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ABSTRACT

Genomic prediction for multiple environments can aid the selection of genotypes suited to
specific soil and climate conditions. Methodological advances allow effective integration of
phenotypic, genomic (additive, non-additive), and large-scale environmental (enviromic) data
into multi-environmental genomic prediction models. These models can also account for
genotype-by-environment interaction, utilize alternative relationship matrices (kernels), or
substitute statistical approaches with deep learning. However, the application of multj
environmental genomic prediction in apple remained limited, likely due to the challenge of
building multi-environmental datasets and structurally complex models. Here, we applied
efficient statistical and deep learning models for multi-environmental genomic predictionof
eleven apple traits with contrasting genetic architectures by integrating genomic-~ and
enviromic-based model components. Incorporating genotype-by-environment=interaction
effects into statistical models improved predictive ability by up to 0:08 for-nine traits
compared to the benchmark model. This outcome, based on Gaussiah _andDeep kernels,
shows these alternatives can effectively substitute the standard G=BEUP. Including non-
additive and enviromic-based effects resulted in a predictive ability»very similar to the
benchmark model. The deep learning approach achieved thethighest predictive ability for
three traits with oligogenic genetic architectures, outperforming the benchmark by up to 0.10.
Our results demonstrate that the tested statistical models capture genotype-by-environment
interactions particularly well, and the deep learning{models efficiently integrate data from
diverse sources. This study will foster the adoption” of multi-environmental genomic
prediction to select apple cultivars adapted to diverse environmental conditions, providing an
opportunity to address climate change impagts.
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INTRODUCTION

Since the introduction of genomic selection (Meuwissen et al., 2001), the genome-wide
selection based on thousands of markers has resulted in increased genetic gain, and this
approach is progressively becoming an integral component of modern crop breeding programs
(Garcia-Ruiz et al., 2016; Voss-Fels et al., 2019). To predict the genomic estimated breeding
values for genomic selection, marker effects are frequently estimated using the well-
established genomic best linear unbiased predictor (G-BLUP) approach (VanRaden, 2008).
For genomic prediction across environments, increased predictive ability has been
demonstrated by utilizing G-BLUP to incorporate the main marker effects and int€raction
effects of markers and environments (Jarquin et al., 2014; Lopez-Cruz et al., 2015)%The
interaction between markers and environments provides a mathematical represéntation’ of the
natural phenomenon of genotype-by-environment interaction, which  results /from the
variability in the genotype performance ranking across different environmental conditions.
Despite numerous reports of successful phenotypic performance predietion using molecular
markers in perennial crops such as apple (Kostick et al.,, 2023; Kumar et al., 2012;
Migicovsky et al., 2016; Muranty et al., 2015), genotype-by-enironment interaction has been
often overlooked in genomic prediction of apple traits.

The most comprehensive study conducted thus far to“investigate the influence of genotype-
by-environment interaction on genomic predictive-ability in apple, conducted by Jung et al.
(2022), was achieved by the establishment of thésapple reference population, known as the
apple REFPOP (Jung et al., 2020). Across+the,numerous phenotypic traits assessed in the
apple REFPOP, genotype-by-environment interaction explained up to 24% of the phenotypic
variance, and the incorporation of genetype-by-environment interaction into G-BLUP resulted
in a predictive ability increase ofip.to 0:07 (Jung et al., 2022). The challenge of building
multi-environmental datasets, coupled” with the computational costs tied to the structural
complexity of genomic  prediction models accommodating genotype-by-environment
interaction, has likely limited the"use of such models in practice.

Recent software adyances that reduce computational time could enable broader adoption of
multi-environmental genomic prediction models in plant breeding (Costa-Neto, Fritsche-Neto,
et al., 2021;Granato et al., 2018). Empirical comparisons between the well-established R
package ‘BGLR (Pérez & de los Campos, 2014) and the newer R package ‘BGGE’ (Granato
et al., 2048),yboth of which apply the same model structures based on G-BLUP, revealed
comparable predictive abilities, but ‘BGGE’ was up to five times faster (Granato et al., 2018).
Ihaddition to G-BLUP, covariance matrices, alternatively referred to as relationship matrices
or kernels, can be estimated using approaches that capture nonlinearity in the relationships
between phenotype and genotype. The nonlinear Gaussian kernel and the Deep kernel (also
known as the arc-cosine kernel) have demonstrated superior performance compared to G-
BLUP, showing reduced computational time and increased predictive ability in maize and
wheat datasets (Costa-Neto, Fritsche-Neto, et al., 2021; Cuevas et al., 2019).

In addition to the commonly used genomic effects of molecular markers, the advancements in
software have introduced straightforward options for incorporating additional sources of
variation into genomic prediction models (Costa-Neto, Fritsche-Neto, et al., 2021; Costa-
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Neto, Galli, et al., 2021). Using the natural and orthogonal interactions (NOIA) approach,
marker values can be split into additive values and dominance deviations that allow for
orthogonal partition of variances, which implies that the proportions of additive genomic
effects remain constant even when dominance effects are incorporated into the genomic
prediction model (Alvarez-Castro & Carlborg, 2007). The incorporation of dominance effects
into genomic prediction models is typically done by the use of relationship matrices, as
proposed by Vitezica et al. (2013, 2017). Unlike other approaches to construct relationship
matrices for dominance (e.g., Vitezica et al., 2013), the NOIA approach does not assume
Hardy-Weinberg equilibrium, which makes it particularly suitable for populations such as
those resulting from crosses (Vitezica et al., 2017). In apple, the inclusion of non-erthegonal
dominance effects under the assumption of Hardy-Weinberg equilibrium did\ not )affect
predictive ability (Kumar et al., 2015). However, combining dominance effects=applying the
NOIA approach along with a fixed effect of inbreeding has demonstrated<improved genomic
predictive ability in maize and sugarcane (Roth et al., 2022; Yadav et al., 202%). Additionally,
incorporating non-genetic effects derived from large-scale assessment of environmental
attributes (i.e, envirotyping, resulting in environmental covariateSwalso called enviromic
markers (Cooper et al., 2014; Resende et al., 2021)) into genemic prediction models can
improve the estimation of similarities between environments_and genotype-by-environment
interaction. This enhancement not only leads to increaSedypredictive ability, but also offers a
more comprehensive understanding of the complex / interplay between genetic and
environmental factors (Costa-Neto, Fritsche-Netoy‘et)al., 2021; Jarquin et al., 2014). The
enviromic-based effects, as well as the marker-based effects expressed as standard genomic,
orthogonal additive and dominance effects, can all be studied as extensions of G-BLUP using
conventional statistical genomic prédiction” model frameworks, which simplifies their
integration into the modeling process.

Deep learning approaches haye emerged as an alternative to conventional statistical genomic
prediction models. The litefature review of Montesinos-Ldpez et al. (2021) on the application
of deep learning for genomic selection showed no distinct superiority of deep learning
approaches in terms of predictive ability compared to conventional genomic prediction
models, unless yery large datasets were used. However, deep learning models allow for
effective integration Of data from diverse sources, but they can also become impractical for
datasets centaining many variables, leading to computational complexity and overfitting. In
plant breeding, datasets comprising thousands of markers are compiled, and dimensional
reduction, may help simplify marker information for deep learning (Kick et al., 2023). In the
study*by Jurado-Ruiz et al. (2023), the use of a small subset of associated markers was critical
for accurate predictions of apple shape when deploying neural networks. The potential
application of deep learning for multi-environmental genomic prediction of diverse
quantitative apple traits has yet to be examined.

This study aims to conduct a comprehensive comparison between conventional statistical
models that integrate genomic- and enviromic-based effects and a deep learning approach for
multi-environmental genomic prediction of apple traits. The subjects of prediction were
eleven quantitative traits related to phenology, productivity, and fruit quality, which were
measured from the apple REFPOP during five years at up to five locations, i.e., up to 25

4
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environments (defined as combinations of location and year). The increased extent of the
apple REFPOP dataset across environments allows an evaluation of different modeling
techniques to harness the full potential of these data for accurate prediction of phenotypic
traits. The main objectives of the study were: (i) to evaluate the relative contribution of
different model components, i.e., random effects and feature streams, for the statistical and
deep learning genomic prediction models, and (ii) to assess and compare predictive abilities
of these models. By addressing these two crucial factors, this research aims to provide
insights into the strengths and limitations of statistical models and deep learning to identify:
the best modelling solutions for the selection of apple cultivars adapted to diverse
environmental conditions.

RESULTS
Dataset composition

From the eleven phenotypic traits assessed in the apple REFPOP Over five years and at a
maximum of five locations, two environment-trait combinations,were excluded due to very
low values of the environment-specific clonal mean heritability (H? < 0.1). The excluded
combinations included phenotypic measurements fof floral emergence in Spain in 2020
(H? = 0.036) and flowering intensity in France im\2021 (H? = 0.002). Consequently,
phenotypic estimates were generated from a punitmum of eight environments for titratable
acidity, soluble solids content, and fruit fifmness, while harvest date, total fruit weight,
number of fruits, and single fruit weight were ‘evaluated across the maximum number of
environments, totaling 25 (Table S1)4Various shapes of distributions and consistent patterns
of Pearson's correlations were observed for the adjusted means of phenotypic traits over years
and locations (Figure 1A, Figure'S1,Figure S2).

For the weather variables, moderate differences were observed in daily temperature means,
daily humidity means, and daily radiation sums between years and locations (Figure 1B).
Consequently, these{data were summarized based on phenology, meaning the data was split
into two periods:, the ‘first 80 days until 90% of the genotypes flowered, and the following
days until 90% of the genotypes were harvested (Figure S3). After preprocessing the soil
variables, the=final enviromic dataset included 28 environmental covariates for weather and
soil.

Relationship matrices

Implementation of the G-BLUP approach resulted in the standard genomic relationship matrix
K (based on standard allele coding with allele dosage values of 0, 1, and 2), the additive
genomic relationship matrix K4, and the dominance genomic relationship matrix K (Figure
2A, B and C). The heatmaps of these matrices depicted a strong similarity between K; and
K4 (Figure 2A and B). The lower-left quadrant of matrices K; and K, comprised the apple
REFPOP accessions, revealing only subtle differences between these genotypes. The upper-
right quadrant of matrices K; and K, visualized the apple REFPOP progenies grouped
according to their biparental origin. The progeny groups were evident in the matrix Kp, but

no further strong relationships between genotypes were visually observed. K, and Kj
5
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showed the mean of their matrix values close to zero and the mean of the diagonal of 1.
Gaussian kernel and Deep kernel, used as alternative approaches to G-BLUP, resulted in

matrices K¢, and K¢ (Figure 2D and E) that were visually similar to the K¢ and Ky

matrices implemented using G-BLUP (Figure 2A and B), although some differences were
observed particularly for the Gaussian kernel approach (Figure 2D). Application of the G-
BLUP to the enviromic dataset of 28 environmental covariates resulted in the enviromic
relationship matrix Ky, (Figure 3). Hierarchical clustering of the matrix Ky, showed ﬁQ

clusters of environments, each cluster referring to one of the orchard locations.
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Figure 1: Phenotypic and weather data distributions. A Density estimates for the adjusted
means of eleven phenotypic traits from five locations and five years of measurement. The
locations correspond to Belgium (BEL), Switzerland (CHE), Spain (ESP), France (FRA) and
Italy (ITA). B Local regression curves spanning five years estimated from daily temperature
means, daily humidity means and daily radiation sums. Colors correspond to legend in A.
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c&sition of the phenotypic variance using linear mixed models by incorporating
an effects for the vector of genotypes (i.e., genotypic effects) and genotype-by-

vironment interaction, revealed that the proportion of phenotypic variance explained by the
genotypic effects ranged from 9% for flowering intensity to 78% for harvest date (Figure 4A,
Table S2). In contrast, the largest proportion of phenotypic variance explained by genotype-
by-environment interaction was observed for flowering intensity (29%). The lowest
proportion of genotype-by-environment interaction variance (9%) was found for harvest date.
The total variance explained by both genotypic and genotype-by-environment interaction
effects reached 64% on average across traits (Table S3).
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igure 4: Relative contribution of different model components estimated for eleven traits. A
Average proportions of phenotypic variance related to genotypic (g) and genomic (G) effects,
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interaction effects GXW as well as the residual effect extracted from the statistical genomic
prediction model fits. The relationship matrices for the different effects in the statistical
genomic prediction models were constructed using the G-BLUP approach or, where indicated,
the Gaussian kernel (GK) or Deep kernel (DK). The statistical genomic prediction models
were compared with a model based on phenotypic data (Phenotypic). Error bars correspond to
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standard deviation around the mean. B Average proportions of phenotypic variance related to
genomic (G), additive (A) and dominance (D) effects, their interactions (x) with the vector of
environments (E) and the residual effect extracted from the statistical genomic prediction
model fits. The model structures G and G+D were additionally extended with the fixed effect
of inbreeding (inb). The relationship matrices for the different effects were based on G-BLUP.
Error bars correspond to standard deviation around the mean. The results for the benchmark
model G are the same as shown in A. C Relative contribution of the single nucleotide
polymorphism (SNP), principal component (PC), weather, and soil feature streams estimated
using Shapley additive explanations (SHAP) for the deep learning genomic prediction model.
Error bars correspond to standard deviation around the mean.

For the statistical genomic prediction based on G-BLUP, linear mixed model“structures
resulted from the application of the relationship matrices Kg, K4, and Ky, representing
genomic (G), additive (A), and dominance (D) effects, respectively. Various proportions of
phenotypic variance related to these random effects and their interactions-(x) were extracted
from the model fits (Figure 4B, Table S2). Due to its model strueture, the simplest genomic
prediction model (used as a benchmark) was labeled as G, and its random genomic effects
accounted for an average of 58% of the variance across traits (Table S3). Across all traits,
model A explained ~1% more variance compared to model G (Table S3). Including the fixed
effect of inbreeding in model G, leading to model G4inb), resulted in the same proportion of
explained variance of 58% as for model G (Tabl¢ S3). For the models G+D and G+D (inb),
the average total proportion of variance explaified by the model components G and D across
traits was 1% lower than that of model G (Table S3). The model G+GXE+D+DxE, on average
across traits, explained a proportion of ¥variance 21% greater than that explained by model G
(Table S3).

The model G+GxE based on. G=BLUP, including interactions with the environment,
explained, on average across {rdits, a proportion of variance 14% greater than that explained
by model G (Table S3).«Specifically, the effect G accounted for variance ranging from 19%
for flowering intensity to 819 for harvest date, and GXE explained variance ranging from 6%
for harvest date to 23% for flowering intensity (Figure 4A, Table S2).

The enviromic effects (W) and the interaction effects GXW were implemented applying the
relationship=matrix Ky, based on G-BLUP in the model structures G+W, G+W+GxW, and
G+GxE+W+GxW, and these models explained, on average across traits, 24%, 25%, and 30%
more vafiance than model G, respectively (Figure 4A, Table S3). For the most complex model
G+G*E+W+GxW, the proportions of variance explained by the interaction effects GXE and
GxW were modest, ranging from 4% to 9% for GXE and 2% to 4% for GxW (Table S2).

When comparing models based on G-BLUP with their counterparts implementing Gaussian
kernel using the relationship matrix K, (model structures labeled with GK), the models G
(GK), G+G*E (GK), and G+GxE+W+GxW (GK) demonstrated an average increase in
explained variance of 3%, 7%, and 3% across traits, respectively (Figure 4A, Table S3).
However, the models G+W (GK) and G+W+GxW (GK) resulted in an average decrease in
explained variance of up to 1% (Table S3). On average over traits, the model structures based
on Deep kernel implementing the relationship matrix K¢, (model structures labeled with
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DK) exhibited a strong decrease in the proportion of variance explained by the genomic- and
enviromic-based random effects when compared to their counterparts utilizing G-BLUP,
namely -22% for G (DK), -19% for G+GxE (DK), -26% for G+W (DK), -25% for
G+W+GxW (DK), and -17% for G+GXE+W+GxW (Table S3).

The applied deep learning genomic prediction model integrated marker and enviromic data
through four feature streams, namely single nucleotide polymorphism (SNP), principal
component (PC), weather, and soil streams, and the estimation of Shapley additive
explanations (SHAP) revealed the relative mean importance of these feature streams (Figure
4C, Table S4). Across all traits, the relative SHAP contributions were 50% for the ISNP
stream, 1% for the PC stream, 36% for the weather stream, and 13% for the soil streamyThe
relative SHAP contribution for the SNP stream ranged from 18 to 26% for flpral ‘emergence
and the productivity traits (flowering intensity, total fruit weight and number of fruits) to 80%
for titratable acidity. For the PC stream, the relative SHAP contribution ranged between 0%
for russet frequency and 3% for number of fruits. The lowest weather=steeam contribution of
10% was found for titratable acidity, while the largest contribution'ef the weather stream of 55
to 63% was found for floral emergence and the productivity tfaits\(flowering intensity, total
fruit weight and number of fruits). The relative SHAP contfibution for the soil stream ranged
between 5% for soluble solids content and 19 to 23% for floral emergence and two
productivity traits (total fruit weight and number of ffuits). An abundance of SNPs displaying
high absolute mean SHAP were found for harvest date ftitratable acidity and red over color
(Figure S4, Figure S5). For harvest date, three SNPsywith the highest absolute mean SHAP of
0.002 were located on chromosome 3.4at 292 Mb (AX-115250472), 30.7 Mb (AX-
115366114), and 30.8 Mb (AX-115233388). The three SNPs with the highest absolute mean
SHAP of 0.003 for titratable acidityswere found on chromosome 8 at 10.7 Mb (AX-
115276534), 10.8 Mb (AX-115254093);’and 11.8 Mb (AX-115519462). For red over color,
the three SNPs with the highest absolute mean SHAP of 0.005 were located on chromosome 9
at 33.8 Mb (AX-105213720;AX-115558498), and 35.6 Mb (AX-115370846).

Predictive ability

Assessment of \genomic prediction model performance using five-fold cross-validation
showed that.the ‘avetage predictive ability across traits ranged from 0.45 to 0.49 for the
compared-amedels (Figure 5, Table S5). Based on these average predictive abilities, the model
G+W+GX)W emerged as the least efficient, with an average predictive ability across traits of
0.45. Médels A, G (inb), G+W, G+tW+GxW (GK), G+tW+GxW (DK), G+GXE+W+GxW,
G+Djwand G+D (inb) demonstrated equivalent average predictive ability across traits, with a
valu€ of 0.46, comparable to the benchmark model G based on G-BLUP. Average predictive
ability across traits of 0.47 was found for the models G (GK), G (DK), G+GxE, G+W (GK),
G+W (DK), and G+G*XE+D+DxE. The models G+GXE+W+GxW (GK), G+GXE+W+GxW
(DK)) and deep learning provided additional improvement with the average predictive ability
across traits of 0.48. The models G+GxE (GK) and G+GxE (DK) showed the highest average
predictive ability across traits of 0.49.
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Figure 5: Comparison of predictive ability averaged across all studied traits. The statistical
genomic prediction models were based on €ombinations of the genomic (G), additive (A),
dominance (D), and enviromic (W) effects, mteractions (x) with the vector of environments
(E), and interactions between the “genomic and enviromic effects (GxW). The model
structures G and G+D were additionally’extended with the fixed effect of inbreeding (inb).
The relationship matrices for the different effects in the statistical genomic prediction models
were constructed using the G-BLUP approach or, where indicated, the Gaussian kernel (GK)
or Deep kernel (DK). The y-axi$ was truncated to provide a detailed model comparison. See
Table S6 for a comparison ofthe predictive ability for each trait.

For four modelswselected for an in-depth comparison with the benchmark model G based on
their performance and characteristics (G (GK), G+GxE, G+G*E (GK), and deep learning),
strong differeneces in average predictive ability were observed among the examined traits
(Figure 6)Table S6). Flowering intensity and russet frequency were at the lower end of the
predictive ability spectrum, while harvest date and red over color were at the upper end.
Compared to model G, the model G (GK) showed an increase in average predictive ability of
0.01"to 0.02 for most traits, but no improvement in predictive ability was found using this
model for titratable acidity and fruit firmness. Model G+GXE led to an increase in average
predictive ability of 0.07 for flowering intensity and 0.01 to 0.02 for floral emergence,
number of fruits, single fruit weight, soluble solids content, and russet frequency. It showed
no improvement for harvest date, total fruit weight, titratable acidity, fruit firmness, and red
over color. Model G+GxE (GK) demonstrated an additional improvement in average
predictive ability of 0.01 to 0.02 compared to model G+GXxE for all traits, except for titratable
acidity and fruit firmness. For these two traits, the incorporation of the GXE effect led to a
decrease in average predictive ability by 0.01 in both tested models, G+G*XE and G+GxE
12
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(GK), compared to model G. The deep learning genomic prediction model demonstrated
higher predictive abilities than model G for five out of the eleven traits studied. For harvest
date, titratable acidity and red over color, the deep learning genomic prediction model
outperformed all statistical genomic prediction models tested. The increase in average
predictive ability compared to model G was 0.06 for harvest date, 0.07 for titratable acidity,
and 0.10 for red over color.
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Figure 6: Boxplots of predictive abilities for eleven traits estimated using statistical and deep
learning genomic prediction models. The statistical genomic prediction models were based on
combinations of,_the% genomic effects (G) and their interactions with the vector of
environments< (GXE). The relationship matrices for the different effects in the statistical
genomic predietion models were constructed using the G-BLUP approach or, where indicated,
the Gaussianykernel (GK). Twenty-five predictive ability estimates were generated for each
availabléenvironment (up to 625 estimates per trait), and their average was displayed as black
diamonds for each model and trait. Jittered points (grey) show all predictive ability estimates
for each trait.
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DISCUSSION

This study provides insights into the complexities of multi-environmental genomic prediction
in quantitative apple traits. The incorporation of different sources of variation in the form of
model components, and the comparison of predictive abilities between statistical genomic
prediction models and a deep learning approach contribute to advancing the understanding of
efficient genomic prediction methodologies. The findings highlight the need for a nuanced
approach, considering the specific traits and modelling approaches in plant breeding
applications.

Modelling genotype-by-environment interaction

In the context of genomic prediction across environments (defined as combinations of
location and year), this work underscored a detectable improvement in predictive ability when
employing genomic prediction models based on G-BLUP that integrate both/ main marker
effects and the interaction effects of markers and environments, as it=has-been described by
previous studies (Jarquin et al., 2014; Jung et al., 2022; Lopez-Cruz et'al., 2015). Compared
to the benchmark genomic prediction model implementing fexclusively the main marker
effects, Jung et al. (2022) reported up to 0.07 increase in predictive ability for apple traits by
integrating the random effects for GXE using the software package ‘BGLR’ (Pérez & de los
Campos, 2014). In this study deploying the newer software ‘BGGE’ (Granato et al., 2018), an
analogous model comparison based on the same¢plant, material but including two additional
years of phenotypic data showed comparable improvements in predictive ability of up to 0.07.
Average predictive ability across eleven studied traits for models incorporating GXE using G-
BLUP was 0.01 lower compared to the-dverage predictive ability for the same traits reported
previously (Table S6, Jung et al., 2022)\As/the predictive ability of GXE models based on G-
BLUP was similar in ‘BGLR’ and“BGGE’ (Granato et al., 2018), the difference in predictive
ability was likely due to the changes in the phenotypic dataset between the compared studies.

The inclusion of GXE effects led to an increase in predictive ability, which was associated
with a higher proportion of'wariance explained by the random effects (Figure 4). However, the
improvement in prédictive ability was disproportionately smaller compared to the increase in
explained variance~This discrepancy between the substantial rise in explained variance and
the modest gain inypredictive ability was observed across all the statistical genomic prediction
models studied, contrary to expectations (Costa-Neto, Fritsche-Neto, et al., 2021). It might be
explaified by the fact that variance was estimated using the training sets, while predictive
ability was evaluated on the validation sets. This suggests that the model, although effectively
capturing patterns in the training set, did not generalize well to the validation set, resulting in
litnited improvements in predictive ability for the validation set.

Dominance effects

Previous study by Kumar et al. (2015) showed similar predictive ability between genomic
prediction models with and without dominance effects when analyzing quantitative traits in
apple. In their work, dominance effects were modeled using nonorthogonal coefticients and
under the assumption of Hardy-Weinberg equilibrium. In contrast, our study implemented
orthogonal dominance coefficients that do not assume Hardy-Weinberg equilibrium, leading
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to the expectation of improved predictive ability (Yadav et al., 2021; Roth et al., 2022).
However, despite this implementation, only limited improvement in predictive ability was
observed for the G+D and G+GxE+D+DXE models, as well as for models incorporating
inbreeding (Table S5).

Orthogonal partitioning of variances implies that the proportions of additive genomic effects
remain unchanged when additional effects, such as dominance, are introduced into the
genomic prediction model (Alvarez-Castro & Carlborg, 2007). Despite using the NOJA
procedure for orthogonal partitioning of additive and dominant variances that does not asstime
Hardy-Weinberg equilibrium (Alvarez-Castro & Carlborg, 2007; Vitezica et al., 2047), our
results indicate nonorthogonality when comparing models G, A and G+D. Specificallyy the
comparison of these models showed a 22% reduction in the average proportion of variance of
the genomic effects across all studied traits for model G+D, and a 1% decrease _in the total
average variance explained by model G+D (Table S2, Table S3). Similar‘tesults have been
found in different crops, where the extension of models analogous to.G-and-A with dominance
effects (orthogonal or nonorthogonal, assuming or not assuming Hardy-Weinberg
equilibrium) has often led to reduced estimates of additivie variance components, and
sometimes even to a reduction in the total explained variance; falling below the levels
achieved by the simpler models G and A (Amadeu et al.,,20203Costa-Neto, Fritsche-Neto, et
al., 2021; Kumar et al., 2015; Roth et al., 2022; Yadayv etjal., 2021). While an earlier study
showed that dominance variance was overestimated when inbreeding was not taken into
account (Vitezica et al., 2018), our variance<decomposition showed no signs of upwardly
biased estimates of dominance variance in{model G+D compared to G+D (inb) (Table S2).
Our results likely point to potential problems in variance estimation caused by linkage
disequilibrium (Roth et al., 2022;-Vitezica et al., 2017), which is prevalent in breeding
material such as that contained in"the apple REFPOP. Beside the violation of the assumption
of linkage equilibrium, the incorrect variance partitioning may have resulted from fitting
multiple genetic and genotype-by-environment interaction effects within the framework of
multi-environmental genomic prediction, which deserves further investigation. A preliminary
analysis outside the scope of this study indicated that orthogonality was restored when
conducting analyses on across-location clonal values (results not shown).

Compared to other-approaches to modelling non-additive effects, the NOIA approach retains
the advantage of allowing deviations from the Hardy-Weinberg equilibrium (Vitezica et al.,
2017)7 In “eontrast, the method by VanRaden (2008) for constructing standard genomic
relationship matrices assumes that the population is unselected and in Hardy-Weinberg
equilibrium. However, instead of using allele frequencies from a hypothetical unselected
population in Hardy-Weinberg equilibrium, the standard genomic relationship matrix K; was
computed using observed allele frequencies from our training population. Although this
assumption is violated for K, our study showed a strong similarity between K and the
additive genomic relationship matrix K, that was based on the NOIA approach (Figure 2),
along with the near-identical average predictive abilities across traits observed for models G
and A (Figure 5). These outcomes may suggest that any potential violation of Hardy-Weinberg
equilibrium in the studied population had minimal impact on genomic prediction. In addition,
despite the similarity between K and K 4, differences in the prediction error variance of the
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genomic-estimated breeding values could arise when using these matrices in genomic
prediction models (Strandén & Christensen, 2011). However, these differences were not
investigated in this study.

Non-genetic effects from envirotyping

As suggested by moderate differences in daily weather variables among years and locations,
and the low differentiation between environments within a location in the enviromic
relationship matrix, environmental covariates discriminated well between locations Jut
weakly between specific environments. This could likely be explained by the larger number
of soil covariates (22) than weather covariates (6), and the lack of variability betweency€ats
for the soil covariates due to their single measurement at each orchard location in)2016.
Additionally, the precipitation variable, which could have aided in distinguishing between
environments, had to be excluded from the analysis. This decision was prompted by the
confounding of precipitation with irrigation at some apple REFPOP locations. Nevertheless,
the enviromic-based effects explained a substantial part of the phenotypic variance, especially
for floral emergence known to be strongly affected by the enyironment (Jung et al., 2022).
Although a large proportion of phenotypic variance was expldined here by the enviromic-
based effects, and these effects have been shown to positively influence predictive ability in
other crops (Costa-Neto, Fritsche-Neto, et al., 2021;"Jarquin et al., 2014), they have not
resulted in any increase in predictive ability for appléstraits. For productivity traits such as
flowering intensity, which depends on flower budformation during the previous vegetation
season, the models could likely benefit from’ including prior-year environmental data in the
construction of the enviromic matrix.

Alternative kernels

Similar to previous reports that have'shown increased predictive ability when Gaussian kernel
and Deep kernel were applied(Costa-Neto, Fritsche-Neto, et al., 2021; Cuevas et al., 2019),
these kernels resulted ind modest but significant improvement in predictive ability of 0.01-
0.02 for most of the studied traits. The Gaussian kernel proved particularly suitable for
capturing variance attributed to GXE. Model structures based on the Deep kernel generally
explained a smallerproportion of phenotypic variance than those using the Gaussian kernel
and G-BLUP."This characteristic rendered Deep kernel less suitable for evaluating trait
genetic architecture. Nevertheless, the Deep kernel-based models demonstrated improved
predictive “abilities, equivalent to those of Gaussian kernel-based models. Overall, both
altetnative kernels proved to be efficient substitutes for G-BLUP.

Deep learning for genomic prediction

Specifically for each trait and cross-validation fold, the dimensional reduction of the marker
dataset to a subset of 1,000 SNPs selected by a gradient boosting algorithm, extended with
known marker-trait associations, allowed an efficient implementation of a deep learning
approach for multi-environmental genomic prediction in apple. The studied deep learning
approach combined feature streams derived from marker information with streams
incorporating weather and soil variables. It resulted in stream contributions that effectively

16

20z J9qUISAON /Z UO Josn Zjejduesing we yaujoldlg Aq G91G06./61E9EUN/IU/EE0 L 0 L/I0P/S0IE-80UBAPE/IL/WOD dNO"0IWSpEo.)/:SAY WO} POPEOJUMOQ



491
492

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

526
527
528
529
530
531
532
533

represented trait genetic architectures described in this and previous studies using statistical
genomic prediction models (Jung et al., 2022).

Our study demonstrated that the applied deep learning approach was particularly well-suited
for oligogenic traits. For these traits, governed by a few genes, the dimensionality reduction of
the marker dataset allowed important genomic information to be effectively represented. The
trait genetic architecture for harvest date was particularly well captured, with a 72%
contribution from the SNP stream. Harvest date was previously described as oligogenic trait
with significant large-effect marker associations found on chromosomes 3, 10 and 16 uSing
the apple REFPOP dataset (Jung et al., 2020, 2022). The strongest of these associations on
chromosome 3 at 30.7 Mb (Jung et al., 2022) was located in a major locus NAG{S.1
associated with harvest date and multiple ripening traits (Migicovsky et al., 2016; Watts et al.,
2023). The deep learning genomic prediction model proved efficient in capturing this major
locus, as the three SNPs with the highest absolute mean SHAP were located'on chromosome 3
at 29.2, 30.7, and 30.8 Mb, the marker AX-115366114 at 30.7 Mb being-strongly associated
with harvest date according to our previous study (Jung et al., 2022);, Moreover, the deep
learning genomic prediction model outperformed the benchmark statistical genomic
prediction model G for harvest date, improving predictive-ability»by 0.06 and achieving the
highest predictive ability among all tested models at 0.75.

Red over color has shown similar predictive ability and trait genetic architecture as harvest
date in this and previous studies based on statistieal genomic prediction models (Jung et al.,
2022). The SNPs associated with MdMYB1 transcription factor on chromosome 9, which
regulates red pigmentation of apple skin_(Takos’et al., 2006), translated into large absolute
mean SHAP values and predictive ability improved by 0.10 compared to model G. Similar
results were observed for titratable‘acidityy'where large absolute mean SHAP were found, and
the three SNPs with the largest-'SHAP were located on chromosome 8 at 10.7, 10.8, and 11.8
Mb. Two large-effect loci ar¢ Kfiown for acidity in apple, namely Ma on chromosome 16 and
Ma3 on chromosome 8 (Verma &t al., 2019). The SNPs on chromosome 8 indicated a strong
association with the Ma3 loeus, and they colocalized with the SNP marker predictive for this
locus at 10.9 Mb (Rymenants et al., 2020). The maximum relative SHAP contribution for the
SNP stream of 80%.was reached for titratable acidity. Moreover, the predictive ability of the
deep learning genomic prediction model for titratable acidity was improved by 0.07 compared
to the statistical genomic prediction model G. Our results for harvest date, red over color, and
titratable aeidity showed that high relative and absolute SHAP values can serve as predictors
of improyved deep learning genomic prediction model performance, and that the applied deep
Jearning approach can precisely predict apple traits characterized by oligogenic architecture.

According to Montesinos-Lopez et al. (2021), the predictive ability of deep learning
approaches typically falls below that of conventional models for genomic prediction, unless
very large datasets are examined. In our study, the sizes of datasets showed large differences
between the three traits with predictive ability superior to all other compared statistical
genomic prediction models (total number of training instances of 12,428 for harvest date,
10,317 for red over color, and 2,879 for titratable acidity, Table S1). Although the number of
available environments ranged from the minimum of eight for titratable acidity to the
maximum of 25 for harvest date, similar improvement in predictive ability was reached for
17
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these traits using the applied deep learning approach. As the improvements in predictive
ability for harvest date, red over color, and titratable acidity were observed independently
from the number of training instances, the size of the phenotypic dataset is unlikely to have
affected our predictions. Nevertheless, an additional improvement in predictive ability for the
deep learning model may be anticipated by increasing the training population size in terms of
the number of genotypes.

Multi-environmental genomic selection in apple breeding

The establishment of multi-environmental genomic selection in apple has been constrained by
several factors, including the costly collection of extensive multi-environmental datasets and
computational limitations. The phenotyping efforts in the apple REFPOP lielded an
unprecedented dataset in terms of trait-environment combinations (Jung et al'=2022), which
has been expanded in this study with two additional years of phenotyping. This ‘dataset now
encompasses phenotypic data for eleven traits across up to 25 environments.*The availability
of this dataset has enabled the implementation of multi-environmental genomic prediction
models within a computationally efficient framework, laying the grotndwork for the practical
application of multi-environmental genomic selection in apple. Further insights into predictive
ability for independent test sets could be gained in the futuré by assessing the predictive
performance on breeding material distinct from the apple\REFPOP. Additionally, expanding
the training set size may increase predictive abilityfor'some traits (Minamikawa et al., 2024)
and could potentially enable a more accurate estimation of variance components. To expand
the dataset by increasing the number of génetypes and environments, new collaborative
approaches between breeders are required\to generate data capable of overcoming this
challenge.

The approach to multi-environmentdl génomic prediction of apple traits used in this study
diverges from the traditional understanding of environments in apple tree cultivation. In
practice, apple trees remain Stationary in the same location across multiple years. This
stationary nature of applescultivation implies that the effects of yearly climatic variations are
superimposed on the same geographical location, whereas the genomic prediction approach
treats each year-location‘combination as a distinct environment. Nevertheless, breeding values
for apple genotypes lacking phenotypic information can be predicted across diverse
environmentalconditions using the genomic prediction models trained in this study.

Among allypredictions obtained, the model G+GxE applying Gaussian and Deep kernels
improved predictive abilities for most traits (except for titratable acidity and fruit firmness,
where it showed results comparable to those of the benchmark model G). Therefore, the
model G+GXE proved to be a universally effective solution for multi-environmental genomic
prediction in the studied apple traits. Additionally, the G+G*E model, along with other
statistical genomic prediction models tested, was outperformed by the applied deep learning
approach for three traits with oligogenic genetic architectures (harvest date, titratable acidity,
and red over color). Depending on the genetic architecture of the trait, either the G+GXxE
model or the deep learning approach can be recommended for multi-environmental genomic
predictions, leading to informed breeding decisions, and assisting in the selection of cultivars
more adaptable to future climates.
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MATERIALS AND METHODS
Plant material

The apple REFPOP comprised 265 progenies from 27 biparental families generated by
European breeding programs, along with 269 diverse accessions (Jung et al., 2020). This
study focused on five locations: (i) Rillaar, Belgium, (ii) Angers, France, (iii) Laimburg, Italy,
(iv) Lleida, Spain, and (v) Waedenswil, Switzerland. At each location, all genotypes were
generally represented by two trees and planted in 2016 using a randomized complete block
design. Three control genotypes, namely 'Gala', 'Golden Delicious', and 'CIVG198iwere
replicated up to 22 times at each location. The cultivation followed the common agriculttral
practices specific to each location, incorporating integrated plant protection methods.

Phenotyping

Phenotyping of the eleven traits followed the methodology described by-Jung et al. (2022).
Individual trees, representing genotype replicates, were used for trait measurement. Floral
emergence was determined in Julian days, marking the date when the first 10% of flowers
opened. Flowering intensity was evaluated on a nine-grade scalenindicating the percentage of
existing flowers relative to the maximum potential number of flowers. Fruits were harvested
on harvest dates, determined in Julian days, based on€xpert estimates of fruit ripening. Total
fruit weight (kg) and fruit number were recorded to assess production per tree. Single fruit
weight (g) was estimated by dividing the total fiuittweight by the number of fruits. Titratable
acidity (g/1), soluble solids content (°Brix), and\fruit firmness (g/cmz) were measured within
one week post-harvest using an automated instrument Pimprenelle (Setop, France). Red over
color, representing the percentage of red fruit ‘skin, was assessed on a six-grade scale. Russet
frequency indicated the percentage ,of Yffuits exhibiting russet skin. Further information
regarding the evaluation of the eleven traits is available in Jung et al. (2022). For the different
traits, the assessment spanned™a period of up to five years from 2018 to 2022 and was
performed at up to five lacations’

Envirotyping

Hourly measurements of temperature (°C) at 2 m above soil level, relative humidity (%) and
global radiation (W/m2) were obtained from the weather stations near the apple REFPOP
orchards(from 2018 to 2022. Precipitation (mm) was not taken into consideration in this study
due to irrigation practices in part of the orchard locations.

Inveaeh-apple REFPOP orchard between May 12 and June 9, 2016, a total of six soil samples
were collected from three distinct sampling points and two soil depths (approximately 1-20
em and 2040 cm). In the accredited Laboratory for Soil and Plant Analysis of Laimburg
Research Centre, Italy, the soil samples were analyzed for (i) organic carbon (% humus), (i1)
pH, (iii) carbonate test, expressed as low to medium, high, very high or no carbonate content,
(iv) carbonate requirement (dt/ha CaO), (v) phosphorus (mg/100 g P,0s), (vi) potassium
(mg/100 g K,0), (vii) magnesium (mg/100 g), (viii) boron (mg/kg), (ix) manganese (mg/kg),
(x) copper (mg/kg), and (xi) zinc (mg/kg).

Genotyping
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As detailed by Jung et al. (2020), the apple REFPOP underwent genotyping for biallelic single
nucleotide polymorphisms (SNPs) through a dual approach utilizing the Illumina Infintum®
20K SNP genotyping array (Bianco et al., 2014) and the Affymetrix Axiom® Apple 480K
SNP genotyping array (Bianco et al., 2016). By employing the Beagle 4.0 software (Browning
& Browning, 2007) and incorporating pedigree information (Muranty et al., 2020), the
obtained SNP sets were integrated through imputation, ultimately yielding a genomic dataset
of 303,239 biallelic SNPs. All SNP positions were based on the doubled haploid GDDH13
(v1.1) reference genome (Daccord et al., 2017).

Phenotypic data preprocessing

Analyses of phenotypic data were conducted to ensure high data quality by addtessing low
heritability, spatial heterogeneity, and eliminating outliers. The statistical ‘model for the
phenotypic data preprocessing was fitted via restricted maximum likelihood tsing the R
package ‘Ime4’ (v.1.1-28) (Bates et al., 2015) as:

y =XpB +Zu + ¢ (Equation 1)

where y was the vector of the response variable, X the design matrix for the fixed effects, f#
the vector of the fixed effects, Z was the design matrix for the.random effects, u the vector of
the random effects assuming u~N (0, X) with X being the\variance—covariance matrix of the
random effects and & the vector of the random errors assuming £~N (0, c2I) with 62 being
the error variance and I the identity matrix.

Separately for each trait and environmefit (combined factor of location and year), raw
phenotypic values for each genotype replicate’(total fruit weight and fruit number were log-
transformed) were used as response vagiable to fit a random-effects model with a random
effect of genotype following the Equation 1. From the variance components of the random-
effects model, the environment-speeific clonal mean heritability was calculated as:

where 05 was. the genotypic variance and 7, the mean number of genotype replications. The
environméntespeecific clonal mean heritability was used to remove trait-environment
combinatiens with the heritability value below 0.1.

To account for spatial variation in the orchards, spatial heterogeneity in the raw phenotypic
dataywas modeled separately for each trait-environment combination using the spatial analysis
of field trials with splines (‘SpATS” (v.1.0-11)) (Rodriguez-Alvarez et al., 2018) as described
by Jung et al. (2020). From the fitted SpATS objects, the adjusted phenotypic values of each
genotype and the adjusted phenotypic values of each tree were obtained.

The adjusted phenotypic values of each genotype were used as response variable for fitting a
mixed-effects model with a fixed effect of environment and a random effect of genotype
following Equation 1. Subsequently, the outliers were detected using Bonferroni—-Holm test to
judge residuals standardized by the re-scaled median absolute deviation (BH-MADR) as

described by Bernal-Vasquez et al. (2016). The identified outliers were removed and the
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remaining trait- and environment-specific adjusted phenotypic values of each genotype were
further denoted as adjusted means. The adjusted means for the eleven studied traits were
compared separately for each year and location using the pairwise Pearson's correlations and
significance tests implemented in the R package ‘corrplot’ (v.0.92) (Wei & Simko, 2021). The
significance levels of 0.05, 0.01, and 0.001 were Bonferroni-corrected by dividing them by
the total number of pairwise comparisons among the eleven traits.

Following Equation 1, the adjusted phenotypic values of each tree served as the response
variable in fitting a mixed-effects model, denoted here as the phenotypic model. This model
included the fixed effects of environment (E), the random effects of genotype (g), anddandom
effects of genotype-by-environment interaction (gxE). The proportions of phenotypic variance
explained by the random effects were extracted from the model fit for compatison.with the
statistical genomic prediction models.

Enviromic data preprocessing

The enviromic data were restructured to acquire appropriate ‘mputs,for the subsequent
modelling. Daily temperature means, daily humidity means, dnd daily radiation sums were
calculated from the hourly measurements. These three dailyWweather variables were visualized
applying local regression curves estimated using Loess with a span of 0.1.

Inspired by Jarquin et al. (2014), the three daily weathenyariables were processed to create six
environmental covariates by dividing each growing séason into two periods based on crop
phenology. The two periods were defined separately for each environment. The first period
extended for 80 days, concluding on_theéy day when 90% of the genotypes flowered,
determined from adjusted means for floral emergence. The second period followed the first
until the day when 90% of the genotypesywere harvested, as indicated by the adjusted means
for harvest date. Different appfoaches to defining the first period were employed for two
environments where adjusted means for floral emergence were unavailable. In the case of the
environment ESP.2020, which was excluded due to low heritability, the adjusted phenotypic
values of each genotype were used to estimate the day when 90% of the genotypes flowered.
For ESP.2022, where, floral emergence scores were missing, the end date of the first period
was estimated based.on varieties cultivated near the apple REFPOP. Daily temperature means,
daily humidity~means, and daily radiation sums were summed over each respective period,
resulting( in\six environmental covariates. Additionally, 22 environmental covariates were
obtairied asymean values of eleven soil characteristics calculated per location and the level of
soil{,depth. All 28 environmental covariates were collected in the q X z matrix of
environmental covariates My, with g environments and z environmental covariates, which
was then scaled and centered to the mean of zero and standard deviation of one.

Marker matrices

Three marker matrices were constructed based on the genomic dataset of biallelic SNPs. The
first matrix followed the standard allele coding, where a SNP was assigned the value 0 when
the individual (i.e., genotype) was homozygous for the first allele (a), 1 when the genotype
was heterozygous, and 2 when the genotype was homozygous for the second allele (4). The
allele coding can be referred to as coefficients in the marker matrix. Therefore, the n X m
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marker matrix of the standard coefficients M with i = 1,...,n genotypes and j =1, ...,m
markers was:

hG11 o hG1m
Repy  * MGpm

where the element hGii for the ith genotype and jth marker was equal to:

2 AA
hGU = {1 for {Aa

0 aa

with AA, Aa and aa being the combinations of the alleles a and A at the maskerj. Each
column of the matrix M was scaled and centered to the mean of zero and standard deviation
of one.

The second and third marker matrices followed the NOIA model (Alvarez-Castro & Carlborg,
2007) as implemented by Vitezica et al. (2017). These matrices were estimated from the
elements of the marker matrix of the standard coefficients M ‘and had the same dimension.
The element hAij for the n X m marker matrix of additive coefficients M4 and the element

hDij for the n X m marker matrix of dominance coeffieients M, were calculated as follows:

_(_pAa r zpaa) AA

hAij =1 —(1 —Pia 2Paa) for jAa

_(2 =Paa,— zpaa) aa

and
_ 2P AaPaa
Paa+Paa—PAa—Paa)? AA
A 4P AAPaa

hDii | raatPaa—®aa—Paa)? for {Aa

2PAAD Aa aa

PaatPaa—PAA—Daa)?

with pg4, Pag and pg, being the relative frequencies for the allelic combinations AA, Aa and
aa at marketj.

Relationship ' matrices

The marker matrices Mg, M4 and M and the matrix of environmental covariates My, were
used” to estimate the standard genomic relationship matrix K, the additive genomic
velationship matrix K4, the dominance genomic relationship matrix Kp, and the enviromic
relationship matrix Ky, respectively. Initially, all relationship matrices were created based on
the genomic best linear unbiased predictor (G-BLUP) approach described by VanRaden
(2008). The covariance matrix following the G-BLUP approach was obtained as:

K= MM’
~ tr(MM") /nrow(M)
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where K was a generic representation of the relationship matrix (Kg, K4, Kp and Ky), M
was a generic representation of the marker matrices Mg, M4 and M, as well as the matrix of
environmental covariates My,, and nrow was the number of genotypes for M;, M4 and My,
or the number of environments for My,.

Subsequently, two covariance matrix types, namely the Gaussian kernel (Gonzalez-Camacho
et al., 2012) and Deep kernel (Cuevas et al., 2019), were examined as alternatives to the G-
BLUP approach. The Gaussian kernel is a nonlinear method based on a bandwidth parameter
that controls the decay rate of covariance between genotypes, and the percentile of the square
of the Euclidean distance, which is a metric reflecting the genetic distance between genotypes.
The Deep kernel is characterized by a nonlinear arc-cosine function, and its covariance matrix
is designed to mimic a deep-learning model featuring a single hidden layer with’ many
neurons. Applying these alternative approaches, the standard genomic “and ‘enviromic
relationship matrices based on Gaussian kernel (K¢, and Ky, ) and Deepkemnel (K¢, and
Ky, ) were created. The Gaussian kernel and Deep kernel were implemented following the
estimation process as detailed by Costa-Neto, Fritsche-Neto, et al. (2021).

Statistical genomic prediction model structures

The relationship matrices were used to create linear mixed model structures for the statistical
genomic prediction models. Following Costa-Neto, Fritsche-Neto, et al. (2021), the generic
model structure was defined as:

y=1p+XB + Y%, g5+ B}, w, + & (Equation 2)

where y was the vector of the adjustedimeans for n genotypes across q environments, 1 was
the overall mean, X the design matrix for the fixed effects of environments, B the vector of
the fixed effects, g¢ the random vector for s = 1, ..., k marker-based effects, w,. the random
vector for r = 1, ..., [ enviremic-based effects, and € the vector of the random errors assuming
e~N(0,02I) with o2 being the error variance and I the identity matrix. The effects of
environments were modeled as fixed in all model structures tested, consistent with other
multi-environmental “models that incorporate GxE, as described by, e.g., Lopez-Cruz et al.
(2015) and Costa-Neto, Fritsche-Neto, et al. (2021). All model structures were based on the
G-BLUP approach'to estimating the relationship matrices. When the alternatives to the G-
BLUP were used, the model structures were additionally labeled with ‘(GK)’ for the Gaussian
kern€l and %(DK)’ for the Deep kernel. For all three approaches to estimating the relationship
matrices, the function get kernel of the R package ‘EnvRtype’ (v.1.1.1) (Costa-Neto, Galli, et
al., 2021) was used to obtain the relationship matrices for genomic prediction.

Models G, A, and G+D (random (main) genotypic effects (MM)). Following the Equation
2, the model MM accounted for the marker-based effects (X*_, g # 0) without applying the
enviromic-based effects (Xl_,w, = 0). The g, incorporated relationship matrices Kj
(alternatively K¢, or K¢, ), K4 and K representing random genomic (G), additive (A) and
dominance (D) effects, respectively. These effects were applied individually or in

combinations, resulting in model structures denoted as G (alternatively G (GK) and G (DK)),
A and G+D.
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Models G+GXE and G+G*xE+D+DXE (single variance genotype x environment deviation
(MDs)). Analogous to the model MM, the model MDs assumed Y¥_, g, # 0 and Y'L_, w, =
0 (Equation 2). In addition to the random effects G and D, the random interaction effects ()
with the vector of environments (E) were included, namely the GXE and DxE. This resulted in
model structures G+GXE (alternatively G+GXE (GK) and G+GxE (DK)) and
G+GxE+D+DxE.

Model G+W (enviromic-enriched MM (EMM)). The model EMM applied both the market-
based effects (X¥_, g5 # 0) and the enviromic-based effects (YL_, w, # 0) (Equation '2).
Included were the random effects G and the random enviromic effects (W), the latter_being
derived through the integration of the relationship matrix Ky, (alternatively Ky, and Ky ).
The resulting model structure was G+W (alternatively G+W (GK) and G+W (DK)).

Model G+W+GxW (reaction-norm MM (RNMM)). Building upon thesmodel EMM, the
model RNMM (X¥_, g, # 0 and ¥'L_, w, # 0, Equation 2) extended.the random enviromic-

based effects with a random interaction effect GxW. The obtained“model structure was
G+W+GxW (alternatively G+W+GxW (GK) and G+W+GxW (DK)).

Model G+GXE+W+GXW (reaction-norm MDs (RNMDs)): The last of the compared
models, the model RNMDs (¥*_, gs # 0 and YL_yWx# 0, Equation 2), combined the
random marker-based effects G and GXE with the random enviromic-based effects W and
GxW in a single model structure G+GXE+WHGXW (alternatively G+GXE+W+GxW (GK)
and G+GxE+W+GxW (DK)).

Fixed effect of inbreeding. The designmatrixyfor the fixed effects Xy (Equation 2) was based
on the vector of environments (E) for allkmodel structures tested in this study. As described by
previous authors (Roth et al., 20224 Vitezica et al., 2018), including an inbreeding coefficient
as fixed effect can account for.diréctional dominance effects and help to avoid overestimating
the proportion of variance explained by the dominance model components. Hence, the model
MM was additionally extended with the fixed effect of inbreeding contained in parameter X,
which was incorpotated,in the model structures denoted as G (inb) and G+D (inb). The
inbreeding coefficientyfor each genotype was estimated from the marker matrix Mg,
calculated as‘the relative frequency of the homozygous allelic combinations AA and aa across
all markers§:

Deep learning approach

The d€ep learning genomic prediction model was designed to be able to receive both
genotypic and environmental data in the form of four streams. Genotypic data underwent
feature selection in two different ways, generating input data for two different streams of the
model: single nucleotide polymorphism (SNP) stream and principal component (PC) stream.
First, to represent specific genetic variation, the most relevant 1,000 SNPs for each trait and
fold were extracted from the marker matrix Mg with a gradient boosting regressor. The
response variable for the gradient boosting model was derived from the means of the random
effects of genotypes, which were extracted from a mixed-effects model. This mixed-effects
model followed Equation 1, incorporating fixed effects of the environment (E) and random
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effects of genotype (g). Additionally, the SNPs associated with the studied traits as reported
by Jung et al. (2022) were added to the existing pool of 1,000 SNPs within the SNP stream.
Second, using the principal component analysis in related samples (PC-AiR) method (Kick et
al., 2023), 58 principal components (PCs) capturing 100% of the genetic variation were
extracted and used as input to represent the overall genetic variation. Daily weather variables
and soil environmental covariates directly constituted the input for the weather and soil
streams, respectively. The adjusted phenotypic means served as the response variables. All
stream and response variables were scaled between -1 and 1. The model architecture was
designed using ‘TensorFlow’ (v.2.10.0) and ‘Keras’ (v.2.10.0). All streams consisted, ofa
variable number of dense layers except for the weather stream. In this case, the firstMayers
were long short-term memory (LSTM), which excel at processing sequential data. The four
streams processed the data independently and were concatenated after several layers. Further
dense layers were placed before the output neuron to allow for data integtation. For specific
details on the model architecture, please refer to the provided~ GitHub link
(https://github.com/MichaelaJung/Integrative-prediction). Models for each trait were trained
and evaluated at different learning rates (1™, 1, and 5¢°). When’the training loss stopped
improving, the training was stopped. The appropriate learning rate was decided for each trait
based on the highest correlation and the lowest root mean squared error.

Genomic prediction

All statistical and deep learning genomic predietion models were iteratively fitted in a five-
fold cross-validation that was repeated five(times, ‘with genotypes being allocated to folds
randomly and without replacement, resulting in”25 runs of each tested model. All models
were applied using the same genotype allocations for each fold. The statistical genomic
prediction model structures were solvedusing Bayesian hierarchical modeling implemented
in the R package ‘BGGE’ (v.0.6:5) (Granato et al., 2018). The statistical genomic prediction
models underwent 10,000 iterationis of the Gibbs sampler, employing a thinning of 3 and
discarding the initial 1,000 samples as burn-in.

Relative contribution of model components

For the statistical genomic prediction models, each model fit from the cross-validation was
used to obtain the proportions of variance explained by the various random effects. To explain
the deepdearning model predictions with respect to each input feature (e.g., a SNP or weather
variable), the” ‘GradientExplainer’ function from the ‘shap’ package (v.0.42.1) (Lundberg &
Lee;,2017) was used to calculate approximated Shapley additive explanations (SHAP). It uses
thevgradients of the model to approximate SHAP values for each feature, which estimates
their contribution to the prediction. SHAP values were calculated for every instance of every
test fold in each repetition of the cross-validation. The absolute values of each feature were
averaged to obtain absolute mean SHAP values per feature. Furthermore, to investigate the
contribution of each stream to the prediction, the absolute mean SHAP values were summed
for every fold, and the relative SHAP contribution of each stream was obtained as a
percentage.

Assessment of predictive ability
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For every statistical and deep learning genomic prediction model and trait, twenty-five
estimates of predictive ability were generated for each environment, calculated as Pearson’s
correlation coefficient between the adjusted means and predicted values. This resulted in 200
predictive ability estimates for titratable acidity, soluble solids content, and fruit firmness, 500
for russet frequency, 525 for red over color, 575 for floral emergence and flowering intensity,
and 625 for harvest date, total fruit weight, number of fruits, and single fruit weight. Average
predictive ability across traits was calculated by averaging all estimates of predictive ability.
for each model.

Four models were selected for an in-depth comparison based on their performance and
characteristics. The selection criteria included improvements of at least 0.01 /in average
predictive ability across traits compared to the benchmark model G. Additionally;sstatistical
genomic prediction models that explained a large proportion of variance were prioritized, with
a preference for simpler model structures over more complex ones. For.each of these models,
both the average predictive ability and the distribution of predictive. abilities were visualized
and compared with those of the model G for every trait.

All statistical analyses in this work were implemented in R (v.4.1,3) (R Core Team, 2022).
The code for implementing, training, using, and explaining“the deep learning genomic
prediction models was written in Python (v.3.9.16).
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