic prediction model proved efficient in capturing this major 502 

locus, as the three SNPs with the highest absolute mean SHAP were located on chromosome 3 503 

at 29.2, 30.7, and 30.8 Mb, the marker AX-115366114 at 30.7 Mb being strongly associated 504 

with harvest date according to our previous study (Jung et al., 2022). Moreover, the deep 505 

learning genomic prediction model outperformed the benchmark statistical genomic 506 

prediction model G for harvest date, improving predictive ability by 0.06 and achieving the 507 

highest predictive ability among all tested models at 0.75. 508 

Red over color has shown similar predictive ability and trait genetic architecture as harvest 509 

date in this and previous studies based on statistical genomic prediction models (Jung et al., 510 

2022). The SNPs associated with MdMYB1 transcription factor on chromosome 9, which 511 

regulates red pigmentation of apple skin (Takos et al., 2006), translated into large absolute 512 

mean SHAP values and predictive ability improved by 0.10 compared to model G. Similar 513 

results were observed for titratable acidity, where large absolute mean SHAP were found, and 514 

the three SNPs with the largest SHAP were located on chromosome 8 at 10.7, 10.8, and 11.8 515 

Mb. Two large-effect loci are known for acidity in apple, namely Ma on chromosome 16 and 516 

Ma3 on chromosome 8 (Verma et al., 2019). The SNPs on chromosome 8 indicated a strong 517 

association with the Ma3 locus, and they colocalized with the SNP marker predictive for this 518 

locus at 10.9 Mb (Rymenants et al., 2020). The maximum relative SHAP contribution for the 519 

SNP stream of 80% was reached for titratable acidity. Moreover, the predictive ability of the 520 

deep learning genomic prediction model for titratable acidity was improved by 0.07 compared 521 

to the statistical genomic prediction model G. Our results for harvest date, red over color, and 522 

titratable acidity showed that high relative and absolute SHAP values can serve as predictors 523 

of improved deep learning genomic prediction model performance, and that the applied deep 524 

learning approach can precisely predict apple traits characterized by oligogenic architecture. 525 

According to Montesinos-López et al. (2021), the predictive ability of deep learning 526 

approaches typically falls below that of conventional models for genomic prediction, unless 527 

very large datasets are examined. In our study, the sizes of datasets showed large differences 528 

between the three traits with predictive ability superior to all other compared statistical 529 

genomic prediction models (total number of training instances of 12,428 for harvest date, 530 

10,317 for red over color, and 2,879 for titratable acidity, Table S1). Although the number of 531 

available environments ranged from the minimum of eight for titratable acidity to the 532 

maximum of 25 for harvest date, similar improvement in predictive ability was reached for 533 
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these traits using the applied deep learning approach. As the improvements in predictive 534 

ability for harvest date, red over color, and titratable acidity were observed independently 535 

from the number of training instances, the size of the phenotypic dataset is unlikely to have 536 

affected our predictions. Nevertheless, an additional improvement in predictive ability for the 537 

deep learning model may be anticipated by increasing the training population size in terms of 538 

the number of genotypes. 539 

Multi-environmental genomic selection in apple breeding 540 

The establishment of multi-environmental genomic selection in apple has been constrained by 541 

several factors, including the costly collection of extensive multi-environmental datasets and 542 

computational limitations. The phenotyping efforts in the apple REFPOP yielded an 543 

unprecedented dataset in terms of trait-environment combinations (Jung et al., 2022), which 544 

has been expanded in this study with two additional years of phenotyping. This dataset now 545 

encompasses phenotypic data for eleven traits across up to 25 environments. The availability 546 

of this dataset has enabled the implementation of multi-environmental genomic prediction 547 

models within a computationally efficient framework, laying the groundwork for the practical 548 

application of multi-environmental genomic selection in apple. Further insights into predictive 549 

ability for independent test sets could be gained in the future by assessing the predictive 550 

performance on breeding material distinct from the apple REFPOP. Additionally, expanding 551 

the training set size may increase predictive ability for some traits (Minamikawa et al., 2024) 552 

and could potentially enable a more accurate estimation of variance components. To expand 553 

the dataset by increasing the number of genotypes and environments, new collaborative 554 

approaches between breeders are required to generate data capable of overcoming this 555 

challenge. 556 

The approach to multi-environmental genomic prediction of apple traits used in this study 557 

diverges from the traditional understanding of environments in apple tree cultivation. In 558 

practice, apple trees remain stationary in the same location across multiple years. This 559 

stationary nature of apple cultivation implies that the effects of yearly climatic variations are 560 

superimposed on the same geographical location, whereas the genomic prediction approach 561 

treats each year-location combination as a distinct environment. Nevertheless, breeding values 562 

for apple genotypes lacking phenotypic information can be predicted across diverse 563 

environmental conditions using the genomic prediction models trained in this study. 564 

Among all predictions obtained, the model G+G×E applying Gaussian and Deep kernels 565 

improved predictive abilities for most traits (except for titratable acidity and fruit firmness, 566 

where it showed results comparable to those of the benchmark model G). Therefore, the 567 

model G+G×E proved to be a universally effective solution for multi-environmental genomic 568 

prediction in the studied apple traits. Additionally, the G+G×E model, along with other 569 

statistical genomic prediction models tested, was outperformed by the applied deep learning 570 

approach for three traits with oligogenic genetic architectures (harvest date, titratable acidity, 571 

and red over color). Depending on the genetic architecture of the trait, either the G+G×E 572 

model or the deep learning approach can be recommended for multi-environmental genomic 573 

predictions, leading to informed breeding decisions, and assisting in the selection of cultivars 574 

more adaptable to future climates.  575 
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MATERIALS AND METHODS 576 

Plant material 577 

The apple REFPOP comprised 265 progenies from 27 biparental families generated by 578 

European breeding programs, along with 269 diverse accessions (Jung et al., 2020). This 579 

study focused on five locations: (i) Rillaar, Belgium, (ii) Angers, France, (iii) Laimburg, Italy, 580 

(iv) Lleida, Spain, and (v) Waedenswil, Switzerland. At each location, all genotypes were 581 

generally represented by two trees and planted in 2016 using a randomized complete block 582 

design. Three control genotypes, namely 'Gala', 'Golden Delicious', and 'CIVG198', were 583 

replicated up to 22 times at each location. The cultivation followed the common agricultural 584 

practices specific to each location, incorporating integrated plant protection methods. 585 

Phenotyping 586 

Phenotyping of the eleven traits followed the methodology described by Jung et al. (2022). 587 

Individual trees, representing genotype replicates, were used for trait measurement. Floral 588 

emergence was determined in Julian days, marking the date when the first 10% of flowers 589 

opened. Flowering intensity was evaluated on a nine-grade scale, indicating the percentage of 590 

existing flowers relative to the maximum potential number of flowers. Fruits were harvested 591 

on harvest dates, determined in Julian days, based on expert estimates of fruit ripening. Total 592 

fruit weight (kg) and fruit number were recorded to assess production per tree. Single fruit 593 

weight (g) was estimated by dividing the total fruit weight by the number of fruits. Titratable 594 

acidity (g/l), soluble solids content (°Brix), and fruit firmness (g/cm
2
) were measured within 595 

one week post-harvest using an automated instrument Pimprenelle (Setop, France). Red over 596 

color, representing the percentage of red fruit skin, was assessed on a six-grade scale. Russet 597 

frequency indicated the percentage of fruits exhibiting russet skin. Further information 598 

regarding the evaluation of the eleven traits is available in Jung et al. (2022). For the different 599 

traits, the assessment spanned a period of up to five years from 2018 to 2022 and was 600 

performed at up to five locations. 601 

Envirotyping 602 

Hourly measurements of temperature (°C) at 2 m above soil level, relative humidity (%) and 603 

global radiation (W/m2) were obtained from the weather stations near the apple REFPOP 604 

orchards from 2018 to 2022. Precipitation (mm) was not taken into consideration in this study 605 

due to irrigation practices in part of the orchard locations. 606 

In each apple REFPOP orchard between May 12 and June 9, 2016, a total of six soil samples 607 

were collected from three distinct sampling points and two soil depths (approximately 1–20 608 

cm and 20–40 cm). In the accredited Laboratory for Soil and Plant Analysis of Laimburg 609 

Research Centre, Italy, the soil samples were analyzed for (i) organic carbon (% humus), (ii) 610 

pH, (iii) carbonate test, expressed as low to medium, high, very high or no carbonate content, 611 

(iv) carbonate requirement (dt/ha CaO), (v) phosphorus (mg/100 g P2O5), (vi) potassium 612 

(mg/100 g K2O), (vii) magnesium (mg/100 g), (viii) boron (mg/kg), (ix) manganese (mg/kg), 613 

(x) copper (mg/kg), and (xi) zinc (mg/kg). 614 

Genotyping 615 
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As detailed by Jung et al. (2020), the apple REFPOP underwent genotyping for biallelic single 616 

nucleotide polymorphisms (SNPs) through a dual approach utilizing the Illumina Infinium® 617 

20K SNP genotyping array (Bianco et al., 2014) and the Affymetrix Axiom® Apple 480K 618 

SNP genotyping array (Bianco et al., 2016). By employing the Beagle 4.0 software (Browning 619 

& Browning, 2007) and incorporating pedigree information (Muranty et al., 2020), the 620 

obtained SNP sets were integrated through imputation, ultimately yielding a genomic dataset 621 

of 303,239 biallelic SNPs. All SNP positions were based on the doubled haploid GDDH13 622 

(v1.1) reference genome (Daccord et al., 2017). 623 

Phenotypic data preprocessing 624 

Analyses of phenotypic data were conducted to ensure high data quality by addressing low 625 

heritability, spatial heterogeneity, and eliminating outliers. The statistical model for the 626 

phenotypic data preprocessing was fitted via restricted maximum likelihood using the R 627 

package ‘lme4’ (v.1.1-28) (Bates et al., 2015) as: 628 

𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝜺   (Equation 1) 629 

where 𝒚 was the vector of the response variable, 𝑿 the design matrix for the fixed effects, 𝜷 630 

the vector of the fixed effects, 𝒁 was the design matrix for the random effects, 𝒖 the vector of 631 

the random effects assuming 𝒖~𝑁(0, 𝚺) with 𝚺 being the variance–covariance matrix of the 632 

random effects and 𝜺 the vector of the random errors assuming 𝜺~𝑁(0, 𝜎𝜀
2𝑰) with 𝜎𝜀

2 being 633 

the error variance and 𝑰 the identity matrix. 634 

Separately for each trait and environment (combined factor of location and year), raw 635 

phenotypic values for each genotype replicate (total fruit weight and fruit number were log-636 

transformed) were used as response variable to fit a random-effects model with a random 637 

effect of genotype following the Equation 1. From the variance components of the random-638 

effects model, the environment-specific clonal mean heritability was calculated as: 639 

𝐻2 =
𝜎𝑔
2

𝜎𝑔2 +
𝜎𝜀2

�̅�𝑡

 

where 𝜎𝑔
2 was the genotypic variance and �̅�𝑡 the mean number of genotype replications. The 640 

environment-specific clonal mean heritability was used to remove trait-environment 641 

combinations with the heritability value below 0.1. 642 

To account for spatial variation in the orchards, spatial heterogeneity in the raw phenotypic 643 

data was modeled separately for each trait-environment combination using the spatial analysis 644 

of field trials with splines (‘SpATS’ (v.1.0-11)) (Rodríguez-Álvarez et al., 2018) as described 645 

by Jung et al. (2020). From the fitted SpATS objects, the adjusted phenotypic values of each 646 

genotype and the adjusted phenotypic values of each tree were obtained. 647 

The adjusted phenotypic values of each genotype were used as response variable for fitting a 648 

mixed-effects model with a fixed effect of environment and a random effect of genotype 649 

following Equation 1. Subsequently, the outliers were detected using Bonferroni–Holm test to 650 

judge residuals standardized by the re‑scaled median absolute deviation (BH‑MADR) as 651 

described by Bernal-Vasquez et al. (2016). The identified outliers were removed and the 652 
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remaining trait- and environment-specific adjusted phenotypic values of each genotype were 653 

further denoted as adjusted means. The adjusted means for the eleven studied traits were 654 

compared separately for each year and location using the pairwise Pearson's correlations and 655 

significance tests implemented in the R package ‘corrplot’ (v.0.92) (Wei & Simko, 2021). The 656 

significance levels of 0.05, 0.01, and 0.001 were Bonferroni-corrected by dividing them by 657 

the total number of pairwise comparisons among the eleven traits. 658 

Following Equation 1, the adjusted phenotypic values of each tree served as the response 659 

variable in fitting a mixed-effects model, denoted here as the phenotypic model. This model 660 

included the fixed effects of environment (E), the random effects of genotype (g), and random 661 

effects of genotype-by-environment interaction (g×E). The proportions of phenotypic variance 662 

explained by the random effects were extracted from the model fit for comparison with the 663 

statistical genomic prediction models. 664 

Enviromic data preprocessing 665 

The enviromic data were restructured to acquire appropriate inputs for the subsequent 666 

modelling. Daily temperature means, daily humidity means, and daily radiation sums were 667 

calculated from the hourly measurements. These three daily weather variables were visualized 668 

applying local regression curves estimated using Loess with a span of 0.1. 669 

Inspired by Jarquín et al. (2014), the three daily weather variables were processed to create six 670 

environmental covariates by dividing each growing season into two periods based on crop 671 

phenology. The two periods were defined separately for each environment. The first period 672 

extended for 80 days, concluding on the day when 90% of the genotypes flowered, 673 

determined from adjusted means for floral emergence. The second period followed the first 674 

until the day when 90% of the genotypes were harvested, as indicated by the adjusted means 675 

for harvest date. Different approaches to defining the first period were employed for two 676 

environments where adjusted means for floral emergence were unavailable. In the case of the 677 

environment ESP.2020, which was excluded due to low heritability, the adjusted phenotypic 678 

values of each genotype were used to estimate the day when 90% of the genotypes flowered. 679 

For ESP.2022, where floral emergence scores were missing, the end date of the first period 680 

was estimated based on varieties cultivated near the apple REFPOP. Daily temperature means, 681 

daily humidity means, and daily radiation sums were summed over each respective period, 682 

resulting in six environmental covariates. Additionally, 22 environmental covariates were 683 

obtained as mean values of eleven soil characteristics calculated per location and the level of 684 

soil depth. All 28 environmental covariates were collected in the 𝑞 × 𝑧 matrix of 685 

environmental covariates 𝑴𝑾 with 𝑞 environments and 𝑧 environmental covariates, which 686 

was then scaled and centered to the mean of zero and standard deviation of one. 687 

Marker matrices 688 

Three marker matrices were constructed based on the genomic dataset of biallelic SNPs. The 689 

first matrix followed the standard allele coding, where a SNP was assigned the value 0 when 690 

the individual (i.e., genotype) was homozygous for the first allele (𝑎), 1 when the genotype 691 

was heterozygous, and 2 when the genotype was homozygous for the second allele (𝐴). The 692 

allele coding can be referred to as coefficients in the marker matrix. Therefore, the 𝑛 ×𝑚 693 
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marker matrix of the standard coefficients 𝑴𝑮 with 𝑖 = 1,… , 𝑛 genotypes and 𝑗 = 1,… ,𝑚 694 

markers was: 695 

𝑴𝑮 = [

ℎ𝐺11 ⋯ ℎ𝐺1𝑚
⋮ ⋱ ⋮

ℎ𝐺𝑛1 ⋯ ℎ𝐺𝑛𝑚

] 

where the element ℎ𝐺𝑖𝑗  for the 𝑖th genotype and 𝑗th marker was equal to: 696 

ℎ𝐺𝑖𝑗 = {
2
1
0

   for   {
𝐴𝐴
𝐴𝑎
𝑎𝑎

 697 

with 𝐴𝐴, 𝐴𝑎 and 𝑎𝑎 being the combinations of the alleles 𝑎 and 𝐴 at the marker 𝑗. Each 698 

column of the matrix 𝑴𝑮 was scaled and centered to the mean of zero and standard deviation 699 

of one. 700 

The second and third marker matrices followed the NOIA model (Álvarez-Castro & Carlborg, 701 

2007) as implemented by Vitezica et al. (2017). These matrices were estimated from the 702 

elements of the marker matrix of the standard coefficients 𝑴𝑮 and had the same dimension. 703 

The element ℎ𝐴𝑖𝑗 for the 𝑛 × 𝑚 marker matrix of additive coefficients 𝑴𝑨 and the element 704 

ℎ𝐷𝑖𝑗  for the 𝑛 ×𝑚 marker matrix of dominance coefficients 𝑴𝑫 were calculated as follows: 705 

ℎ𝐴𝑖𝑗 = {

−(−𝑝𝐴𝑎 − 2𝑝𝑎𝑎)
−(1 − 𝑝𝐴𝑎 − 2𝑝𝑎𝑎)
−(2 − 𝑝𝐴𝑎 − 2𝑝𝑎𝑎)

   for   {
𝐴𝐴
𝐴𝑎
𝑎𝑎

 706 

and 707 

ℎ𝐷𝑖𝑗 =

{
 
 

 
 −

2𝑝𝐴𝑎𝑝𝑎𝑎

𝑝𝐴𝐴+𝑝𝑎𝑎−(𝑝𝐴𝐴−𝑝𝑎𝑎)2

4𝑝𝐴𝐴𝑝𝑎𝑎

𝑝𝐴𝐴+𝑝𝑎𝑎−(𝑝𝐴𝐴−𝑝𝑎𝑎)2

−
2𝑝𝐴𝐴𝑝𝐴𝑎

𝑝𝐴𝐴+𝑝𝑎𝑎−(𝑝𝐴𝐴−𝑝𝑎𝑎)2

   for   {
𝐴𝐴
𝐴𝑎
𝑎𝑎

 708 

with 𝑝𝐴𝐴, 𝑝𝐴𝑎 and 𝑝𝑎𝑎 being the relative frequencies for the allelic combinations 𝐴𝐴, 𝐴𝑎 and 709 

𝑎𝑎 at marker 𝑗. 710 

Relationship matrices 711 

The marker matrices 𝑴𝑮, 𝑴𝑨 and 𝑴𝑫 and the matrix of environmental covariates 𝑴𝑾 were 712 

used to estimate the standard genomic relationship matrix 𝑲𝑮, the additive genomic 713 

relationship matrix 𝑲𝑨, the dominance genomic relationship matrix 𝑲𝑫, and the enviromic 714 

relationship matrix 𝑲𝑾, respectively. Initially, all relationship matrices were created based on 715 

the genomic best linear unbiased predictor (G-BLUP) approach described by VanRaden 716 

(2008). The covariance matrix following the G-BLUP approach was obtained as: 717 

𝑲 =
𝑴𝑴′

𝑡𝑟(𝑴𝑴′)/𝑛𝑟𝑜𝑤(𝑴)
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where 𝑲 was a generic representation of the relationship matrix (𝑲𝑮, 𝑲𝑨, 𝑲𝑫 and 𝑲𝑾), 𝑴 718 

was a generic representation of the marker matrices 𝑴𝑮, 𝑴𝑨 and 𝑴𝑫 as well as the matrix of 719 

environmental covariates 𝑴𝑾, and 𝑛𝑟𝑜𝑤 was the number of genotypes for 𝑴𝑮, 𝑴𝑨 and 𝑴𝑫 720 

or the number of environments for 𝑴𝑾. 721 

Subsequently, two covariance matrix types, namely the Gaussian kernel (González-Camacho 722 

et al., 2012) and Deep kernel (Cuevas et al., 2019), were examined as alternatives to the G-723 

BLUP approach. The Gaussian kernel is a nonlinear method based on a bandwidth parameter 724 

that controls the decay rate of covariance between genotypes, and the percentile of the square 725 

of the Euclidean distance, which is a metric reflecting the genetic distance between genotypes. 726 

The Deep kernel is characterized by a nonlinear arc-cosine function, and its covariance matrix 727 

is designed to mimic a deep-learning model featuring a single hidden layer with many 728 

neurons. Applying these alternative approaches, the standard genomic and enviromic 729 

relationship matrices based on Gaussian kernel (𝑲𝑮𝑮𝑲 and 𝑲𝑾𝑮𝑲
) and Deep kernel (𝑲𝑮𝑫𝑲 and 730 

𝑲𝑾𝑫𝑲
) were created. The Gaussian kernel and Deep kernel were implemented following the 731 

estimation process as detailed by Costa-Neto, Fritsche-Neto, et al. (2021). 732 

Statistical genomic prediction model structures 733 

The relationship matrices were used to create linear mixed model structures for the statistical 734 

genomic prediction models. Following Costa-Neto, Fritsche-Neto, et al. (2021), the generic 735 

model structure was defined as: 736 

𝒚 = 1𝝁 + 𝑿𝒇𝜷 + ∑ 𝒈𝒔
𝒌
𝒔=1 + ∑ 𝒘𝒓

𝒍
𝒓=1 + 𝜺   (Equation 2) 737 

where 𝒚 was the vector of the adjusted means for 𝑛 genotypes across 𝑞 environments, 1𝝁 was 738 

the overall mean, 𝑿𝒇 the design matrix for the fixed effects of environments, 𝜷 the vector of 739 

the fixed effects, 𝒈𝒔 the random vector for 𝑠 = 1,… , 𝑘 marker-based effects, 𝒘𝒓 the random 740 

vector for 𝑟 = 1,… , 𝑙 enviromic-based effects, and 𝜺 the vector of the random errors assuming 741 

𝜺~𝑁(0, 𝜎𝜀
2𝑰) with 𝜎𝜀

2 being the error variance and 𝑰 the identity matrix. The effects of 742 

environments were modeled as fixed in all model structures tested, consistent with other 743 

multi-environmental models that incorporate G×E, as described by, e.g., Lopez-Cruz et al. 744 

(2015) and Costa-Neto, Fritsche-Neto, et al. (2021). All model structures were based on the 745 

G-BLUP approach to estimating the relationship matrices. When the alternatives to the G-746 

BLUP were used, the model structures were additionally labeled with ‘(GK)’ for the Gaussian 747 

kernel and ‘(DK)’ for the Deep kernel. For all three approaches to estimating the relationship 748 

matrices, the function get_kernel of the R package ‘EnvRtype’ (v.1.1.1) (Costa-Neto, Galli, et 749 

al., 2021) was used to obtain the relationship matrices for genomic prediction. 750 

Models G, A, and G+D (random (main) genotypic effects (MM)). Following the Equation 751 

2, the model MM accounted for the marker-based effects (∑ 𝒈𝒔
𝒌
𝒔=1 ≠ 0) without applying the 752 

enviromic-based effects (∑ 𝒘𝒓
𝒍
𝒓=1 = 0). The 𝒈𝒔 incorporated relationship matrices 𝑲𝑮 753 

(alternatively 𝑲𝑮𝑮𝑲 or 𝑲𝑮𝑫𝑲), 𝑲𝑨 and 𝑲𝑫 representing random genomic (G), additive (A) and 754 

dominance (D) effects, respectively. These effects were applied individually or in 755 

combinations, resulting in model structures denoted as G (alternatively G (GK) and G (DK)), 756 

A and G+D. 757 
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Models G+G×E and G+G×E+D+D×E (single variance genotype × environment deviation 758 

(MDs)). Analogous to the model MM, the model MDs assumed ∑ 𝒈𝒔
𝒌
𝒔=1 ≠ 0 and ∑ 𝒘𝒓

𝒍
𝒓=1 =759 

0 (Equation 2). In addition to the random effects G and D, the random interaction effects (×) 760 

with the vector of environments (E) were included, namely the G×E and D×E. This resulted in 761 

model structures G+G×E (alternatively G+G×E (GK) and G+G×E (DK)) and 762 

G+G×E+D+D×E. 763 

Model G+W (enviromic-enriched MM (EMM)). The model EMM applied both the marker-764 

based effects (∑ 𝒈𝒔
𝒌
𝒔=1 ≠ 0) and the enviromic-based effects (∑ 𝒘𝒓

𝒍
𝒓=1 ≠ 0) (Equation 2). 765 

Included were the random effects G and the random enviromic effects (W), the latter being 766 

derived through the integration of the relationship matrix 𝑲𝑾 (alternatively 𝑲𝑾𝑮𝑲
 and 𝑲𝑾𝑫𝑲

). 767 

The resulting model structure was G+W (alternatively G+W (GK) and G+W (DK)). 768 

Model G+W+G×W (reaction-norm MM (RNMM)). Building upon the model EMM, the 769 

model RNMM (∑ 𝒈𝒔
𝒌
𝒔=1 ≠ 0 and ∑ 𝒘𝒓

𝒍
𝒓=1 ≠ 0, Equation 2) extended the random enviromic-770 

based effects with a random interaction effect G×W. The obtained model structure was 771 

G+W+G×W (alternatively G+W+G×W (GK) and G+W+G×W (DK)). 772 

Model G+G×E+W+G×W (reaction-norm MDs (RNMDs)). The last of the compared 773 

models, the model RNMDs (∑ 𝒈𝒔
𝒌
𝒔=1 ≠ 0 and ∑ 𝒘𝒓

𝒍
𝒓=1 ≠ 0, Equation 2), combined the 774 

random marker-based effects G and G×E with the random enviromic-based effects W and 775 

G×W in a single model structure G+G×E+W+G×W (alternatively G+G×E+W+G×W (GK) 776 

and G+G×E+W+G×W (DK)). 777 

Fixed effect of inbreeding. The design matrix for the fixed effects 𝑿𝒇 (Equation 2) was based 778 

on the vector of environments (E) for all model structures tested in this study. As described by 779 

previous authors (Roth et al., 2022; Vitezica et al., 2018), including an inbreeding coefficient 780 

as fixed effect can account for directional dominance effects and help to avoid overestimating 781 

the proportion of variance explained by the dominance model components. Hence, the model 782 

MM was additionally extended with the fixed effect of inbreeding contained in parameter 𝑿𝒇, 783 

which was incorporated in the model structures denoted as G (inb) and G+D (inb). The 784 

inbreeding coefficient for each genotype was estimated from the marker matrix 𝑴𝑮, 785 

calculated as the relative frequency of the homozygous allelic combinations 𝐴𝐴 and 𝑎𝑎 across 786 

all markers. 787 

Deep learning approach 788 

The deep learning genomic prediction model was designed to be able to receive both 789 

genotypic and environmental data in the form of four streams. Genotypic data underwent 790 

feature selection in two different ways, generating input data for two different streams of the 791 

model: single nucleotide polymorphism (SNP) stream and principal component (PC) stream. 792 

First, to represent specific genetic variation, the most relevant 1,000 SNPs for each trait and 793 

fold were extracted from the marker matrix 𝑴𝑮 with a gradient boosting regressor. The 794 

response variable for the gradient boosting model was derived from the means of the random 795 

effects of genotypes, which were extracted from a mixed-effects model. This mixed-effects 796 

model followed Equation 1, incorporating fixed effects of the environment (E) and random 797 
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effects of genotype (g). Additionally, the SNPs associated with the studied traits as reported 798 

by Jung et al. (2022) were added to the existing pool of 1,000 SNPs within the SNP stream. 799 

Second, using the principal component analysis in related samples (PC-AiR) method (Kick et 800 

al., 2023), 58 principal components (PCs) capturing 100% of the genetic variation were 801 

extracted and used as input to represent the overall genetic variation. Daily weather variables 802 

and soil environmental covariates directly constituted the input for the weather and soil 803 

streams, respectively. The adjusted phenotypic means served as the response variables. All 804 

stream and response variables were scaled between -1 and 1. The model architecture was 805 

designed using ‘TensorFlow’ (v.2.10.0) and ‘Keras’ (v.2.10.0). All streams consisted of a 806 

variable number of dense layers except for the weather stream. In this case, the first layers 807 

were long short-term memory (LSTM), which excel at processing sequential data. The four 808 

streams processed the data independently and were concatenated after several layers. Further 809 

dense layers were placed before the output neuron to allow for data integration. For specific 810 

details on the model architecture, please refer to the provided GitHub link 811 

(https://github.com/MichaelaJung/Integrative-prediction). Models for each trait were trained 812 

and evaluated at different learning rates (1e
-4

, 1e
-5

, and 5e
-6

). When the training loss stopped 813 

improving, the training was stopped. The appropriate learning rate was decided for each trait 814 

based on the highest correlation and the lowest root mean squared error. 815 

Genomic prediction 816 

All statistical and deep learning genomic prediction models were iteratively fitted in a five-817 

fold cross-validation that was repeated five times, with genotypes being allocated to folds 818 

randomly and without replacement, resulting in 25 runs of each tested model. All models 819 

were applied using the same genotype allocations for each fold. The statistical genomic 820 

prediction model structures were solved using Bayesian hierarchical modeling implemented 821 

in the R package ‘BGGE’ (v.0.6.5) (Granato et al., 2018). The statistical genomic prediction 822 

models underwent 10,000 iterations of the Gibbs sampler, employing a thinning of 3 and 823 

discarding the initial 1,000 samples as burn-in.  824 

Relative contribution of model components 825 

For the statistical genomic prediction models, each model fit from the cross-validation was 826 

used to obtain the proportions of variance explained by the various random effects. To explain 827 

the deep learning model predictions with respect to each input feature (e.g., a SNP or weather 828 

variable), the ‘GradientExplainer’ function from the ‘shap’ package (v.0.42.1) (Lundberg & 829 

Lee, 2017) was used to calculate approximated Shapley additive explanations (SHAP). It uses 830 

the gradients of the model to approximate SHAP values for each feature, which estimates 831 

their contribution to the prediction. SHAP values were calculated for every instance of every 832 

test fold in each repetition of the cross-validation. The absolute values of each feature were 833 

averaged to obtain absolute mean SHAP values per feature. Furthermore, to investigate the 834 

contribution of each stream to the prediction, the absolute mean SHAP values were summed 835 

for every fold, and the relative SHAP contribution of each stream was obtained as a 836 

percentage. 837 

Assessment of predictive ability 838 
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For every statistical and deep learning genomic prediction model and trait, twenty-five 839 

estimates of predictive ability were generated for each environment, calculated as Pearson’s 840 

correlation coefficient between the adjusted means and predicted values. This resulted in 200 841 

predictive ability estimates for titratable acidity, soluble solids content, and fruit firmness, 500 842 

for russet frequency, 525 for red over color, 575 for floral emergence and flowering intensity, 843 

and 625 for harvest date, total fruit weight, number of fruits, and single fruit weight. Average 844 

predictive ability across traits was calculated by averaging all estimates of predictive ability 845 

for each model. 846 

Four models were selected for an in-depth comparison based on their performance and 847 

characteristics. The selection criteria included improvements of at least 0.01 in average 848 

predictive ability across traits compared to the benchmark model G. Additionally, statistical 849 

genomic prediction models that explained a large proportion of variance were prioritized, with 850 

a preference for simpler model structures over more complex ones. For each of these models, 851 

both the average predictive ability and the distribution of predictive abilities were visualized 852 

and compared with those of the model G for every trait. 853 

All statistical analyses in this work were implemented in R (v.4.1.3) (R Core Team, 2022). 854 

The code for implementing, training, using, and explaining the deep learning genomic 855 

prediction models was written in Python (v.3.9.16). 856 
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