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Abstract 

Climate change is projected to impact agricultural production. Sugar beet production is an 

important part of Swiss agriculture, which is why assessing potential climatic impacts is 

relevant. Since cropping simulation models are useful in such assessments, this thesis evaluated 

the performance of the World Food Studies (WOFOST) cropping simulation model for 

simulating the growth of sugar beets under Swiss conditions. The model’s performance was 

evaluated using yield observations from 20 locations for the period from 1990 to 2022, as well 

as yield observations from 950 sugar beet fields located across the Swiss Plateau in the year 

2020. It was found that WOFOST performed better regarding the temporal variability of the 

yield observations (1990-2022) compared to the spatial variability (2020). In 2020, Swiss sugar 

beet production was impacted by the Beet Yellows Virus (BYV), resulting in decreased sugar 

beet yields. For the 950 sugar beet fields examined, information regarding the level of BYV 

contamination, alongside the location and harvested yield, was gathered through a survey of 

sugar beet farmers. A remote sensing analysis was conducted in which 101 different vegetation 

indices were calculated for the examined sugar beet field to identify the vegetation index that 

correlates best with the harvested yield and the BYV contamination category. The Chlorophyll 

Index Green (CIG), the Simple Ratio (SR), and the Green Ratio Vegetation Index (GRVI) 

showed the strongest correlation with observed yield, while the Anthocyanin Reflectance Index 

(ARI) demonstrated the best correlation with the BYV categories. Lastly, the combination of 

WOFOST and remote sensing parts showed that WOFOST predicted more frequent water stress 

for fields heavily affected by BYV, suggesting that water stress increased the vulnerability to 

BYV infections. 
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1 Introduction 

In Chapter 5 of the Sixth Assessment Report from the Intergovernmental Panel on Climate 

Change (IPCC), Working Group II summarises the scientific literature regarding the "past, 

current, and future climate change effects on managed ecosystems that provide provisioning 

and cultural services” (Bezner Kerr et al., 2022: 720). Regarding the observation of climate 

change effects, the authors state with high confidence that climate change has led to mostly 

adverse impacts on crop yields (Bezner Kerr et al., 2022: 724). For example, studies (Challinor 

et al., 2014; D. Shindell et al., 2019; D. T. Shindell, 2016) have identified and calculated the 

size of yield losses due to increased temperatures caused by anthropogenic emissions of 

greenhouse gases (GHG) in the past. Similarly, Mulla et al. (2020) state that current climate 

models “predict an increase of global warming leading to exposure of major crops to 

temperature stress and a decrease of yields of an uncertain magnitude for every region”(Mulla 

et al., 2020: 424). While it is evident that these climatic changes will impact agricultural 

ecosystems, Henne et al. (2018) stress that an agricultural ecosystem's yield production depends 

on various other factors (e.g., management) besides climatic conditions. Therefore, it is difficult 

to identify and attribute climate change impacts on agricultural ecosystems in general. 

In 2018, the National Centre for Climate Services (NCCS) of Switzerland published its 

“CH2018 – Technical Report” which contains detailed information and data about observed 

and projected climatic changes in Switzerland. This report clearly states that the temperatures 

in Switzerland in the 21st century will increase in all areas and every season. The magnitude of 

the temperature increase depends on the emission scenario (CH2018, 2018: 8). Additionally, 

climate change will influence current precipitation patterns, especially seasonal patterns and 

snowfall. Various studies investigated how these described climatic changes impact agriculture 

in Switzerland: Using the CH2018 climate scenario datasets (published by the NCCS), Tschurr 

et al. (2020) found that projected increases in temperature will prolong the growing season. 

This is especially the case in the Alpine region (Rammig et al., 2010). While a prolonged 

growing season could benefit crop production, the frequency and intensity of droughts will also 

increase, which is why “… Switzerland’s climate will become rougher and more challenging” 

(Tschurr et al., 2022: 19) for agriculture. Furthermore, a study analysing the impact of climate 

change on grain maise production in Switzerland found that increased temperatures could 

benefit grain maise production but that an increased drought risk could offset these effects 

(Holzkämper et al., 2013). Additionally, a study found “an increasing likelihood of climatic 
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extremes” (Fuhrer et al., 2006), which will increase the risk for agricultural production 

(Brönnimann et al., 2014). 

In 2012, a study aimed at assessing the impact of climate change on the yield of four different 

crop types cultivated in Europe by using a cropping simulation model (WOFOST), historic crop 

and weather data, and data from a global climate model (GCM). Switzerland was not part of 

the study area. Nevertheless, the results from the crop simulations for the regions close to 

Switzerland (e.g. South Germany and Eastern France) show that depending on the time and the 

emission scenario, the potential impact of climate change on sugar beet yields can either be 

positive or negative (Supit et al., 2012). Similarly, a study conducted in Germany found that 

due to increasing temperatures, sugar beets can be planted earlier in the year, which could 

potentially lead to an increase in produced yield (Kremer, 2017). 

Sugar beets are predominantly cultivated in the region of the Swiss plateau. Two factories in 

Switzerland process the harvested sugar beet plants. One factory is located in Aarberg in the 

Seeland region; the other is situated in Frauenfeld in the northeastern part of Switzerland. In 

their publication about sugar beet production in Switzerland, the Federal Statistical Office 

(FSO) shows that the share of land used to produce sugar beets is highest in areas close to either 

one of the two sugar factories (Bundesamt für Statistik, 2020: 2). In total, approximately 1.8% 

of usable arable land in Switzerland is used to produce sugar beets (Bundesamt für Statistik, 

2020: 1). In 2017, 72% of consumed sugar was produced in Switzerland (Bundesamt für 

Statistik, 2020: 1). In Switzerland, sugar is classified as a “basic supply good” which is why its 

production is subsidies by the Federal Government (Bundesamt für Statistik, 2020: 2). As 

described at the beginning of the chapter, climate change will affect agricultural systems in 

Switzerland (increasing temperatures and changes in precipitation patterns). Given its 

importance in agricultural production and food supply, assessing potential climate change 

impacts on sugar beet production in Switzerland is consequently relevant. 

The impact of climatic changes like increasing temperatures and changes in precipitation on 

agricultural production depends on the crop and the location (Imtiaz Safa and Shahid, 2024: 

287). Therefore, Mulla et al. (2020) state that cropping simulation models are useful for 

analysing the potential impacts of climate change on agricultural production, as they can include 

local climatic conditions, soil parameters and agricultural practices. Cropping simulation 

models have evolved in recent years and find a wide range of applicability, like climate change 

and adaptation, food security, policy assessment or farmer advice (Holzworth et al., 2015: 277). 
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For example, the CropSyst crop model was used in a study to identify climate change adaptation 

measures for agricultural practices in western Switzerland (Klein et al., 2014). Another study 

used the WOFOST cropping simulation model from Wageningen University to assess climate 

change's impact on winter wheat production in Switzerland as well as to investigate if the 

WOFOST cropping simulation model is suitable for simulating winter wheat production in 

Switzerland (Conway et al., 2023).  

WOFOST is a cropping simulation model developed in the 1980s that is used in the MARS 

Crop Yield Forecasting System (M-CYFS) to create crop yield forecasts for member states of 

the European Union since 1993 (Lecerf et al., 2019: 192). WOFOST has been used in various 

studies for crop yield forecasts (A. De Wit et al., 2010; Lecerf et al., 2019), to assess climate 

change effects on crop yields (Bassu et al., 2014; Supit et al., 2012) or in combination with 

remote sensing data (Curnel et al., 2011; Huang et al., 2019). WOFOST can be used to simulate 

various crops. One or multiple calibrated crop files containing crop parameters are available for 

each crop. Most of the calibrated crop parameter sets were developed in a study by Boons-Prins 

et al. (1993). For sugar beet, four crop parameter sets exist that are ready to use and cover the 

area of Western, Central, and South Europe. As the crop parameter sets were created on behalf 

of the Joint Research Centre of the Commission of the European Community, Switzerland was 

not included since it is not part of the European Union. Therefore, the first goal of this study is 

to evaluate whether the existing crop parameter sets in WOFOST are suitable to simulate the 

growth of sugar beets in Switzerland. To achieve this goal, the four sugar beet crop parameter 

sets will be used to simulate the growth of sugar beet for 20 different Swiss locations in a 

historic period ranging from 1990 to 2022. The simulated yield output from WOFOST will be 

compared to data about the actual sugar beet yield harvested by farmers to determine the 

accuracy of each crop parameter set. 

As outlined above, even though crop simulation models can be useful for assessing crop growth 

in various climate conditions and locations, it is also important to consider their limitations. 

Here, it is helpful to consider the concept of three agricultural production levels proposed by 

van Ittersum & Rabbinge (1997): Agricultural production is ultimately the result of growth-

defining, growth-limiting and growth-reducing factors (Rabbinge, 1993, as cited in van 

Ittersum & Rabbinge, 1997). Growth-defining factors are, for example, the climatic conditions, 

crop characteristics, location or sowing time. These factors determine the potential production. 

Under growth-limiting factors, the supply of water and nutrients is understood. Lastly, growth-

reducing factors consist of various influences that reduce the growth of a plant, like pollutants 
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or diseases. Ultimately, the actual production depends on the water and nutrient supply and the 

presence of growth-reducing factors (van Ittersum & Rabbinge, 1997). In WOFOST, it is 

possible to simulate the potential production of a crop as well as the water-limited production. 

However, it is not possible to include nutrient supply or growth-reducing factors in the 

simulations (de Wit and Boogaard, 2024: 5). 

In 2020, sugar beet production in Switzerland was affected by the Beet Yellows Virus (BYV): 

A study found that in some areas, up to 50% of sugar yield was lost due to the virus (Groux et 

al., 2021). In 2019, three neonicotinoid pesticides were banned in Switzerland. While pesticides 

could have been used in previous years to control the vectors that transmit the virus, this was 

no longer possible in 2020. The high number of diseased areas could also have been caused by 

high spring temperatures, resulting in an earlier and more numerous occurrence of vectors 

(Groux et al., 2021). Due to this significant occurrence of the BYV, a research group from 

Agroscope1 surveyed over 1’000 sugar beet farmers in Switzerland. This survey collected the 

size and the location of sugar beet fields, the level of contamination by the virus yellows, the 

sowing date, and the resulting sugar beet yield. On the basis of this dataset, two different 

analysis were carried out in this thesis which will be described in the following. 

The leaves of a sugar beet plant infected with the BYV begin to turn yellow approximately three 

weeks after the contamination by the vector and reach the maximum degree of yellow colour 

in the later stages of the phenological development (Hossain et al., 2021: 588). In general, 

remote sensing can identify such damages caused by diseases and pests. In fact, Zhang et al. 

(2019) define the following four categories of damages to plants that are detectable through 

remote sensing: Reduction of biomass/decrease of leaf area index, lesions or pustules due to 

infection, destruction of pigments systems and wilting (Zhang et al., 2019: 2). Using remote 

sensing data from Sentinel-2, Zheng et al. (2018) created a new multispectral index to identify 

yellow rust (a fungal disease) in winter wheat in China. Overall, the study found that the newly 

created red-edge disease stress index (REDSI) showed yellow rust classification accuracy of 

about 85%, which was higher compared to other common vegetation indices (Zheng et al., 

2018). As the authors propose, it would be interesting to see whether the REDSI index is also 

suitable for identifying diseases of other cultivars. Therefore, this study will also use Sentinel-

2 data to calculate the REDSI index for the sugar beet fields from the 2020 survey and compare 

the results with the farmers’ assessment of the disease intensity. Additionally, the most common 

 
1 Swiss centre of excellence for agricultural research 



Master Thesis Manuel Kunz 

Graduate School of Climate Sciences, University of Bern 18-114-660 

 

  
 

9 

vegetation indices will be calculated to find the index that best identifies the fields with high 

disease contamination.  

As mentioned above, the exact amount of harvested sugar beet yield was collected for 

approximately 950 sugar beet fields in the 2020 survey among sugar beet farmers. The sugar 

beet fields cover the area of the Swiss plateau. Such detailed and regionally distributed yield 

data is very suitable for comparing the actual harvested yield with the simulated yield output 

from WOFOST. Therefore, for each of the fields with sugar beet yield data available from the 

survey, WOFOST will be used to simulate the growth of the sugar beet plants, and the resulting 

yield amount will be compared to the observed harvested yield. 

This study can be divided into two parts: The first part consists of the WOFOST simulations. 

Here, simulations are carried out for a historical period (1990-2020) for 20 locations in 

Switzerland and for the year 2020 for approximately 950 different sugar beet fields in 

Switzerland. For the simulations, all four available crop parameter sets are used, and the results 

will be compared to identify the best suitable crop parameter set for Switzerland. The second 

part of this study contains the remote sensing analysis: In the first step, various vegetation 

indices (including REDSI proposed by Zheng et al. (2018)) will be calculated for every sugar 

beet field of the 2020 survey and for various time steps. Furthermore, the resulting index values 

will be compared to the harvested yield amount as well as to the farmers’ assessment of virus 

intensity. Lastly, the two parts (WOFOST and remote sensing) will be combined: For fields 

with high virus contamination, WOFOST is expected to overestimate the yield, as it only 

simulates water-limited production and not the actual production that is reduced by the disease. 

Chapter 2 describes the data and materials used. It contains descriptions about the use and 

functionality of the cropping simulation model WOFOST and the data used for the simulations. 

Additionally, the observed yield data that will be used to compare the simulation results is 

described. Lastly, the chapter includes descriptions about the data used for the remote sensing 

part. Chapter 3 contains the results for the different analyses and in Chapter 4 the results are 

discussed. Lastly, the most important findings of this study are summarised in Chapter 5.   
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2 Data and methods 

The used data and methods are listed and described in this Chapter. There is a subchapter for 

every analysis, that contains detailed descriptions of the used data and the applied methods. 

Additionally, since the simulations with WOFOST are the main methodological part of this 

thesis, Chapter 2.1 contains a WOFOST model description.  

2.1 WOFOST – Model description 

This thesis uses the WOFOST cropping simulation model developed by Wageningen 

University. Generally, “WOFOST computes daily biomass accumulation and its distribution 

over crop organs during the growth period using a photosynthesis approach" (Boogaard et al., 

2013, p. 131). More precisely, the crop processes simulated by WOFOST include phenological 

development, CO2 assimilation, respiration, portioning, leaf growth and senescence, stems and 

storage organs, roots, transpiration and soil moisture (A. de Wit et al., 2019). In WOFOST, a 

crop's dry matter formation relies on irradiation, temperature, and the crop characteristics 

defined in the crop parameter set. The daily dry matter formation is determined by the daily rate 

of CO2 assimilation, calculated from “…the absorbed radiation and the photosynthesis-light 

response curve of individual leaves”(A. de Wit et al., 2019). Ultimately, the resultant dry matter 

is allocated to the various plant organs based on the crop's characteristics and current 

phenological development stage (A. de Wit et al., 2019).  

As outlined in Chapter 1, WOFOST can be utilised to simulate the potential or water-limited 

production of one or multiple crops for specified locations. Meteorological data from these 

locations are needed to simulate the growth of certain crops at a given site. Table 1 presents the 

necessary meteorological variables in WOFOST, including the required units. In addition to 

meteorological conditions, specific soil parameters or agricultural management practices can 

also be included in the simulations. 

Table 1: Meteorological variables required in WOFOST (table content from (A. de Wit, 2024)) 

Parameter Description Unit 

TMAX Daily maximum temperature °C 

TMIN Daily minimum temperature °C 

VAP Mean daily vapour pressure hPa 

WIND Mean daily wind speed at 2 m above ground level msec-1 

RAIN Precipitation (rainfall or water equivalent in case of snow or hail) cmday-1 

IRRAD Daily global radiation Jm-2day-1 

SNOWDEPTH Depth of snow cover (optional) cm 
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WOFOST was developed in the 1980s (de Wit et al., 2020: 1) and has since been utilised in 

various studies. Timsina et al. (2018) used WOFOST to simulate the potential yield for wheat 

in Bangladesh, Boogaard et al. (2013) estimated the yield of autumn-sown wheat in Europe 

with WOFOST, and Kulig et al. (2020) compared the potential and water-limited yields 

simulated with WOFOST for two potato cultivars in Poland. WOFOST is an open-source model 

(de Wit et al., 2019: 164). Since its first publication in the 1980s, WOFOST has undergone 

updates and improvements, which will be necessary in the future given the increasing demand 

to consider climate variability driven by climate change in crop simulations (A. de Wit et al., 

2019). Specifically, concerning the impacts of climate change, Gilardelli et al. (2018) noted that 

cropping simulation models frequently fail to accurately account for extreme climate impacts 

on crop production. Their study compared WOFOST with a modified version of WOFOST 

created to account for extreme weather conditions and identified differences between the two 

versions through sensitivity analyses. Ultimately, they concluded that adjusting WOFOST to 

accommodate extreme climate conditions is important for forecasting crop yields (Gilardelli et 

al., 2018: 7). Such adaptations of WOFOST are only feasible due to the aforementioned open-

source design of the model. Another benefit of using WOFOST is that it features a Python 

implementation called Python Crop Simulation Environment PCSE2 (A. de Wit et al., 2019). 

With PCSE, large numbers of WOFOST simulations can be carried out. 

As previously mentioned, WOFOST is continually being developed, which is why there is not 

one single model but a multitude of models. Each model is available in PCSE and can be 

selected to perform cropping simulations. The “Wofost72" model is the first basic crop model 

used to simulate the phenology of a crop, as well as its potential or water-limited production. 

This model does not consider the impact of CO2, biomass reallocation, or nitrogen dynamics, 

and the water-limited model features a simple, so-called “classic” water balance, viewing the 

soil as a single layer. In “Wofost73”, it is possible to factor in CO2 impact and biomass 

reallocation in the simulations. Additionally, a more complex water balance module that 

accommodates multi-layered soils can be utilised. Finally, “Wofost81” represents the latest 

WOFOST model, which allows for the inclusion of nitrogen dynamics in the simulation runs 

(A. de Wit, 2024a). In WOFOST, different calibrated crop parameter sets are available for 

various crops (A. de Wit, 2024b). Four different crop parameter sets exist for sugar beet. The 

parameters were calibrated for different geographical regions. 

 
2 Detailed information about PCSE is available at https://pcse.readthedocs.io/en/stable/ 
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2.2 WOFOST simulations 1990-2022 

The primary objective of this thesis is to assess which of the four sugar beet crop parameter sets 

available in WOFOST is most suitable for simulating the growth of sugar beet plants in 

Switzerland. As outlined in Chapter 1, the simulation results will be compared with actual 

harvested sugar beet yield data. Consequently, the spatial scope is confined to locations where 

sugar beet yield data is available for the period 1990-2022. Figure 1 shows the locations where 

sugar beet yield data is available for 1990-2022. It is essential to note that these locations do 

not represent sugar beet fields but rather the site of a MeteoSwiss measurement station. The 

sugar beet yield data is aggregated: for each MeteoSwiss measurement station, all sugar beet 

yields harvested within a 15 km radius of the measurement station were averaged. This resulted 

in 88 locations, predominantly situated in the Swiss Plateau (Figure 1). 

 

Figure 1: Map showing the locations with available sugar beet yield data in Switzerland 

2.2.1 Meteorological data 

As mentioned in Chapter 2.1, site-specific meteorological parameters are needed for the 

WOFOST simulations. Daily meteorological parameters can be accessed via the data portal 

“IDAweb” provided by MeteoSwiss. Table 2 displays each meteorological parameter required 

in WOFOST, along with the name, unit, and description of the corresponding parameter from 

IDAweb. A comparison of the units for the parameters needed in WOFOST and those provided 
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by IDAweb shows that the precipitation data obtained from IDAweb must be converted from 

mm to cm. Additionally, the radiation data was converted from Watts per square metre to Joules 

per square metre. 

Table 2: Meteorological parameters obtained from IDAWEB and used for crop simulations 

 

Daily meteorological data records from 1990 to 2022 were available on IDAweb for 64 stations. 

Since meteorological data and sugar beet yield data are both necessary for the WOFOST 

simulation, only the stations for which both observations are available were selected. The 

selected locations are shown in Figure 2.  

 

Figure 2: Map showing the locations with available sugar beet yield data and daily meteorological records for 1990-2022 in 

Switzerland 

WOFOST parameter IDAweb parameter Unit Description 

TMAX Maximum temperature °C Air temperature 2 m above ground; daily maximum 

TMIN Minimum temperature °C Air temperature 2 m above ground; daily minimum 

VAP Pressure hPa Vapour pressure 2 m above ground; daily mean 

WIND Wind m/s Wind speed scalar; daily mean 

RAIN Precipitation mm Precipitation; daily total 0 UTC – 0 UTC 

IRRAD Radiation W/m2 Global radiation; daily mean 
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2.2.2 Soil parameter set and WOFOST model 

WOFOST was run for all four different sugar beet crop parameter sets available in WOFOST, 

using the “EC3-medium fine” soil parameter set for each location. The EC3 soil parameter set 

is a standard parameter set from WOFOST, in the middle of a scale that ranges from EC1, which 

is suited for very coarse soils, to EC6, that is used for very fine and permeable soils. Since the 

yield data for each of the 38 stations are averages derived from multiple sugar beet fields with 

varying soil characteristics, the EC3 soil parameter set was selected as it represents average soil 

conditions. Given that site-specific soil conditions were unavailable and not included in the 

simulation, the WOFOST model “Wofost81_WLP_CWB” was used. This model simulates 

water-limited production through a classical water balance. As the sowing and harvest dates are 

unknown, typical sowing and harvest dates were set: the 30th of March was used for the sowing 

date, while the 30th of November was chosen for the harvest date. Finally, WOFOST was run 

without any additional agricultural management practices, such as irrigation or fertiliser 

application.  

2.2.3 Yield comparison 

WOFOST simulates the formation of a crop's dry matter. Consequently, the yield resulting from 

a simulation run represents only the crop's dry matter weight in tonnes per hectare. In contrast, 

the fresh weight of harvested and washed sugar beet plants measured in decitonnes per hectare 

were observed. Therefore, the observation data was converted from decitonnes per hectare to 

tonnes per hectare, as this is the standard unit for crop yields. Likewise, the simulated dry matter 

had to be converted to fresh weight to compare of the simulated output with the observations. 

A study conducted in New Zealand measured both the fresh weight of sugar beet plants and the 

dry matter percentages in an experimental setting. The findings indicated that, across different 

sugar beet varieties, the dry matter proportion was approximately 25% (Martin, 1980). 

Furthermore, researchers at Agroscope measured the dry matter content of sugar beet cultivated 

at Reckenholz in 2020, discovering a dry matter content of approximately 24.4%. For this 

reason, the simulated dry matter from WOFOST was divided by 0.244 to calculate the simulated 

fresh weight. Once the results for all stations and all years (1990-2022) were simulated and 

calculated, they were compared to the observations. For this comparison, Willmott’s index of 

agreement d was used. The formula for calculating d is presented below, with P representing 

the observed data, O as the simulated data, and Ō as the mean of the simulated data. 

𝑑 =  1 −  
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑛
𝑖=1

∑ (|𝑃𝑖 − �̅�|  +  |𝑂𝑖 − �̅�|)2𝑛
𝑖=1
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To calculate Willmott’s Index of Agreement for a location, observations of sugar beet yield and 

meteorological data are required. For some locations, only a limited number of observations 

were available. To ensure data reliability, a filter was applied to include only those locations 

with more than five years of observations. Twenty locations met this criterion and were included 

in the analysis. As shown in Figure 3, these locations are distributed across the Swiss Plateau, 

mostly situated near one of the two sugar factories in Aarberg and Frauenfeld. 

 

Figure 3: Map showing the locations used for WOFOST simulation and the location of the two sugar factories. 

2.3 WOFOST simulations and remote sensing analysis in 2020 

As described in Chapter 1, following an increase in sugar beet fields infected with the BYV in 

2020, a research group from Agroscope conducted a survey among sugar beet farmers. In 

addition to information regarding the harvested sugar beet yield, the variety of sugar beet used, 

the sowing date, and the location of the field, farmers were also asked to estimate the level of 

BYV contamination per field on a scale from 1 (no contamination) to 4 (more than 50% of the 

field contaminated). Figure 4 shows the spatial distribution of the sugar beet fields for which 

data were collected in the 2020 survey. As can be seen, most sugar beet fields are situated in 

the area of the Swiss Plateau, with two clusters centred around the two sugar factories in 

Aarberg and Frauenfeld. This dataset will be used for WOFOST simulations on one hand and 

for calculating and analysing vegetation indices through remote sensing on the other hand. 
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Figure 4: Map showing the locations of sugar beet fields for which data were collected in the survey of 2020 

2.3.1 Meteorological data 

To run WOFOST, meteorological input data is needed. As the dataset contains numerous sugar 

beet fields from various locations across Switzerland, meteorological records with a higher 

spatial resolution were used to include site-specific meteorological conditions. MeteoSwiss 

offers a range of datasets for climate analyses in Switzerland, featuring a grid size of 1 km. 

Table 3 summarises the datasets used in this thesis. Meteorological parameters from the nearest 

grid cell were extracted for each sugar beet field.  

Table 3: Meteorological parameters obtained from MeteoSwiss spatial climate analyses dataset 

 

WOFOST 

parameter 

Dataset Period Grid Unit Description 

TMAX TmaxD 01.01.2020- 

31.12.2020 

ch01.r.swiss.lv95 °C Daily maximum temperature 

TMIN TminD 01.01.2020- 

31.12.2020 

ch01.r.swiss.lv95 °C Daily minimum temperature 

RAIN RhiresD 01.01.2020- 

31.12.2020 

ch01.r.swiss.lv95 mm Daily precipitation 

IRRAD SISD 01.01.2020- 

31.12.2020 

ch01.r.swiss.lv95 W/m2 Daily satellite-based global radiation 



Master Thesis Manuel Kunz 

Graduate School of Climate Sciences, University of Bern 18-114-660 

 

  
 

17 

Such gridded datasets are not available for pressure and wind. Since pressure and wind records 

are needed for WOFOST simulations, these records were acquired from meteorological 

measurement stations via IDAWEB (following a similar procedure as described in Chapter 2.2). 

The pressure and wind records from the nearest meteorological measurement station were 

extracted for each sugar beet field. 

2.3.2 Soil parameters 

In addition to site-specific meteorological observations, WOFOST can also include site-specific 

soil conditions into the crop growth simulation. The Swiss Competence Center for Soil (KOBO) 

(2023) created models of soil property maps for Switzerland based on soil property 

measurements from the Swiss Soil Dataset (Service Center NABODAT, 2022). These maps are 

available for the entire area of Switzerland. Data regarding soil texture and organic carbon at 

three different depths can be exported from these soil property maps for each sugar beet field 

based on their coordinates. The soil texture data includes proportions of sand, clay, and silt. The 

exported data on soil texture and organic matter was used to develop a site-specific soil file that 

could ultimately be included in the WOFOST simulations. In the first step, the Van Genuchten-

Mualem soil hydraulic parameters (Van Genuchten, 1980) were computed for each sugar beet 

field from the soil texture and organic matter data using two different pedotransfer functions 

(“PTF-01” and “PTF-02”) from the R package “euptf2” (Weber et al., 2020).Subsequently, the 

derived Van Genuchten-Mualem parameters were used to calculate soil moisture and hydraulic 

conductivity as a function of the hydraulic head. The “vangenuchten.py” Python script from 

WOFOST8.1 was then used to derive the following soil water retention and hydraulic 

conductivity parameters: 

❖ Soil water retention: 

▪ Soil moisture at wilting point (SMW) [cm3/cm3] 

▪ Soil moisture at field capacity (SMFCF) [cm3/cm3] 

▪ Soil moisture at saturation (SM0) [cm3/cm3] 

❖ Hydraulic conductivity: 

▪ Hydraulic conductivity of saturated soil (K0) [cm/day] 

Finally, these calculated parameters were compiled into a soil file for the use in WOFOST. The 

sowing date for each field was derived from the survey data. As the harvesting date was not 

included in the survey, it was set to the 30th of November. Lastly, WOFOST was run without 

any additional agricultural management practices (e.g., irrigation or fertiliser application).  
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2.3.3 Yield comparison 

To compare the simulated output with the observations, the simulated fresh weight was 

calculated by dividing the simulated dry matter amount by 0.244 (also see Chapter 2.2.3). 

Subsequently, the simulated fresh weight was compared to the observations by calculating the 

mean absolute error (MAE) for every sugar beet field. Furthermore, the aim was to include the 

information regarding the BYV contamination: Since WOFOST simulates only the water-

limited production, potential yield-limiting factors such as pests and diseases are not taken into 

account. Consequently, WOFOST is anticipated to overestimate the sugar beet yield for fields 

with significant BYV contamination. To quantify the fit between the simulated and the observed 

sugar beet yield, the Willmott’s Index of Agreement (see Chapter 2.2.3) and the PBIAS (percent 

bias) were calculated. The PBIAS is a metric used to quantify the performance of a model: 

Negative values indicate overestimation, positive values indicate underestimation, and 0 

indicates an optimal match between observed and simulated values (Gupta et al., 1999). PBIAS 

can be calculated with the following formula: 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑞𝑡

𝑜𝑏𝑠 − 𝑞𝑡
𝑠𝑖𝑚)𝑁

𝑡=1

∑ (𝑞𝑡
𝑜𝑏𝑠)𝑁

𝑡=1

 × 100% 

Finally, the difference between the simulated and observed yields was calculated. Additionally, 

the results were grouped by the degree of virus contamination. Ultimately, four groups resulted, 

for which the differences between simulated and observed yield were analysed. 

2.4 Model evaluation with reference data from Reckenholz 

In addition to evaluating the sugar beet yield estimation of WOFOST, it is also possible to 

analyse various other simulated parameters to assess the model's performance. Here, the 

limiting factor is the availability of observational data. At the Agroscope site in Reckenholz, 

Zurich, Agroscope operates lysimeter systems that measure the evapotranspiration and soil 

moisture content of fields where various crops are grown. For the years 2011, 2014, 2017, and 

2020, daily records of evapotranspiration and soil moisture content for four different soil depths 

(10 cm, 30 cm, 60 cm, and 90 cm) from an area where sugar beets were grown were available 

and used to evaluate the simulation accuracy of evapotranspiration and soil moisture content in 

WOFOST.  

The soil in the lysimeter systems used for this analysis was from Grafenried. Table 4 

summarises the properties of the Grafenried soil. As outlined in Chapter 2.3.2, soil hydraulic 

parameters can be calculated from soil texture and organic content using pedotransfer functions. 
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Two different pedotransfer functions, namely “ptf 01” and “ptf 02”, from the “eupft2” r-

Package (Weber et al., 2020) were used to derive the Van Genuchten-Mualem parameters. 

Similarly to the process previously described in Chapter 2.3.2, the derived Van Genuchten-

Mualem parameters were used to calculate soil water retention and hydraulic conductivity 

parameters, which can ultimately be included in the WOFOST simulations. In addition to soil 

property parameters, WOFOST also needs meteorological data to simulate the growth of a crop 

(see Chapter 2.1). In this study, daily measurements of minimum and maximum temperature, 

pressure, wind, precipitation, and radiation were obtained from the automatic weather station 

at Reckenholz operated by MeteoSwiss. 

Table 4: Soil properties of the soil in the lysimeter systems 

Depth 

(upper) 

[mm] 

Depth 

(lower) 

[mm] 

Clay content 

[%] 

Silt content 

[%] 

Sand 

content [%] 

pH content Organic 

carbon 

content [%] 

0 25 16 32 51 6.9 1.0 

25 65 20 26 53 6.6 0.2 

65 110 18 24 58 6.7 0.1 

110 135 16 27 57 6.8 0.0 

 

While the WOFOST simulations described in the previous chapters aimed to compare the 

simulated yield to the actual harvested yield, WOFOST was used here to assess the model’s 

performance in simulating evapotranspiration and soil moisture. Here, the WOFOST8.1 model 

with a classical water balance was used. The Van Genuchten-Mualem parameters were 

calculated from soil property data (Table 4). Ultimately, specific soil water retention and 

hydraulic conductivity parameters were used (these were again calculated using the 

“vangenuchten.py” Python script from WOFOST8.1). The estimated evapotranspiration and 

soil moisture simulated by WOFOST were then compared with observations from the lysimeter 

data. To evaluate the models' accuracy, the coefficient of determination (R²), the root mean 

square error (RMSE), and the normalised root mean square error (NRMSE) were calculated for 

both evapotranspiration and soil moisture content. Additionally, Willmott’s index of agreement 

(see Chapter 2.2.3) was also calculated. 

𝑅2 = 1 −  
∑ (𝑦𝑖 − �̃�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�𝑖)2𝑛
𝑖=1

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 −  �̃�𝑖)2𝑛

𝑖=1

𝑛
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𝑁𝑅𝑀𝑆𝐸 =  
√∑ (𝑦𝑖 −  �̃�𝑖)2𝑛

𝑖=1
𝑛

�̅�𝑖
 × 100 

2.5 Remote sensing data 

This thesis aims to identify the differences between healthy sugar beet fields and those 

contaminated with the BYV through remote sensing (as described in Chapter 1). The location 

and severity of BYV contamination assessed by farmers for each field in the 2020 survey dataset 

are available. Figure 5 shows the spatial distribution of the sugar beet fields from which data 

were collected in the 2020 survey, as well as their BYV contamination category (from 1 to 4). 

Generally, it is observed that most fields with moderate or high BYV contamination are located 

in the western part of Switzerland. In contrast, the sugar beet fields in the northeastern region 

predominantly show no or low contamination.  

 

Figure 5: Map showing the location and the BYV contamination category for all sugar beet fields from the survey in 2020. 

As outlined in Chapter 1, the reduced chlorophyll content of sugar beet leaves due to virus 

contamination could potentially be identified using vegetation indices. Many different 

vegetation indices exist, each possessing specific advantages or limitations in their application 

(Xue & Su, 2017). This analysis first examines which vegetation index is most suitable for 

identifying fields with higher virus contamination. Here, multispectral remote sensing data from 
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Sentinel-2 satellites (part of the Copernicus Programme from the European Space Agency) are 

ideally suited for vegetational and agricultural monitoring due to the presence of three red-edge 

bands essential for most vegetation indices (Phiri et al., 2020). Furthermore, the “rsi” R-package 

(Mahoney, 2025) facilitates the access, download, and processing of Sentinel-2 data in efficient 

manner, even for large calculations. It also includes the formulas for over 120 vegetation indices 

that can be computed from Sentinel-2 data. With the Copernicus Data Space Ecosystem 

Browser, it is possible to filter for dates with low cloud coverage. For the 2020 dataset, the 

Copernicus Data Space Ecosystem Browser was used to identify days with low cloud coverage 

to ensure clear remote sensing observations. Since the sugar beet plants were sown around the 

end of March and it takes time for the leaves to develop and be detectable through remote 

sensing, the earliest dates for the analysis were selected at the beginning of May. Available 

Sentinel-2 data, which covered nearly the entire area of Switzerland and exhibited minimal or 

no cloud coverage, were found for the following dates: 04.05.2020, 09.05.2020, 19.05.2020, 

24.05.2020, 03.06.2020, 23.06.2020, 08.07.2020, 18.07.2020, and 07.08.2020. The available 

Sentinel-2 vegetation indices from the rsi-package were calculated for each date and sugar beet 

field. Ultimately, the calculated vegetation index values were compared to the farmers' 

assessments of BYV contamination to assess whether the vegetation index is suitable for 

detecting sugar beet fields infected with the BYV. Spearman’s rank correlation coefficient was 

calculated for each vegetation index. Since the harvest yield amount was also collected in the 

survey, an additional regression analysis was carried out between the yield and each vegetation 

index. Here, Pearson’s correlation coefficient was used to calculate the correlation between each 

vegetation index (independent variable) and the harvest sugar beet yield (dependent variable) 

as proposed by Bao et al. (2024). 

Additionally, a random forest modelling approach was used to classify sugar beet fields as 

“healthy” (indicating no BYV contamination) or “ill” (BYV contaminated) based on vegetation 

index values derived from remote sensing. The workflow was modelled after Nguyen et al. 

(2021), where a machine learning pipeline was used to evaluate results from different vegetation 

indices calculated from hyperspectral images of healthy and virus-infected grapevine leaves. 

The random forest classification was performed with the Scikit-learn library in Python 3.10. 

The vegetation indices data from 08.07.2020 were used in this analysis since BYV 

contamination effects were expected to be highest in July. In the first step, a random forest 

model was set up for the calculated index values from all 101 examined vegetation indices to 

perform a 5-fold cross-validation. The vegetation indices were used as the predictor variables, 
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while the BYV contamination categories 1 and 2 were combined into a single class (coded as 0 

representing “healthy” fields), and categories 3 and 4 were grouped into another class (coded 

as 1 indicating “ill” fields). The virus contamination category represents the target variable.  

From the first model’s prediction, the most important predicting features were identified. In the 

second step, these ten most important predicting features were used to train a new random forest 

model. Lastly, a third random forest model was set up, using only the most predicting feature 

identified in the initial model. With the aim of improving the models' performance, the 

following hyperparameters were tuned using the RandomizedSearchCV class from the sklearn 

package: the number of trees (n_estimators), maximum depth (max_depth), minimum samples 

required to split an internal node (min_samples_split), minimum samples required at leaf node 

(min_samples_leaf), maximum number of features (max_features), bootstrap sampling 

(bootstrap) and class weights (class_weight). The performance of the models was evaluated 

based on the cross-validation accuracy and the classification reports. 
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3 Results 

This chapter contains the obtained results. First, Chapter 3.1 presents the results from the 

WOFOST evaluation at Reckenholz regarding evapotranspiration and soil moisture. 

Afterwards, the results from the WOFOST simulations for the historical period 1990-2022 

(Chapter 3.2) and the year 2020 (Chapter 3.3) are described. Lastly, Chapter 3.4 contains the 

results from the remote sensing analysis. 

3.1 WOFOST evaluation at Reckenholz 

This chapter presents the results from the WOFOST simulations at Reckenholz. As outlined in 

Chapter 2.4, WOFOST simulations were run for the years 2011, 2014, 2017, and 2020 using 

daily meteorological observations as well as specific soil parameters as inputs. The Van 

Genuchten-Mualem parameters (Table 5) were estimated from measured soil texture data using 

the “eupft2”-pedotransfer functions (Weber et al., 2020) to calculate soil water retention and 

hydraulic conductivity curves. Here, the resulting soil water retention and hydraulic 

conductivity curves for the two pedotransfer functions (PTF-01 and PTF-02) are presented. 

Additionally, the next two subchapters include the results of the comparison between the 

simulated and observed evapotranspiration and soil moisture content.  

Table 5: Van Genuchten-Mualem parameters for the Grafenried soil at Reckenholz calculated with two pedotransfer functions 

Pedo-

transfer 

function 

Soil 

layer 

[cm] 

r 

(Residual 

Water 

content) 

[cm3cm-3] 

s 

(Saturated 

water 

content) 

[cm3cm-3] 

 

(Inverse 

Air-Entry 

suction) 

[cm-1] 

L 

(Mualem’s 

pore-

connectivity 

parameter 

n (pore-size 

distribution 

parameter) 

Ks (Saturated 

hydraulic 

conductivity) 

[cmd-1] 

PTF-01 0-25 0.005 0.460 0.061 -3.324 1.214 38.483 

PTF-01 25-65 0.000 0.360 0.046 -1.638 1.142 40.114 

PTF-01 65-110 0.000 0.347 0.057 -2.747 1.127 53.939 

PTF-01 110-120 0.000 0.328 0.035 -3.196 1.129 19.073 

PTF-02 0-25 0.005 0.426 0.080 -3.051 1.195 42.012 

PTF-02 25-65 0.036 0.351 0.045 -2.564 1.180 18.173 

PTF-02 65-110 0.055 0.348 0.065 -3.196 1.169 14.915 

PTF-02 110-120  0.041 0.348 0.012 -1.240 1.190 7.472 
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Figure 6: (a) Soil moisture content plotted against the pressure head for different soil depths (0-25 cm, 25-65 cm, 65-110 cm 

and 110-120 cm) and two pedotransfer functions (PTF 01 and PFT 02). (b) Hydraulic conductivity plotted against pressure the 

pressure head for different soil depths and two pedotransfer functions. 

Figure 6a shows the water retention curves for the Grafenried soil at Reckenholz across four 

different soil depths (0-25 cm, 25-65 cm, 65-110 cm, and 110-120 cm). As previously described, 

two different pedotransfer functions were used: the results for PTF-01 are shown in red, while 

those for PTF-02 are shown in blue. Generally, the calculated soil-water retention curves follow 

a typical pattern for soils with varying pore sizes. Moreover, the results from the two different 

pedotransfer functions are similar, particularly for soil depths of 0-25 cm and 65-110 cm. Figure 

6b indicates that hydraulic conductivity declines with an increasing pressure head across all soil 

depths. Here again, the findings from the two pedotransfer functions are similar, as both show 

a decrease in hydraulic conductivity with an increasing pressure head. 

  

a) a) 

b) 
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3.1.1 Evapotranspiration 

The Van Genuchten-Mualem parameters calculated in the previous chapter were used to 

calculate soil property variables, which were ultimately used in the WOFOST simulation. As 

outlined in Chapter 2.4, the simulated evapotranspiration from WOFOST will be compared with 

the observations from the lysimeter systems at Reckenholz.  

Figure 7 shows the daily observed and simulated amounts of evapotranspiration at Reckenholz 

for 2011, 2014, 2017, and 2020. Additionally, the selected statistical metrics used to quantify 

the relationship between the observed and simulated values are displayed in the upper left 

corner of each plot. In general, the simulated values follow the trend of the observed values, 

although the quantities are slightly lower. Consequently, the calculated PBIAS values are 

positive for all years, indicating that WOFOST underestimates the amount of 

evapotranspiration. While the coefficient of determination (R²) ranges from 0.31 to 0.42 for 

2011, 2014, and 2017, indicating weak model predictability, it reaches 0.69 for 2020, indicating 

improved model predictability. Similarly, Willmott’s Index is highest for 2020, with lower 

values for the other years.  

 
Figure 7: Simulated and observed evapotranspiration at Reckenholz in 2011 (upper left), 2014 (upper right), 2017 (lower left) 

and 2020 (lower right) 

3.1.2 Soil moisture content 

This chapter compares the observed soil moisture content from the lysimeter systems at 

Reckenholz with the simulated soil moisture content from WOFOST. Initially, WOFOST 8.1 
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was run using a classical water balance, using soil property variables derived from Van 

Genuchten-Mualem parameters calculated with pedotransfer functions PTF-01 and PTF-02. 

The daily soil moisture content simulated in WOFOST is shown in Figure 6 for PTF-01 (blue) 

and PTF-02 (violet), as well as the observed soil moisture values from the lysimeter systems at 

Reckenholz (red). Figure 8 includes the soil moisture values and the calculated statistical 

metrics for the relationship between the observed and simulated values for the years 2011 (upper 

left), 2014 (upper right), 2017 (lower left), and 2020 (lower right). Generally, the simulated soil 

moisture values are lower than the observed values, independent of the year and the used 

pedotransfer function. The positive PBIAS values indicate this as well. Regarding the simulated 

values, it can be observed that the simulated soil moisture values are lower with PTF-02 

compared to PTF-01, consequently displaying higher PBIAS values, indicating greater 

underestimation. Similar to the comparison of evapotranspiration in the previous chapter, the 

fit between the observed and simulated values is best for 2020.  

 
Figure 8: Simulated and observed (red) soil moisture contents at Reckenholz for PTF-01 (blue) and PTF-02 (violet) in 2011 

(upper left), 2014 (upper right), 2017 (lower left) and 2020 (lower right) 
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3.2 WOFOST simulations 1990-2022 

This chapter presents the results of the WOFOST simulations from 1990 to 2022 and compares 

them with observations. Chapter 2.2 provides detailed information about the data used and the 

WOFOST settings applied. The primary objective of this analysis is to identify which of the 

four available crop parameter sets is most suitable for estimating the harvested yield of sugar 

beet. To achieve this goal, Willmott’s Index of Agreement was calculated between the observed 

and simulated sugar beet yield for each location. For the simulated yield, four different crop 

parameter sets were used, leading to four different results, which are compared in this chapter. 

Table 6 presents the calculated values of Willmott’s Index of Agreement for each location and 

crop parameter file. The highest value per location is highlighted in bold. For most locations, 

the Willmott’s Index of Agreement is highest for the crop parameter set “Sugar beet 601”, with 

declining d-values from crop parameter set “Sugar beet 601” to “Sugar beet 604”. The d-values 

show variability, with the lowest calculated d-value being 0.30 and the highest 0.83.  

Table 6: Willmott’s Index of Agreement values (d) for all examined locations and the four crop parameter sets in WOFOST. 

Values in bold represent the highest value for the respective location.  

Station Sugar beet 601 Sugar beet 602 Sugar beet 603 Sugar beet 604 

Aadorf / Tänikon 0.83 0.78 0.66 0.57 

Bern / Zollikofen 0.67 0.67 0.64 0.59 

Beznau 0.56 0.54 0.50 0.47 

Buchs / Aarau 0.79 0.75 0.69 0.61 

Fribourg / Grangeneuve 0.61 0.65 0.72 0.71 

Gösgen 0.64 0.56 0.52 0.49 

Güttingen 0.73 0.70 0.65 0.58 

Koppigen 0.66 0.62 0.55 0.51 

Leibstadt 0.62 0.56 0.51 0.45 

Mühleberg 0.45 0.35 0.30 0.32 

Neuchâtel 0.43 0.40 0.38 0.34 

Payerne 0.47 0.46 0.42 0.38 

Rünenberg 0.59 0.58 0.58 0.53 

Salen-Reutenen 0.64 0.58 0.53 0.48 

Schaffhausen 0.60 0.57 0.54 0.49 

Vaduz 0.52 0.53 0.55 0.58 

Wynau 0.64 0.64 0.61 0.56 

Zürich / Affoltern 0.60 0.61 0.60 0.57 

Zürich / Fluntern 0.72 0.72 0.71 0.64 

Zürich / Kloten 0.65 0.64 0.62 0.55 
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Figure 9 shows the geographical distribution of the examined locations. The resulting d-values 

correspond to those displayed in Table 6, but only for the crop parameter set “Sugar beet 601". 

The map shows that the three stations with the lowest d-values are situated in the western part 

of Switzerland, specifically in the Seeland region. Generally, the highest d-values are found in 

the northeastern part of Switzerland. The location "Aadorf/Tänikon," located in the Canton of 

Thurgau, reached the highest d-value with 0.83. The calculated d-values for the four locations 

between Bern and Olten all indicate very similar values, ranging from 0.64 to 0.67. Comparing 

the d-value for the location in Gösgen (0.64) with that of the location in Buchs/Aarau (0.79) 

reveals a difference of 0.15 despite the proximity of the locations to one another. Similar 

observations can be made for the three locations in Zurich, where the d-values range from 0.60 

to 0.72.  

 

Figure 9: Map showing Willmott’s Index of Agreement values (d) for all examined locations and the crop parameter set “Sugar 

beet 601”. 

Lastly, Figure 10 shows the statistical distribution of the calculated d-values for each crop 

parameter set. The boxplot indicates that the median is highest for the crop parameter set 

“Sugarbeet 601." Moving from “Sugarbeet 601” to “Sugarbeet 604,” the median decreases 

slightly from one crop parameter set to the next. While the first two crop parameter sets show 

higher values compared to the last two sets, their interquartile range (IQR) is greater, indicating 

larger variability. 
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Figure 10: Boxplot showing the calculated values for Willmott’s Index of Agreement per crop parameter set. 
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3.3 WOFOST simulations 2020 

This chapter contains the WOFOST results generated based on the data collected in the survey 

about BYV contamination in 2020. Although preparing the meteorological data and calculating 

the soil parameters using pedotransfer functions for each of the 950 examined fields were 

complex and time-consuming, the results of these preparation steps are not included in this 

thesis due to the large volume of data. However, the detailed preparation steps are described in 

Chapters 2.3.1 and 2.3.2. In the first part of this chapter, the calculated Willmott’s Index of 

Agreement values of the observed and simulated sugar beet yield will be presented, similar to 

the previous chapter. In the second part, the information about the BYV contamination will be 

included in the analysis of the results.  

As described in Chapter 2.3, WOFOST was run for every sugar beet field using site-specific 

meteorological and soil property data. Additionally, similar to the data analysis in Chapter 3.2, 

the simulations were run using the four available crop parameter sets to ultimately identify the 

parameter set that yields the most accurate results. Figure 11 illustrates the statistical 

distribution of the difference between the observed and simulated yield across all examined 

fields, arranged by crop parameter set and applied pedotransfer function using a boxplot.  

 

Figure 11: Boxplot showing the difference between observed and simulated amount of sugar beet yield per crop parameter set 

and pedotransfer function. 
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The results calculated for each crop parameter set derived from the two pedotransfer functions 

show almost no differences. In general, the median of every crop parameter set is negative, 

indicating that the model underestimates the actual yield. Additionally, the interquartile range 

and the extreme values show a large variability for all crop parameter sets. Again, the crop 

parameter set “Sugarbeet_601” shows the best results as its median is closest to 0. The 

underestimation increases from “Sugarbeet_601” to “Sugarbeet_604”. 

As the crop parameter set “Sugarbeet_601” showed the most accurate results, Figure 12 

presents a map displaying the mean absolute error between the observed yield and the yield 

simulated with the crop parameter set “Sugarbeet_601” for each examined sugar beet yield. 

While the results generally show high variability, a cluster with high mean absolute error values 

exists in the northeastern part of Switzerland. In the western part of Switzerland, lower mean 

absolute error values are observable.  

 

Figure 12: Map showing the mean absolute error (mae) for all examined fields and the crop parameter set “Sugar beet 601”. 

Numerous sugar beet fields were affected by BYV contamination in 2020. Data concerning the 

severity of BYV contamination (ranging from 1 “no contamination”, to 4 “more than 50% 

contaminated”) for each assessed field is available. In the initial step, the simulated sugar beet 

yields were classified according to their level of BYV contamination. Again, the difference 

between the observed and simulated output is of interest. Figure 13 shows the statistical 

distribution of the difference between the observed and simulated sugar beet yield per BYV 
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contamination category. Furthermore, the results for both pedotransfer functions are presented. 

Similar to the already discussed results presented in Figure 11, the results show a large 

variability and almost no differences between the two pedotransfer functions. However, clear 

differences can be observed in the results for BYV contamination categories 1 and 2 (none and 

low contamination) and 3 and 4 (medium to high contamination): While the median values for 

categories 1 and 2 lie at approximately -20 t/ha, indicating an underestimation of the model, it 

overestimates the yield for categories 3 and 4, with medians of approximately 1 and 10 

respectively.  

 
Figure 13: Boxplot showing the difference between observed and simulated amount of sugar beet yield per virus contamination 

category and used pedotransfer function for crop parameter set Sugarbeet_601.  

In Chapter 2.5, it was shown that the four virus contamination categories are not evenly spatially 

distributed in Switzerland: Sugar beet fields with medium or high virus contamination were 

predominately located in the western part of Switzerland. In contrast, the majority of the sugar 

beet fields in the eastern part of Switzerland showed low or no virus contamination (Figure 5). 

Due to these regional differences, the calculated results were divided into a “west” and an “east” 

group. Again, the observed and the simulated amount of sugar beet yield were compared for 

each group. Figure 14 shows the relationship between the observed and simulated sugar beet 

yields for sugar beet fields in western (left) and northeastern Switzerland. As already 
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mentioned, the model generally underestimates the yield, which is also the case for both groups 

here, indicated by the positive PBIAS values. However, the underestimation is greater for the 

northeastern fields (23.41%) compared to the western fields (6.57%). Additionally, the 

Willmott’s Index of Agreement for the northeastern fields is low (0.39), indicating weak model 

performance. In contrast, the Willmott’s Index of Agreement for the western field is 0.68, 

indicating moderate to good model performance. 

 

Figure 14: Scatterplot with the observed yield on the x-axis and the simulated yield on the y-axis for sugar beet field in western 

Switzerland (left) and northeastern Switzerland (right). The colour of each point indicates the level of BYV contamination.  

Examining the distribution of BYV contamination in the western fields reveals that WOFOST 

projects fields with high BYV contamination (red points) to have slightly lower yields than 

other fields. Since WOFOST only simulates water-limited crop production and does not 

consider potential growth constraints due to pests, diseases, or viruses, lower simulated yields 

for fields with high virus contamination are surprising at first. However, these results indicate 

that specific meteorological and soil conditions (as these are the only inputs in WOFOST) are 

more likely to create an environment favouring BYV infections. Consequently, additional 

simulation results were analysed to identify stress factors in the growth process.  

Four meteorological variables were exported from WOFOST, describing the meteorological 

conditions throughout the growing process of the sugar beet plants. The statistical distribution 

of these meteorological variables is shown in Figure 15 per virus contamination category. 

Figure 15a shows that the total amount of rainfall throughout the growing process is lowest in 

fields with no BYV contamination and highest in fields with high contamination. The same can 

be observed for the variable “number of days with water stress” (Figure 15b). However, the 

variability for fields with no BYV contamination is large, whereas fields with high BYV 

contamination show a smaller variability but higher overall values. Similarly, the variable 
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“Total evaporation from soil surface” (Figure 15c) shows the same trend, with increasing values 

from BYV contamination categories 1 to 4. In contrast, almost no differences between the BYV 

contamination categories are observable for the variable temperature sum (Figure 15d). 

 

Figure 15: Violin plots showing the statistical distribution of selected meteorological variables per BYV contamination category 

for all examined western fields. Meteorological variables contains the total amount of rainfall (a), the number of days with 

water stress (b), the total amount of evaporation from soil surface (c) and the temperature sum (d). 

  

a) b) 

c) d) 
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3.4 Remote sensing results 

To identify the vegetation index that correlates the strongest with the observed amount of 

harvest sugar beet yield, Pearson’s correlation coefficient was calculated. As outlined in Chapter 

2.5, the vegetation indices were calculated for different days. For the correlation between the 

different vegetation indices and the harvested yield, it would be expected that the correlation 

would be the highest for vegetation indices calculated for days closest to the harvesting date. 

However, the highest correlation was between the vegetation indices and the harvested yield 

was calculated of the 8th of July. Therefore, this chapter presents the vegetation indices that 

were calculated for every examined sugar beet field on the 8th of July in 2020. Figure 16 

contains the calculated Pearson’s correlation coefficients (R) with the amount of harvested 

sugar beet yield as the dependent variable and the values of each examined vegetation index as 

the independent variable. The highest calculated R-values resulted for the Chlorophyll Index 

Green (CIG), Simple Ration (SR2 800 and 550 nm) and the Green Ratio Vegetation Index 

(GRVI) with 0.71, indicating a moderate relationship. The Red-Edge Disease Stress Index 

(REDSI) showed the 26th best correlation coefficient. The results for all vegetation indices are 

listed in Annex B. 

 

Figure 16: Pearson’s correlation coefficient (R) for observed sugar beet yield and various vegetation indices 

To evaluate the relationship between each vegetation index and the BYV contamination severity 

estimated by the farmers that participated in the 2020 survey, Spearman’s rank correlation 

coefficient () was calculated. Here, again, the vegetation indices were calculated for the 8th of 

July in 2020. The complete table containing the results for all 101 examined vegetation indices 

can be found in Annex B. The Anthocyanin Reflectance Index (ARI) showed the highest 

correlation (-0.49), indicating a moderate relationship between the vegetation index and the 

BYV contamination categories. The differences between the calculated correlation coefficients 

are small. The REDSI showed a moderate Spearman’s correlation coefficient of 0.40. 
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As described in Chapter 2.5, the initial random forest model's most important features were 

identified and presented in Figure 17. Due to space constraints, this figure only displays the 

feature importance of the 20 most significant features. Eighty-one additional features were 

utilised in the first model but showed lesser feature importance. The second random forest 

model incorporated all predictive features above the red dashed line. The “Normalized 

Rapeseed Flowering Index Red” (NRFIr) was identified to be the most important feature in the 

initial model. Since the Anthocyanin Reflectance Index (ARI) was identified as the second most 

important feature, two additional random forest models were set up: One with the NRFIr as 

predictor and one with the ARI as predictor. Since the cross-validation accuracy, as well as the 

classification accuracy of the ARI model, was better, only this model was taken.   

 

Figure 17: Feature importance derived from the initial random forest model.  

The calculated cross-validation accuracy was 78% for the initial random forest model and 79% 

for the two model with 10 of the most important features as predictors. Finally, the model with 

only the vegetation index “ARI” as predictor showed a accuracy of 69% after cross-validation. 

Figure 18 shows the classification results of the three models in confusion matrices. The 

baseline model, with all vegetation indices, accurately identified 119 out of 135 as healthy, 

indicating that 88% of the healthy fields were correctly classified. However, only 24 out of a 

total of 47 ill fields were accurately classified (51%). The second model, which used the ten 
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most important vegetation indices, shows small improvement in the classification result for the 

ill fields (53% correctly classified) and slightly worse classification results for the healthy fields 

(85%). Lastly, the third model, based on the “ARI” vegetation index, classified only 77% of the 

healthy fields correctly but identified ill fields better (63%). 

 

Figure 18: Confusion matrices for the three random forest models, utilising all vegetation indices (a), only the top ten vegetation 

indices (b), and the vegetation index “ARI” as a predictor feature. 

  

a) b) c) 
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4 Discussion 

4.1 WOFOST simulations 

The results of the WOFOST evaluation simulations at Reckenholz (see Chapter 3.1) showed 

that WOFOST underestimated the amount of evapotranspiration. The largest differences 

between the observations and the model’s output occurred when the amount of observed 

evapotranspiration was high in summer. In 2020, the total observed evapotranspiration was 

lower than in the other years, resulting in less pronounced evapotranspiration amounts in 

summer. These findings suggest that WOFOST struggles to simulate high evapotranspiration 

amounts in summer when irradiance is high. Consequently, the statistical metrics (R2, RMSE, 

NRMSE) are worse for all years except 2020 compared to the findings of Dewenam et al. 

(2021). In their study, Dewenam et al. (2021) calibrated various crop parameters with data 

measured in the field, which could explain the better results. Contrarily, they found that 

WOFOST overestimated the amount of evapotranspiration. For soil moisture content, this study 

found that WOFOST underestimated the soil moisture content, which is in line with the findings 

of Dewenam et al. (2021). However, the statistical metrics are again worse than reported in 

Dewenam et al. (2021).  

The results of the WOFOST simulations for the historical period 1990 to 2022 (Chapter 3.2) 

generally showed that the crop parameter set “SUG601” provided the best fit between the 

simulated and the observed amount of sugar beet yield. This finding is not surprising since this 

crop parameter set was calibrated for regions with similar climatic conditions as Switzerland. 

However, differences in the fit between the simulated and observed amount of sugar beet yield 

between the locations were identified. Three locations in western Switzerland (Neuchâtel, 

Payerne and Mühleberg) had notably low Willmott’s Index of Agreement values, prompting 

further examination of why the fit for these locations was worse compared to the other stations. 

Therefore, the time series of simulated and observed sugar beet yield of these locations was 

studied (see Annex A). Comparing the results of the three locations showed that for the location 

“Mühleberg”, only eleven years of observations were available (2010 to 2021). While the fit 

between the simulated and observed sugar beet yields is moderate for most years, WOFOST 

overestimates the sugar beet yield by approximately 20 t/ha (2016) and 30 t/ha (2021), which 

consequently leads to a comparably lower Willmott’s Index of Agreement. Similarly, the results 

from the location “Payerne” also show that WOFOST overestimates the sugar beet yield in 

2021 (by approx. 30 t/ha), 2016 (approx. 20 t/ha) and also for 2007 (approx. 30 t/ha). Since 
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WOFOST simulates water-limited production, factors such as diseases or pollutants could 

contribute to the lower observed sugar beet yields. In fact, it was stated in the “Agrarbericht 

2021” that widespread leaf diseases in Western Switzerland reduced sugar beet production in 

2021 (Bundesamt für Landwirtschaft, 2021). In contrast, in 2016, the “Agrarbericht 2016” 

reported that cold and wet conditions in spring, alongside hot and dry conditions in summer, 

led to decreased sugar beet production in that year (Bundesamt für Landwirtschaft, 2016). Here, 

it is surprising that WOFOST overestimates the sugar beet yield. Lastly, in 2007, WOFOST 

also overestimated the yield for the locations “Payerne” and “Neuchâtel”. Yield losses due to 

flooding in the area around Aarberg in Western Switzerland were reported in 2007 

(Schweizerischer Verband der Zuckerrübenpflanzer, 2007). Since WOFOST does not take into 

account yield loss due to flooding, this may explain the overestimation. 

WOFOST was also used to simulate the sugar beet yield for the year 2020. Here, site-specific 

meteorological and soil data were used for the simulation. Again, the crop parameter set 

“SUG601” showed the best simulation results. However, the results for all crop parameter sets 

showed that WOFOST underestimated the sugar beet yield. A potential reason for this 

underestimation could be inaccurate soil information which influence the water balance of the 

simulation. The simulations results per BYV contamination group showed, that WOFOST 

underestimated the yield for fields not or only slightly affected by the BYV (groups one and 

two). For fields stronger affected by the BYV (groups three and four) WOFOST slightly 

overestimated the yield. Here, this difference between groups one and two and groups three and 

four was expected: While the observed yield was reduced due to the BYV contamination for 

groups three and four, WOFOST did not account for this yield reducing factor which lead to an 

overestimation.  

Evaluating the WOFOST simulation for 2020 spatially showed that the fit between observed 

and simulated sugar beet yield differs by region. While the Mean Absolute Error (MAE) for 

fields in the northeastern part of Switzerland was high indicating large differences between the 

observed and simulated yield, it was lower for fields in the western part of Switzerland. 

Dividing the results into a “west” and an “east” group provided various insights: First, 

WOFOST still underestimated the yield for both groups. However, the underestimation was not 

as pronounced for group “west” as for group “east”. Second, while no significant correlation 

between the observed and the simulated yield could be found for group “east”, the correlation 

was moderate for group “west” and statistically significant. Third, focusing on group “west” 

and dividing the results by BYV contamination category showed, that for fields heavily affected 
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by BYV (category 4), the simulated yield was lower compared to the other fields. From the last 

observation, the meteorological conditions for the fields of group “west” was carried out, since 

they were found to be related to the occurrence of the BYV. Here, it was shown, that for fields 

of BYV category 4 (heavily affected), the number of days with water stress from the WOFOST 

simulation was higher compared to the other categories. This finding indicates that fields where 

water stress occurred more frequently, were more vulnerable to BYV infections.  

Overall, WOFOST showed good performance in simulating the temporal variability of the sugar 

beet yields (1990-2022). Simulation results can certainly be improved by calibrating for 

example the phenological development for specific locations or by including site-specific soil 

conditions. However, since the goal of the first analysis was to assess WOFOST’s performance 

under Swiss conditions and to identify the crop parameter set most suitable for Swiss conditions 

in general, further simulation improvements by including site-specific data were not considered. 

In contrast, the simulation results for 2020 showed generally larger differences between the 

observed and the simulated yields. Moreover, it was shown that the accuracy of the simulation 

results differed spatially. Even though site-specific meteorological and soil data were included 

in the simulation, the differences between the observed and simulated yield persisted. To 

summarise, WOFOST’s performance was more accurate regarding the temporal variability 

(1990-2022) than the spatial variability (2020).  

4.2 Remote sensing 

In this analysis, the Chlorophyll Index Green (CIG), the Simple Ration (SR) and the Green 

Ratio Vegetation Index (GRVI) were identified as the vegetation indices that correlated the best 

with the observed yield. Similarly, Peng & Gitelson (2011) also found that, among other 

vegetation indices, the Chlorophyll Index Green and the Simple Ration were useful for 

estimating the gross primary production of maise. The Red-Edge Disease Stress Index (REDSI) 

proposed by Zheng et al. (2018) showed the 26th best correlation coefficient. In general, it is 

important to note, that there are temporal differences regarding the used data. While the 

vegetation indices were calculated for the 8th of July, the sugar beets were harvested later in the 

year (approximately in November or December). This temporal shift in the data collection could 

induce uncertainties in the analysis. However, multiple dates were used to calculate the different 

vegetation indices and the highest correlation was found for the 8th of July. The findings suggest 

that for 2020, the time period around the 8th of July was a stage of the phenological development 

of the sugar beet plants that was very relevant for the yield formation.  
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The correlation analysis between the vegetation indices from the 8th of July and the BYV 

contamination categories revealed that the Anthocyanin Reflectance Index (ARI) showed the 

strongest correlation of all examined vegetation indices. Anthocyanins are red pigments in 

leaves that are related to the ability of plants to resist environmental stresses such as droughts 

or pathogens (Viña & Gitelson, 2011). Sugar beets are not anthocyanin-producing plants, 

instead they produce betalains (Karvansara & Razavi, 2019). Betalains are also associated with 

increasing a plant's resistance to environmental stresses: Karvansara & Razavi (2019) found 

increases in betalain production in sugar beets treated with ultraviolet radiation. Anthocyanins 

and betacyanins (betalains can be categorised in betacyanins and betaxanthins) are not only 

similar in their functions in plants, but they also both exhibit absorbance peaks at a wavelength 

of approximately 550 nm (Ceccanti et al., 2025). This is why the “Betacyanin Reflectance Index 

(BRI)” was proposed, which is calculated in exactly the same way as the ARI (Ceccanti et al., 

2025). Considering that sugar beets do not produce anthocyanins and that betalains show a 

similar spectral reflectance pattern as anthocyanins, it can be assumed that the calculated ARI 

index values were, in fact, based on the betalain content of the examined sugar beet fields. The 

correlation analysis showed that ARI was highest for fields with no BYV contamination 

(category 1) and lowest for fields with high BYV contamination (category 4). These findings 

suggest that sugar beet plants with lower betalain contents were more often affected by BYV 

contamination.  

Lastly, it was shown that the calculated vegetation indices were useful to identify healthy fields 

(BYV contamination categories 1 and 2) through a random forest model. However, the model 

with all vegetation indices as predictors only showed an accuracy of approximately 51% for 

identify infected (BYV contamination categories 3 and 4) fields. While the classification barley 

improved with only the ten most important predictors, the classification results changed with 

only the ARI values as predictors: While the accuracy for healthy fields decreased, it increased 

for ill fields. Since the correct identification of ill fields is more relevant in regards of potential 

BYV prevention measures, the model with only the ARI as a predictor is the most suitable. 

Additionally, the model is less resource consuming due to limited data requirements.  
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5 Conclusion 

This thesis used the WOFOST cropping simulation model to identify the most suitable crop 

parameter set for simulating the growth of sugar beets under Swiss conditions. It was shown 

that the crop parameter set “SUG601” performed best compared to observations from 20 

different locations across the Swiss Plateau. Regional differences in the model’s performance 

were identified: For three locations in western Switzerland, lower simulation accuracies were 

observed, while location in northeastern Switzerland showed the best results. One limitation of 

this analysis is that for some locations, sugar beet yield observation were only available for a 

shorter time period. Depending on the missing period, the fit between the observed and the 

simulated yield changes. Overall, WOFOST was able to replicate the variability of the sugar 

beet yields over time accurately, which is why it would be interesting to use climatic projections 

to assess the impact of climatic changes to the sugar beet production in Switzerland. 

Additional WOFOST simulations were carried out for the year 2020 for 950 sugar beet fields, 

again to evaluate the model’s performance. Here, it was shown that for the year 2020, WOFOST 

underestimated the yield. Again, regional differences were identified: In contrast to the findings 

of the period 1990-2022, the model performed better for fields located in the western part of 

Switzerland compared to the northeastern part. Interestingly, combining the WOFOST results 

with the data the occurrence of BYV in 2020 showed, that WOFOST predicted lower yields for 

sugar beet fields that were heavily affected by the BYV. Analysing the meteorological 

conditions showed that water stress could have benefited BYV infections. Here, future research 

should focus on investigating how physical abiotic conditions are related to a plant’s 

vulnerability to pests and diseases. Furthermore, since water stress was shown to be related to 

the BYV contaminations in 2020, it would be interesting to examine if irrigation can lead to 

reductions in water stress and ultimately strengthen the resistance against diseases. 

Lastly, remote sensing data was used in this thesis to calculate 101 different vegetation indices. 

The relationship between the obtained vegetation index values and the harvest sugar beet yield 

as well as the BYV contamination category was assessed to identify the vegetation index with 

the best correlation. Three different vegetation indices showed the best correlation with sugar 

beet yield: The Chlorophyll Index Green, the Simple Ratio and the Green Ratio Vegetation 

Index. Regarding the correlation between the vegetation indices and the four BYV 

contamination categories, the Anthocyanin Reflectance Index showed the best correlation. The 

calculated vegetation indices were ultimately used in a random forest classification. Here, the 
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ARI was the most useful predictor for classifying fields infected by BYV. All results were based 

on vegetation index values from the 8th of July in 2020, since this was identified as the day with 

the clear conditions and because symptoms of BYV infections would appear around this date. 

However, the farmer’s assessment of BYV infection severity took place later in the year. Also, 

sugar beets are usually harvested in November and December. Therefore, this analysis 

compared data from different points in time, which induces uncertainties. Unfortunately, remote 

sensing data for dates in Autumn or Winter were not available. Additionally, uncertainties are 

added due to the fact that the BYV contamination severity was assessed by farmers that owned 

the belonging field. Here, it is possible that similar symptoms of other diseases or water stress 

were falsely classified as symptoms caused by the BYV. Additionally, it is very likely that some 

fields were classified in the wrong category, since the estimation of BYV contamination 

severity on a scale from 1 to 4 is subjective and thus varies from farmer to farmer. Nevertheless, 

this analysis still showed significant correlations between the calculated vegetation indices and 

the harvested yield as well as the BYV contamination estimates. Since remote sensing data are 

available and easily processible, future research should investigate how certain vegetation 

indices can be used to create an effective and precise vegetation monitoring with the goal to 

identify potential yield reducing factors such as pests and diseases. 
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7 Annex 

A) Simulated and observed yield historical period 
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B) Used vegetation indices and Spearman’s rank correlation coefficient 

Vegetation index 

(abbreviation)* 

Vegetaion index 

(full name)* 

Pearson’s 

coefficient 

Spearman’s 

coefficient 
Formula* Reference* 

ARI 
Anthocyanin 

Reflectance Index 
0.67 -0.49 (1 / G) - (1 / RE1) 

https://doi.org/10.1562/0031-

8655(2001)074%3C0038:OPANEO%3E2.0.CO;2 

TCARIOSAVI 
TCARI/OSAVI 

Ratio 
-0.69 0.47 

(3 * ((RE1 - R) - 0.2 * (RE1 - G) * 

(RE1 / R))) / (1.16 * (N - R) / (N + R 

+ 0.16)) 

https://doi.org/10.1016/S0034-4257(02)00018-4 

ARI2 

Anthocyanin 

Reflectance Index 

2 

0.72 -0.46 N * ((1 / G) - (1 / RE1)) 
https://doi.org/10.1562/0031-

8655(2001)074%3C0038:OPANEO%3E2.0.CO;2 

NRFIr 

Normalized 

Rapeseed 

Flowering Index 

Red 

-0.62 0.44 (R - S2) / (R + S2) https://doi.org/10.3390/rs13010105 

SR3 

Simple Ratio 

(860, 550 and 708 

nm) 

0.69 -0.44 N2/(G * RE1) https://doi.org/10.1016/S0034-4257(98)00046-7 

NormG Normalized Green -0.72 0.43 G/(N + G + R) https://doi.org/10.2134/agronj2004.0314 

GBNDVI 

Green-Blue 

Normalized 

Difference 

Vegetation Index 

0.69 -0.43 (N - (G + B))/(N + (G + B)) https://doi.org/10.1016/S1672-6308(07)60027-4 

GNDVI 

Green Normalized 

Difference 

Vegetation Index 

0.70 -0.43 (N - G)/(N + G) https://doi.org/10.1016/S0034-4257(96)00072-7 

GOSAVI 

Green Optimized 

Soil Adjusted 

Vegetation Index 

0.70 -0.43 (N - G) / (N + G + 0.16) https://doi.org/10.2134/agronj2004.0314 

CIG 
Chlorophyll Index 

Green 
0.72 -0.43 (N / G) - 1.0 https://doi.org/10.1078/0176-1617-00887 

GRVI 
Green Ratio 

Vegetation Index 
0.72 -0.43 N/G https://doi.org/10.2134/agronj2004.0314 

SR2 
Simple Ratio (800 

and 550 nm) 
0.72 -0.43 N/G https://doi.org/10.1080/01431169308904370 
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Vegetation index 

(abbreviation)* 

Vegetaion index 

(full name)* 

Pearson’s 

coefficient 

Spearman’s 

coefficient 
Formula* Reference* 

BNDVI 

Blue Normalized 

Difference 

Vegetation Index 

0.66 -0.43 (N - B)/(N + B) https://doi.org/10.1016/S1672-6308(07)60027-4 

ENDVI 

Enhanced 

Normalized 

Difference 

Vegetation Index 

0.67 -0.43 
((N + G) - (2 * B)) / ((N + G) + (2 * 

B)) 
https://doi.org/10.1371/journal.pone.0186193 

TCARIOSAVI705 

TCARI/OSAVI 

Ratio (705 and 

750 nm) 

-0.71 0.43 

(3 * ((RE2 - RE1) - 0.2 * (RE2 - G) * 

(RE2 / RE1))) / (1.16 * (RE2 - RE1) / 

(RE2 + RE1 + 0.16)) 

https://doi.org/10.1016/j.agrformet.2008.03.005 

GM1 
Gitelson and 

Merzlyak Index 1 
0.71 -0.43 RE2/G https://doi.org/10.1016/S0176-1617(96)80284-7 

SR555 
Simple Ratio (555 

and 750 nm) 
0.71 -0.43 RE2 / G https://doi.org/10.1016/S0176-1617(11)81633-0 

NormNIR Normalized NIR 0.68 -0.42 N/(N + G + R) https://doi.org/10.2134/agronj2004.0314 

GRNDVI 

Green-Red 

Normalized 

Difference 

Vegetation Index 

0.68 -0.42 (N - (G + R))/(N + (G + R)) https://doi.org/10.1016/S1672-6308(07)60027-4 

SR Simple Ratio 0.68 -0.41 N/R https://doi.org/10.2307/1936256 

MSR 
Modified Simple 

Ratio 
0.69 -0.41 (N / R - 1) / ((N / R + 1)^0.5) https://doi.org/10.1080/07038992.1996.10855178 

DSWI3 
Disease-Water 

Stress Index 3 
0.64 -0.41 S1/R https://doi.org/10.1080/01431160310001618031 

RVI 
Ratio Vegetation 

Index 
0.67 -0.41 RE2 / R https://doi.org/10.2134/agronj1968.00021962006000060016x 

NDVI 

Normalized 

Difference 

Vegetation Index 

0.64 -0.41 (N - R)/(N + R) https://ntrs.nasa.gov/citations/19740022614 

IPVI 

Infrared 

Percentage 

Vegetation Index 

0.64 -0.41 N/(N + R) https://doi.org/10.1016/0034-4257(90)90085-Z 

OSAVI 

Optimized Soil-

Adjusted 

Vegetation Index 

0.64 -0.41 (N - R) / (N + R + 0.16) https://doi.org/10.1016/0034-4257(95)00186-7 
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Vegetation index 

(abbreviation)* 

Vegetaion index 

(full name)* 

Pearson’s 

coefficient 

Spearman’s 

coefficient 
Formula* Reference* 

TVI 
Transformed 

Vegetation Index 
0.63 -0.40 (((N - R)/(N + R)) + 0.5)^0.5 https://ntrs.nasa.gov/citations/19740022614 

TDVI 

Transformed 

Difference 

Vegetation Index 

0.61 -0.40 
1.5 * ((N - R)/((N^2.0 + R + 

0.5)^0.5)) 
https://doi.org/10.1109/IGARSS.2002.1026867 

MSAVI 

Modified Soil-

Adjusted 

Vegetation Index 

0.61 -0.40 
0.5 * (2.0 * N + 1 - (((2 * N + 1)^2) - 

8 * (N - R))^0.5) 
https://doi.org/10.1016/0034-4257(94)90134-1 

NormR Normalized Red -0.64 0.40 R/(N + G + R) https://doi.org/10.2134/agronj2004.0314 

VI700 
Vegetation Index 

(700 nm) 
0.64 -0.40 (RE1 - R) / (RE1 + R) https://doi.org/10.1016/S0034-4257(01)00289-9 

NDREI 

Normalized 

Difference Red 

Edge Index 

0.68 -0.40 (N - RE1) / (N + RE1) https://doi.org/10.1016/1011-1344(93)06963-4 

CIRE 
Chlorophyll Index 

Red Edge 
0.70 -0.40 (N / RE1) - 1 https://doi.org/10.1078/0176-1617-00887 

REDSI 
Red-Edge Disease 

Stress Index 
0.67 -0.40 

((705.0 - 665.0) * (RE3 - R) - (783.0 - 

665.0) * (RE1 - R)) / (2.0 * R) 
https://doi.org/10.3390/s18030868 

TRRVI 

Transformed Red 

Range Vegetation 

Index 

0.61 -0.39 
((RE2 - R) / (RE2 + R)) / (((N - R) / 

(N + R)) + 1.0) 
https://doi.org/10.3390/rs12152359 

SeLI 
Sentinel-2 LAI 

Green Index 
0.68 -0.39 (N2 - RE1) / (N2 + RE1) https://doi.org/10.3390/s19040904 

MSR705 

Modified Simple 

Ratio (705 and 

750 nm) 

0.68 -0.38 
(RE2 / RE1 - 1) / ((RE2 / RE1 + 

1)^0.5) 
https://doi.org/10.1016/j.agrformet.2008.03.005 

SR705 
Simple Ratio (705 

and 750 nm) 
0.68 -0.38 RE2 / RE1 https://doi.org/10.1016/S0176-1617(11)81633-0 

GM2 
Gitelson and 

Merzlyak Index 2 
0.68 -0.38 RE2/RE1 https://doi.org/10.1016/S0176-1617(96)80284-7 

ND705 

Normalized 

Difference (705 

and 750 nm) 

0.67 -0.38 (RE2 - RE1)/(RE2 + RE1) https://doi.org/10.1016/S0034-4257(02)00010-X 
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Vegetation index 

(abbreviation)* 

Vegetaion index 

(full name)* 

Pearson’s 

coefficient 

Spearman’s 

coefficient 
Formula* Reference* 

RENDVI 

Red Edge 

Normalized 

Difference 

Vegetation Index 

0.67 -0.38 (RE2 - RE1)/(RE2 + RE1) https://doi.org/10.1016/S0176-1617(11)81633-0 

NDVI705 

Normalized 

Difference 

Vegetation Index 

(705 and 750 nm) 

0.67 -0.38 (RE2 - RE1) / (RE2 + RE1) https://doi.org/10.1016/S0176-1617(11)81633-0 

mND705 

Modified 

Normalized 

Difference (705, 

750 and 445 nm) 

0.67 -0.38 (RE2 - RE1)/(RE2 + RE1 - A) https://doi.org/10.1016/S0034-4257(02)00010-X 

DSWI5 
Disease-Water 

Stress Index 5 
0.67 -0.37 (N + G)/(S1 + R) https://doi.org/10.1080/01431160310001618031 

NLI 
Non-Linear 

Vegetation Index 
0.58 -0.37 ((N^2) - R)/((N^2) + R) https://doi.org/10.1080/02757259409532252 

VARI700 

Visible 

Atmospherically 

Resistant Index 

(700 nm) 

0.63 -0.37 
(RE1 - 1.7 * R + 0.7 * B) / (RE1 + 

1.3 * R - 1.3 * B) 
https://doi.org/10.1016/S0034-4257(01)00289-9 

NDYI 

Normalized 

Difference 

Yellowness Index 

0.57 -0.37 (G - B) / (G + B) https://doi.org/10.1016/j.rse.2016.06.016 

MSI 
Moisture Stress 

Index 
-0.61 0.37 S1/N https://doi.org/10.1016/0034-4257(89)90046-1 

DSI 
Drought Stress 

Index 
-0.61 0.37 S1/N 

https://www.asprs.org/wp-

content/uploads/pers/1999journal/apr/1999_apr_495-501.pdf 

AFRI1600 

Aerosol Free 

Vegetation Index 

(1600 nm) 

0.63 -0.36 (N - 0.66 * S1) / (N + 0.66 * S1) https://doi.org/10.1016/S0034-4257(01)00190-0 

NDMI 

Normalized 

Difference 

Moisture Index 

0.64 -0.36 (N - S1)/(N + S1) https://doi.org/10.1016/S0034-4257(01)00318-2 

NDII 

Normalized 

Difference 

Infrared Index 

0.64 -0.36 (N - S1)/(N + S1) 
https://www.asprs.org/wp-

content/uploads/pers/1983journal/jan/1983_jan_77-83.pdf 
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Vegetation index 

(abbreviation)* 

Vegetaion index 

(full name)* 

Pearson’s 

coefficient 

Spearman’s 

coefficient 
Formula* Reference* 

SLAVI 

Specific Leaf 

Area Vegetation 

Index 

0.66 -0.36 N/(R + S2) 
https://www.asprs.org/wp-

content/uploads/pers/2000journal/february/2000_feb_183-191.pdf 

DSWI1 
Disease-Water 

Stress Index 1 
0.66 -0.36 N/S1 https://doi.org/10.1080/01431160310001618031 

GCC 
Green Chromatic 

Coordinate 
0.60 -0.36 G / (R + G + B) https://doi.org/10.1016/0034-4257(87)90088-5 

GLI Green Leaf Index 0.60 -0.36 (2.0 * G - R - B) / (2.0 * G + R + B) http://dx.doi.org/10.1080/10106040108542184 

RGBVI 
Red Green Blue 

Vegetation Index 
0.60 -0.36 (G^2.0 - B * R)/(G^2.0 + B * R) https://doi.org/10.1016/j.jag.2015.02.012 

DSWI4 
Disease-Water 

Stress Index 4 
0.61 -0.36 G/R https://doi.org/10.1080/01431160310001618031 

SIPI 

Structure 

Insensitive 

Pigment Index 

-0.51 0.36 (N - A) / (N - R) https://eurekamag.com/research/009/395/009395053.php 

TCARI 

Transformed 

Chlorophyll 

Absorption in 

Reflectance Index 

-0.40 0.35 
3 * ((RE1 - R) - 0.2 * (RE1 - G) * 

(RE1 / R)) 
https://doi.org/10.1016/S0034-4257(02)00018-4 

NGRDI 

Normalized Green 

Red Difference 

Index 

0.61 -0.35 (G - R) / (G + R) https://doi.org/10.1016/0034-4257(79)90013-0 

RI Redness Index -0.61 0.35 (R - G)/(R + G) https://www.documentation.ird.fr/hor/fdi:34390 

VIG 
Vegetation Index 

Green 
0.61 -0.35 (G - R) / (G + R) https://doi.org/10.1016/S0034-4257(01)00289-9 

MTVI2 

Modified 

Triangular 

Vegetation Index 

2 

0.55 -0.35 

(1.5 * (1.2 * (N - G) - 2.5 * (R - G))) / 

((((2.0 * N + 1)^2) - (6.0 * N - 5 * 

(R^0.5)) - 0.5)^0.5) 

https://doi.org/10.1016/j.rse.2003.12.013 

MCARI2 

Modified 

Chlorophyll 

Absorption in 

Reflectance Index 

2 

0.55 -0.35 

(1.5 * (2.5 * (N - R) - 1.3 * (N - G))) / 

((((2.0 * N + 1)^2) - (6.0 * N - 5 * 

(R^0.5)) - 0.5)^0.5) 

https://doi.org/10.1016/j.rse.2003.12.013 
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Vegetation index 

(abbreviation)* 

Vegetaion index 

(full name)* 

Pearson’s 

coefficient 

Spearman’s 

coefficient 
Formula* Reference* 

RGRI 
Red-Green Ratio 

Index 
-0.59 0.35 R/G https://doi.org/10.1016/j.jag.2014.03.018 

MGRVI 

Modified Green 

Red Vegetation 

Index 

0.60 -0.35 (G^2.0 - R^2.0) / (G^2.0 + R^2.0) https://doi.org/10.1016/j.jag.2015.02.012 

VARI 

Visible 

Atmospherically 

Resistant Index 

0.60 -0.35 (G - R) / (G + R - B) https://doi.org/10.1016/S0034-4257(01)00289-9 

GARI 

Green 

Atmospherically 

Resistant 

Vegetation Index 

0.56 -0.35 
(N - (G - (B - R))) / (N - (G + (B - 

R))) 
https://doi.org/10.1016/S0034-4257(96)00072-7 

S2REP 
Sentinel-2 Red-

Edge Position 
0.68 -0.34 

705.0 + 35.0 * ((((RE3 + R) / 2.0) - 

RE1) / (RE2 - RE1)) 
https://doi.org/10.1016/j.isprsjprs.2013.04.007 

RCC 
Red Chromatic 

Coordinate 
-0.60 0.34 R / (R + G + B) https://doi.org/10.1016/0034-4257(87)90088-5 

PSRI 
Plant Senescing 

Reflectance Index 
-0.56 0.33 (R - B)/RE2 https://doi.org/10.1034/j.1399-3054.1999.106119.x 

AFRI2100 

Aerosol Free 

Vegetation Index 

(2100 nm) 

0.60 -0.33 (N - 0.5 * S2) / (N + 0.5 * S2) https://doi.org/10.1016/S0034-4257(01)00190-0 

GVMI 
Global Vegetation 

Moisture Index 
0.61 -0.33 

((N + 0.1) - (S2 + 0.02)) / ((N + 0.1) 

+ (S2 + 0.02)) 
https://doi.org/10.1016/S0034-4257(02)00037-8 

MNDVI 

Modified 

Normalized 

Difference 

Vegetation Index 

0.61 -0.33 (N - S2)/(N + S2) https://doi.org/10.1080/014311697216810 

CVI 
Chlorophyll 

Vegetation Index 
0.53 -0.33 (N * R) / (G^2.0) https://doi.org/10.1007/s11119-010-9204-3 

MTCI 

MERIS 

Terrestrial 

Chlorophyll Index 

0.65 -0.33 (RE2 - RE1) / (RE1 - R) https://doi.org/10.1080/0143116042000274015 

IRECI 

Inverted Red-

Edge Chlorophyll 

Index 

0.64 -0.33 (RE3 - R) / (RE1 / RE2) https://doi.org/10.1016/j.isprsjprs.2013.04.007 
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Vegetation index 

(abbreviation)* 

Vegetaion index 

(full name)* 

Pearson’s 

coefficient 

Spearman’s 

coefficient 
Formula* Reference* 

MCARI705 

Modified 

Chlorophyll 

Absorption in 

Reflectance Index 

(705 and 750 nm) 

0.64 -0.33 
((RE2 - RE1) - 0.2 * (RE2 - G)) * 

(RE2 / RE1) 
https://doi.org/10.1016/j.agrformet.2008.03.005 

NMDI 

Normalized 

Multi-band 

Drought Index 

0.53 -0.32 (N - (S1 - S2))/(N + (S1 - S2)) https://doi.org/10.1029/2007GL031021 

MRBVI 

Modified Red 

Blue Vegetation 

Index 

-0.58 0.31 (R^2.0 - B^2.0)/(R^2.0 + B^2.0) https://doi.org/10.3390/s20185055 

RDVI 

Renormalized 

Difference 

Vegetation Index 

0.61 -0.31 (N - R) / ((N + R)^0.5) https://doi.org/10.1016/0034-4257(94)00114-3 

IKAW Kawashima Index -0.58 0.31 (R - B)/(R + B) https://doi.org/10.1006/anbo.1997.0544 

TTVI 

Transformed 

Triangular 

Vegetation Index 

0.63 -0.30 
0.5 * ((865.0 - 740.0) * (RE3 - RE2) - 

(N2 - RE2) * (783.0 - 740)) 
https://doi.org/10.3390/rs12010016 

NIRv 

Near-Infrared 

Reflectance of 

Vegetation 

0.59 -0.28 ((N - R) / (N + R)) * N https://doi.org/10.1126/sciadv.1602244 

MCARIOSAVI705 

MCARI/OSAVI 

Ratio (705 and 

750 nm) 

0.59 -0.28 

(((RE2 - RE1) - 0.2 * (RE2 - G)) * 

(RE2 / RE1)) / (1.16 * (RE2 - RE1) / 

(RE2 + RE1 + 0.16)) 

https://doi.org/10.1016/j.agrformet.2008.03.005 

MCARI 

Modified 

Chlorophyll 

Absorption in 

Reflectance Index 

0.48 -0.27 
((RE1 - R) - 0.2 * (RE1 - G)) * (RE1 

/ R) 
http://dx.doi.org/10.1016/S0034-4257(00)00113-9 

DSWI2 
Disease-Water 

Stress Index 2 
0.29 -0.26 S1/G https://doi.org/10.1080/01431160310001618031 

DVI 
Difference 

Vegetation Index 
0.56 -0.25 N - R https://doi.org/10.1016/0034-4257(94)00114-3 

FCVI 

Fluorescence 

Correction 

Vegetation Index 

0.55 -0.25 N - ((R + G + B)/3.0) https://doi.org/10.1016/j.rse.2020.111676 
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Vegetation index 

(abbreviation)* 

Vegetaion index 

(full name)* 

Pearson’s 

coefficient 

Spearman’s 

coefficient 
Formula* Reference* 

GEMI 

Global 

Environment 

Monitoring Index 

-0.55 0.25 

((2.0*((N^2.0)-(R^2.0)) + 1.5*N + 

0.5*R)/(N + R + 0.5))*(1.0 - 

0.25*((2.0 * ((N^2.0) - (R^2)) + 1.5 * 

N + 0.5 * R)/(N + R + 0.5)))-((R - 

0.125)/(1 - R)) 

http://dx.doi.org/10.1007/bf00031911 

TGI 
Triangular 

Greenness Index 
-0.23 0.24 - 0.5 * (190 * (R - G) - 120 * (R - B)) http://dx.doi.org/10.1016/j.jag.2012.07.020 

TriVI 
Triangular 

Vegetation Index 
0.54 -0.24 0.5 * (120 * (N - G) - 200 * (R - G)) http://dx.doi.org/10.1016/S0034-4257(00)00197-8 

MCARI1 

Modified 

Chlorophyll 

Absorption in 

Reflectance Index 

1 

0.54 -0.23 1.2 * (2.5 * (N - R) - 1.3 * (N - G)) https://doi.org/10.1016/j.rse.2003.12.013 

MTVI1 

Modified 

Triangular 

Vegetation Index 

1 

0.54 -0.23 1.2 * (1.2 * (N - G) - 2.5 * (R - G)) https://doi.org/10.1016/j.rse.2003.12.013 

ExR Excess Red Index -0.48 0.22 1.3 * R - G https://doi.org/10.1117/12.336896 

MCARIOSAVI 
MCARI/OSAVI 

Ratio 
0.33 -0.18 

(((RE1 - R) - 0.2 * (RE1 - G)) * (RE1 

/ R)) / (1.16 * (N - R) / (N + R + 

0.16)) 

https://doi.org/10.1016/S0034-4257(00)00113-9 

ExG 
Excess Green 

Index 
-0.06 0.16 2 * G - R - B https://doi.org/10.13031/2013.27838 

TCI 
Triangular 

Chlorophyll Index 
0.28 -0.09 

1.2 * (RE1 - G) - 1.5 * (R - G) * 

(RE1 / R)^0.5 
http://dx.doi.org/10.1109/TGRS.2007.904836 

NRFIg 

Normalized 

Rapeseed 

Flowering Index 

Green 

0.25 -0.04 (G - S2) / (G + S2) https://doi.org/10.3390/rs13010105 

ExGR 
ExG - ExR 

Vegetation Index 
0.28 -0.04 (2.0 * G - R - B) - (1.3 * R - G) https://doi.org/10.1016/j.compag.2008.03.009 

 

* Information about each vegetation index (abbreviation and full name), the belonging formula and reference were all taken from the rsi-Package from Mahoney (2024) 
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