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A B S T R A C T

Reduced rainfall and nitrogen (N) use in warm-summer humid continental climates may lower wheat yields. Our 
study employs the DSSAT-Nwheat process-based crop simulation model to quantify the effects of N input and 
rainfall on various phenological stages of the Swiss wheat genotype CH Nara, calibrated and evaluated using field 
data from 2018 to 2022. Simulations over 42 years (1981–2022) across five different Cambisols used historical 
daily weather data to test rainfall reductions from 20 % to 100 % during three critical periods (30 days before 
anthesis, 30 days after anthesis, and ±30 days around anthesis) as well as throughout the entire season. Nitrogen 
fertilizer treatments ranged from zero to 140 kg N ha− 1. The model accurately simulated yields with an RMSE of 
895.5 kg ha− 1 during calibration and 1091.4 kg ha− 1 during validation. Results showed that yields were not 
adversely affected by rainfall reductions up to 40 %, regardless of N levels or timing. However, yields signifi-
cantly declined when reductions exceeded 60 %, especially with N applications above 100 kg ha− 1. Optimal 
yields were noted at 140 kg N ha− 1, but benefits decreased under scenarios of reduced rainfall, indicating that N 
recommendations may need to be lowered in response to projected rainfall reductions. This study provides 
quantitative guidance for adapting wheat fertilization strategies to maintain productivity while accounting for 
future rainfall variability.

1. Introduction

Wheat (Triticum aestivum L.) is a staple crop worldwide, covering 219 
million hectares with an average yield of almost 3.7 t ha− 1 (at 11 % 
moisture content), resulting in a global production of 808 million tons 
(Peña-Bautista et al., 2017). Switzerland contributes 487 thousand tons 
to this total, with an average yield of 5.4 t ha− 1 (FAOSTAT, 2022). 
However, wheat-growing regions in Switzerland are projected to face 
more intense rainfall during winter and spring, along with hotter and 
drier summers, potentially reducing rainfall by up to 43 % by the end of 
the century (CH2018, 2018; Fischer et al., 2022). While increased at-
mospheric carbon dioxide (CO₂) levels associated with climate change 
could theoretically enhance photosynthesis and promote wheat growth, 
this carbon fertilization effect is diminished under water-limited con-
ditions (Zheng et al., 2020). Drought exerts a significant negative impact 

on wheat yield (Fuhrer et al., 2006), particularly in Europe (Webber 
et al., 2018). It impacts wheat plants in various ways, including reduced 
CO₂ uptake and impaired photosynthetic performance due to stomatal 
limitations (Zandalinas et al., 2018). During early reproductive phases, 
drought can severely hinder grain production (Onyemaobi et al., 2017) 
and significantly affect overall yield (Ji et al., 2010; Qaseem et al., 
2019), while drought during grain filling can compromise grain devel-
opment (Steduto et al., 2012). However, the current understanding of 
the rainfall sensitivity of wheat at different reproductive stages remains 
inconsistent, highlighting a gap in knowledge.

Addressing this gap also requires considering how nitrogen (N) in-
teracts with water availability, since globally, wheat production faces a 
major challenge: only about 48 % of the N fertilizer applied is recovered 
by plants (Ladha et al., 2016), with efficiency varying widely between 
regions and even between farms within the same area (Ladha et al., 
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2005). This inefficiency not only limits yield and grain protein potential 
(Steduto et al., 2012; Zörb et al., 2018), but also contributes to serious 
environmental problems, including groundwater and waterways 
contamination, and greenhouse gas emissions (Zörb et al., 2018). To 
mitigate these issues, N application must be reduced in accordance with 
the European Union’s Nitrates Directive (91/676/EEC), which was 
established in 1991 to prevent water pollution from agricultural sources 
(EU Commission, 1991). Despite these environmental concerns, limited 
N availability during wheat growth can compromise both yield and 
grain quality. For instance, a global meta-analysis revealed that applying 
N at rates up to 200 kg N ha− 1 can substantially enhance wheat yields 
(by 37.6 % at 0–100 kg N ha− 1 and by 49.5 % at 100–200 kg N ha− 1) 
with significant improvements in grain protein content (Wang et al., 
2023). Furthermore, according to Martre et al. (2024), the attainment of 
global wheat yield potential under a mid-century high-warming climate 
change scenario with elevated CO2 needs an increase in N fertilizer 
application to four times the current levels. Yet, adding more N does not 
always translate into greater yields. Excessive applications can lead to 
vegetative overgrowth and increase water use (Steduto et al., 2012), due 
to elevated canopy-level transpiration, leading to the risk of water stress 
(Nguyen et al., 2022). In regions where water availability constrains 
crop productivity, elevated N rates may exacerbate water stress without 
improving yields. Adjusting future N rates to anticipated rainfall, espe-
cially considering expected reductions due to climate change, is rec-
ommended. Nevertheless, current N fertilizer recommendations are 
mostly based on inter-annual average responses, often ignoring the 
variations induced by stage-specific drought events (Asseng et al., 
2012), thus limiting their effectiveness under climate change scenarios. 
A better understanding of the phased drought ×N interaction is there-
fore critical to improve wheat yield resilience.

Process-based crop simulation models (CMs) are often used as 
valuable tools for studying climate change impacts on agriculture. CMs 
are composed of mathematical equations that estimate the growth, 
development, and yield of crops based on environmental factors such as 
climate and soil, genetic traits of cultivars, and management practices 
(Monteith, 1996). These models are capable of simulating crop growth 
under both current and future scenarios (Finger and Schmid, 2008), and 
can be calibrated and validated using data from field experiments, which 
is crucial for improving model accuracy (Hunt and Boote, 1998). 
Additionally, CMs can be applied to study various locations and climatic 
conditions (Jones et al., 2003). In the context of climate change, CMs are 
essential tools for predicting how crops will respond to shifting envi-
ronmental conditions (Lehmann et al., 2013) and for evaluating strate-
gies to mitigate adverse impacts on yields (Matthews et al., 2013). 
However, accurately replicating future climate conditions in field ex-
periments remains challenging (Bongiovani et al., 2024), further rein-
forcing the importance of simulation approaches. Using CMs, Pequeno 
et al. (2021) demonstrated how region-specific adaptation strategies and 
soil N management can enhance the performance of heat and drought 
tolerant wheat varieties under climate change. Despite their advantages, 
CMs present inherent uncertainties related to system complexity, 
parameter adjustment needs, and input data variability (Battisti, 2016; 
Duarte, 2018; Duarte and Sentelhas, 2020). Among the leading systems 
employing CMs is the Decision Support System for Agrotechnology 
Transfer (DSSAT), version 4.8.2.000 (Hoogenboom et al., 2024; Hoo-
genboom et al., 2019; Jones et al., 2003). The DSSAT-Nwheat model 
(Kassie et al., 2016), is based on the Crop Environment Resource Syn-
thesis model, or CERES (Ritchie et al., 1998), and has been widely used 
for simulating wheat growth and yield under different environmental 
conditions (Holzworth et al., 2014; Asseng et al., 1998; Kassie et al., 
2016; Liu et al., 2020; Shoukat et al., 2024). Its strength lies in its ability 
to simulate wheat responses under different N and water conditions, 
making it particularly suitable for assessing wheat resilience to climate 
change scenarios (Asseng et al., 2013; Jägermeyr et al., 2021; Pequeno 
et al., 2021; Martre et al., 2024). Successful application of these models, 
however, depends on effective calibration using detailed field 

experiments (Nóia Júnior et al., 2023a; Kim et al., 2024), which ensures 
that simulations better reflect reality. Therefore, well-calibrated and 
validated CMs are critical tools for assessing future crop yields under 
changing climate conditions, particularly in scenarios of reduced 
rainfall.

The present study specifically addresses these gaps by calibrating 
and evaluating the DSSAT-Nwheat model for the Swiss wheat genotype 
CH Nara, aiming to quantify the impacts of reduced rainfall and N fer-
tilizer inputs on wheat yields under a warm-summer humid continental 
climate. The following two hypotheses will be tested: (1) the effects of 
reduced rainfall and lower N fertilizer inputs on wheat yield vary 
depending on the timing of rainfall reduction; and (2) higher N fertilizer 
rates (≥100 kg N ha− 1) increase wheat yield sensitivity to rainfall 
reduction, particularly during critical growth stages. These analyses aim 
to provide insights into how climate variability and resource manage-
ment interact to influence wheat yield under current and projected cli-
matic conditions, thus supporting more resilient wheat production 
systems in Switzerland and similar environments.

2. Material and methods

2.1. Weather and soil data

The Köppen’s climate classification for the region is warm-summer 
humid continental climate (Cfb, Beck et al., 2018). Meteorological 
data was obtained from the local weather station of MeteoSwiss for the 
historical period of 1981–2022 (Historical Series; hereinafter referred to 
as “HS”). Considering the 42-year-period, the mean annual temperature 
was 9.2 ◦C, the mean annual rainfall was 831.6 mm, and the mean 
annual solar radiation, 11.8 MJ m− 2 d− 1. Mean historical weather 
conditions during the winter wheat growing season, as well as the 
conditions during the years of field experiment are shown in Fig. 1.

The soils of the field experiments were classified as Cambisols 
(WRBSR World Reference Base for Soil Resources, 2014). Soils were 
sampled with an auger on November 08 and 9, 2023, considering three 
samples that were mixed and created one unique sample for each plot 
per each depth: 0–20 cm, 20–40 cm, 40–60 cm and, when possible, 
60–80 cm. In certain plots, the presence of subsurface rock layers 
inhibited sampling depths beyond 60 cm. Soil samples were sent to an 
external lab (Sol-Conseil, Gland, Switzerland) and analyzed for: texture, 
organic matter, and pH measured in water (pHwater, Table 1).

2.2. Field experiments

Two field experiments, EXP1 (Bongiovani et al., 2024) and EXP2 
(Burton et al., 2024), were carried out between September 2018 and 
July 2022, in Nyon, Switzerland (46.39 ◦N, 6.24 ◦E, 424 m a.s.l). In 
EXP1, winter wheat was cultivated in three nearby plots after three 
pre-crops (barley, Hordeum vulgare L.; oilseed rape, Brassica napus L.; 
winter pea, Pisum sativum L.), while in EXP2, only one crop preceded 
winter wheat each season, either sunflower (Helianthus annuus) or soy-
bean (Glycine max) (Table 2). The drought tolerant (Touzy et al., 2019) 
Swiss winter wheat genotype CH Nara, registered in 2007, was culti-
vated in both experiments. It is among the top Swiss varieties of winter 
wheat, which generally present high protein content and baking quali-
ties (Brabant and Levy Häner, 2016). CH Nara is also resistant to lodging 
and diseases, like brown and yellow rust, and considered very short 
compared to other genotypes cultivated in Switzerland (ARVALIS, 
2025). The experimental observed data used in this study included: 
anthesis and maturity dates, grain yield, grain number per m2, indi-
vidual grain weight, grain N content (from EXP1 and EXP2), and total 
aboveground biomass at maturity (only available in EXP2) (Supp. Tab. 
S1 and S2).

Among the main objectives of these experiments was the investiga-
tion of wheat yields in response to different mineral N management 
levels, under no limitation of phosphorus and potassium. The N 
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Fig. 1. Weather conditions during winter wheat cropping seasons in Nyon, Switzerland. Boxplot of monthly mean temperature (a), accumulated rainfall (b) and solar 
radiation (c), over the HS period in Nyon, Switzerland, and standard error of the means. Weather data corresponding to the growing seasons of the wheat field 
experiments (from October to July) are shown as red, green, blue and purple asterisks for seasons 2019, 2020, 2021 and 2022 (years of harvest), respectively. Data 
from MeteoSwiss, the Swiss Federal Office for Meteorology and Climatology.

Table 1 
Selected soil properties of the plots where the experiments were carried out. Soil depth, concentration of clay, silt, sand, organic matter (OM), and pHwater, of EXP1 and 
EXP2.

Soil code Depth 
(cm)

Clay Silt Sand OM 
(g 100 g− 1)

pHwater Experiment

(g 100 g− 1)

Soil1 0–20 29.0 44.1 26.9 2.8 6.4 EXP1
20–40 30.2 44.3 25.5 1.9 6.6
40–60 41.9 35.5 22.6 1.5 6.8
60–80 37.9 42.6 19.5 1.0 7.0

Soil2 0–20 33.0 35.6 31.5 3.1 7.8 EXP2
20–40 31.4 34.9 33.7 2.9 7.8
40–60 32.3 36.9 30.7 2.1 8.0

Soil3 0–20 26.9 40.6 32.5 3.0 8.0
20–40 26.5 43.3 30.2 2.2 8.1
40–60 27.1 42.3 30.6 1.7 8.1
60–80 26.0 43.1 30.9 1.4 8.3

Soil4 0–20 28.9 42.4 28.7 2.9 7.5
20–40 30.9 38.4 30.7 2.4 7.5
40–60 32.4 27.9 39.7 1.8 7.9

Soil5 0–20 58.7 30.5 10.8 4.4 7.3
20–40 47.1 34.9 18.1 2.6 7.5
40–60 46.5 31.4 22.0 1.6 7.7

Table 2 
Field management for the winter wheat genotype CH Nara experiments in Nyon, Switzerland, and use in calibration of the DSSAT-Nwheat model. Sowing, anthesis, 
maturity, harvest, nitrogen (N) fertilization dates and N fertilizer input in wheat production by experiment (EXP1 and EXP2) and season (season 2019, 2020, 2021 and 
2022). More information about the treatments and in each phase of the calibration of the model they were used can be found in Supplementary Tab. S1, S2 and S3.

Operation EXP1 EXP2

2019 2019 2020 2021 2022

Soil Soil1 Soil2 Soil3 Soil4 Soil5
Pre-crop barley 

oilseed rape 
peas

sunflower soybean soybean sunflower

Sowing 19 Oct 2018 11 Oct 2018 13 Nov 2019 06 Nov 2020 15 Oct 2021
N fertilizer input 

(kg N ha− 1)
0 

up to 180
0 

160
0 

160
0 
80 
160

0 
80 
160

N supply 
date

27 Mar 2019 
06 May 2019

21 Feb 2019 
21 Mar 2019 
02 May 2019

18 Feb 2020 
17 Mar 2020 
04 May 2020

24 Feb 2021 
23 Mar 2021 
20 Apr 2021

28 Feb 2022 
25 Mar 2022 
03 May 2022

Water 
supply

Rainfed 
Shelter

Irrigation Rainfed Rainfed Irrigation

Harvest 22 Jul 2019 17 Jul 2019 15 Jul 2020 23 Jul 2021 07 Jul 2022
Phases Calibration 

Evaluation
Calibration 
Evaluation

Calibration 
Evaluation

Calibration 
Evaluation

Evaluation
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treatments ranged from non-fertilized (zero N fertilizer supply) to 
160 kg N ha− 1, and to enough mineral N applied to reach a total soil 
supply of 180 kg N ha− 1. Soil samples were collected on February of 
2019, 2020, 2021, and 2022, at beginning of tillering of both experi-
ments, as well as at after harvest in EXP2, to quantify the soil mineral N 
(NO3

- plus NH4
+, hereafter referred to as Nmin) by an external lab. Then, 

the Nmin system by Thompson et al. (2017) was applied in EXP1, in 
which the determined Nmin at the beginning of wheat development was 
subtracted from the N target value (180 kg N ha− 1) to estimate the 
mineral N fertilizer application rate (Bongiovani et al., 2024). Ammo-
nium nitrate (27 % N + 2.5 % Mg) was broadcast twice in EXP1 by the 
time of stem elongation and heading stages (due to an initial Nmin of 
50 kg N ha− 1 after peas, and 110 kg N ha− 1 after barley and oilseed 
rape), and three times in EXP2, by the time of tillering, stem elongation 
and heading stages.

Another objective of EXP1 was to test the effects of the future pro-
jections of rainfall reductions. Thus, EXP1 presented the treatments: 
rainfed and rainfall manipulation with rainout shelters (Table 2). The 
stationary rainout shelters were built and installed to specifically 
intercept up to 40 % of the rainfall, based on the design used by Kundel 
et al. (2018). The rainout shelters covered plots continuously during the 
grain filling stage, a critical stage for wheat yield, being uncovered 
during all other growth stages. Although EXP2 was a rainfed experi-
ment, due to severe drought, irrigation was applied in season 2019 
(20 mm on 18 October 2018) to ensure plant emergence, and in 2022 
(25 mm on 25 May 2022), to minimize a potential water stress at the 
final winter wheat stages after a lower-than-average rainfall accumu-
lation during summer (Fig. 1). Detailed information about the methods 
used and the field assessments conducted for EXP1 and EXP2 is available 
in Bongiovani et al. (2024) and Burton et al. (2024), respectively.

2.3. Calibration and evaluation of the DSSAT-Nwheat model for CH Nara 
genotype

The DSSAT-Nwheat model is integrated within the Decision Support 
System of Agrotechnology Transfer modelling system, or DSSAT 
(version 4.8.2.000, Hoogenboom et al., 2024; Jones et al., 2003), a crop 
model developed for the simulation of winter wheat growth (Kassie 
et al., 2016). DSSAT-Nwheat was selected for its proven ability to 
simulate wheat growth, development, and yield under diverse N levels, 
water regimes, planting dates, elevated CO2, temperature variations, 
and soil types worldwide (Kassie et al., 2016). The model has been 
comprehensively validated with over 1000 observations from 65 treat-
ments, achieving a root mean square deviation (RMSD) of 0.89 t ha− 1 

(13 %) for grain yield. It reliably captures the impacts of N and water 
management, as well as responses to temperature and CO2 changes, 
making it well-suited for climate-N impact studies. Furthermore, 
DSSAT-Nwheat simulates wheat phenology and resource use efficiency 
in detail, allowing the analysis of water and N stress at specific growth 
stages, which is essential for investigating phased drought × N 
interactions.

For the calibration of the model, results of experiments, seasons and 
treatments with no or minimum water and N stress were considered. So, 
in this phase, the fertilized treatments of 2019 from EXP1, and N 
treatments of 80 kg N ha− 1 and 160 kg N ha− 1 of seasons 2019, 2020 
and 2021 from EXP2, were used (Table 2, Supp. Tab. S1 and S2). For the 
evaluation of the calibration, the season 2021 from EXP1, the season 
2022 from EXP2, the non-fertilized treatments (zero N fertilizer supply) 
of both EXP1 and EXP2, as well as the remaining 80 kg N ha− 1 treat-
ments (EXP2), were used (Table 2, Supp. Tab. S1 and S2).

The rainout shelters’ treatments were set up to intercept 40 % of the 
rain during the period the shelters were in the field (Bongiovani et al., 
2024). Initial water availability of 75 % and soil N conditions were 
established 15 days before sowing in DSSAT, to achieve the Nmin found 
in field experiments each season. Based on the soil properties shown in 
Table 1, other soil parameters needed for running the model were 

calculated automatically by the DSSAT’s soil module, creating the soil 
profiles. The soil parameters include: water content at lower limit (LL, 
cm³ cm− 3), water content at drained upper limit (DUL, cm³ cm− 3), 
saturated water content (SAT, cm³ cm− 3), root growth factor (RGF, %), 
saturated hydraulic conductivity (SKS, cm hr− 1), soil density (BDM, g 
cm− 3), organic carbon (LOC, %), clay (LCL, %), silt (LSI, %), coarse 
fraction (LCF, %), N concentration (LNI, %), pH in water (LHW), and 
cation exchange capacity (CEC, cmol kg− 1). The soil profiles created 
were used for all the simulations and can be found in Supplementary 
Tab. S4 to S8.

The DSSAT-Nwheat model presents nine cultivar coefficients to be 
adjusted during calibration phase. The coefficients descriptions, as 
shown in the DSSAT platform, are: VSEN is the sensitivity to vernali-
zation; PPSEN is the sensitivity to photoperiod; P1 is the thermal time 
from seedling emergence to the end of the juvenile phase (◦C d); P5 is the 
thermal time (base 0 ◦C) from beginning of grain filling to maturity; 
PHINT is the phyllochron interval; GRNO is the number of kernels per 
stem weight at grain filling (kernels g− 1 stem− 1); MXFIL is the potential 
kernel growth rate (mg kernel− 1 d− 1); STMMX is the potential final dry 
weight of a single tiller without grain (g); and SLAP1 is the ratio of leaf 
area to mass at emergence (cm2 g− 1). The genotype parameters for CH 
Nara were initially simulated with the GLUE (generalized likelihood 
uncertainty estimation) tool available in DSSAT, using the available 
observed data. Calibration error control criteria were defined as mini-
mizing the root mean square error (RMSE) and maximizing the coeffi-
cient of determination (R²) between observed and simulated grain yield, 
anthesis date, and maturity date. All calibrated parameters were kept 
within the default minimum and maximum ranges suggested by DSSAT- 
Nwheat (Table 3). Then, they were adapted to improve the relationship 
between observed and simulated data. The cultivar coefficients of the 
winter wheat genotype CH Nara for the DSSAT-Nwheat model are 
shown in Table 3.

2.4. Simulations

The simulations were performed for the location of the field exper-
iments. Forty-two years of winter wheat production were simulated 
using all five soils (Table 1), to represent the variability of the region, as 
well as the HS weather data (1981–2022). The simulations were carried 
out for the calibrated genotype CH Nara. Sowing was set as October 15 
each year, while harvest occurred automatically at plant maturity on the 
following year, a date that varied according to the seasons’ conditions. 
In order to simulate the region’s water availability conditions during 
wheat production, the simulation start date was set as 180 days before 
sowing.

Besides the actual HS rainfall treatment, five other rainfall treat-
ments were created to simulate reduced rainfall conditions, being 
− 20 % (R20), − 40 % (R40), − 60 % (R60), − 80 % (R80) and − 100 % 
(R100) of the HS’s rainfall. Each reduced rainfall condition was applied 
on three different phases around anthesis (scenarios): stem elongation 
(30 days before and including the anthesis date, totalizing 31 days), end 
of flowering and grain filling (30 days after and including the anthesis 
date, totalizing 31 days), and between stem elongation and grain filling 
(30 days before and after anthesis, including it, totalizing 61 days). The 
30 days period was decided based on the number of days found from 
anthesis to maturity of the field experiments (32–45 days, Supp. Tab. S1 
and S2), so each simulated year would have the same number of days of 
rainfall reductions. Additionally, a fourth scenario was created to 
simulate decreases of rainfall during the entire growing season, from the 
sowing date to maturity (or end of July). The average anthesis date 
observed on the field experiments was 220 ± 9.7 days after sowing 
(DAS) (Supp. Tab. S1 and S2), thus set as May 22 (disregarding leap 
years). Projections of other weather variables were not considered in 
this study.

Four N treatments were considered in each rainfall treatment: zero N 
supply (N0), 60 kg N ha− 1 (N60), 100 kg N ha− 1 (N100) and 140 kg N 
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ha− 1 (N140), the latter represents the recommended N fertilizer input 
for winter wheat production in Switzerland (PRIF, Sinaj et al., 2017). 
The N doses were split in three applications based on the application 
dates of the field experiments (Table 2) and the plants needs in each 
development phase: February 23, March 22 and May 4. On N60, the 
doses applied were 20 kg N ha− 1 in each application. On N100, the 
doses were 30 kg N ha− 1, 40 kg N ha− 1 and 30 kg N ha− 1. For the N140, 
the doses were 40 kg N ha− 1, 60 kg N ha− 1 and 40 kg N ha− 1. Ammo-
nium nitrate was broadcast in each N application and no other fertilizer 
was added to the simulations.

For the analysis of simulation outcomes, the following variables were 
considered: yield, grain number per m2, individual grain weight (mg), 
total aboveground biomass (kg ha− 1), N in grain (kg ha− 1), N in straw 
(kg ha− 1), leaf area index (LAI), and grain protein content (g 100 g− 1 dry 
matter), which was calculated from the N content output of the model 
using a conversion factor of 5.7 (Schulz et al., 2015). These variables are 
critical as they directly reflect crop productivity and quality. Based on 
them, the N harvest index (NHI, defined as the proportion of N allocated 
to grain relative to the total N in grain and straw) and N utilization ef-
ficiency (NUtE, defined as the grain yield per unit of total N in grain and 
straw) were calculated. To further investigate the N dynamics in the 
simulations, additional output variables generated by the model were 
analyzed: plant N uptake (kg N ha− 1) and N leached (kg N ha− 1). These 
variables represent key processes computed in the soil inorganic N 
module of DSSAT on a daily basis. The model calculates plant uptake 
rates for NO3

- and NH4
+ in the individual plant modules, integrating the 

amounts taken up into the soil state variables of the inorganic N module. 
The transport of N in soil to deeper layers is based on water flux values 
obtained from the soil water module (Jones et al., 2003; Hoogenboom 
et al., 2024).

3. Statistical analysis

The performance of the model in relation to the observed data was 
verified based on the statistical indicators: agreement index (d) of 
Willmott (1982), coefficient of determination (R²), root mean square 
error (RMSE) and relative root mean square error (RRMSE). These 
indices are obtained by Eqs. 1 to 4. 

d = 1 −

[ ∑
(Ei − Oi)²

∑
(|Ei − O | + |Oi − O |)²

]

(1) 

R2 = 1 −

∑
(Ei − O )²

∑
(Oi − O )²

(2) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
(Ei − Oi)²

n

√

(3) 

RRMSE =
RMSE
O

× 100 (4) 

Where: Ei corresponds to the values simulated by the models; Oi, to the 
observed values; Ō is the average of the observed values; and n is the 
total number of observed or simulated values.

Boxplots were created to show the winter wheat grain number, 
weight and yield simulations by scenario of rainfall reduction. To 
evaluate the effects of rainfall reduction, N supply, and their interaction 
on grain number, grain weight, and grain yield, a two-way analysis of 

variance (ANOVA) was performed using linear models, applying the 
type II sum of squares to evaluate the main and interaction effects, which 
accounts for variance explained by each factor while controlling for the 
other. ANOVA was conducted using the function “Anova” from the “car” 
package in R (version 4.4.2, R core Team, 2024), applied to linear 
models fitted with “lm” function. Statistical significance was evaluated 
at α = 0.05. The ANOVA tables are available in Supplementary 
Materials.

Additionally, a Principal Component analysis (PCA), to assess dif-
ferences between main factors and their interactions, was carried out in 
R (version 4.4.2, R Core Team, (2024). It was used to reduce the di-
mensions of the dataset and better visualize correlations between vari-
ables using the function “prcomp” in R. The variables used in this 
analysis were: wheat grain yield (kg ha− 1), grain number (grains per 
m²), individual grain weight (mg), total aboveground biomass (kg ha− 1), 
N in grain (kg ha− 1), N in straw (kg ha− 1), leaf area index (LAI), grain 
protein content (g 100 g− 1 dry matter), NHI, NUtE, plant N uptake (kg N 
ha− 1), and soil N leached (kg N ha− 1). The PCA included all the sources 
of variation at a similar level. The results were plotted using the function 
“autoplot”, from the R package “ggfortify”. Nitrogen fertilizer supply, 
rainfall reduction and scenario of rainfall reductions were highlighted in 
plots to assess differences between them. Only the first two principal 
components were illustrated in these plots since they accounted for most 
of the variation in the data in all cases. To quantitatively assess the 
significance of sample separation according to each experimental factor, 
a separate Permutational Multivariate Analysis of Variance (PERMA-
NOVA) was performed on the PCA scores (PC1 and PC2) for N supply, 
rainfall reduction, and scenario of rainfall reductions, respectively. 
PERMANOVA was conducted using the function “adonis2” from the R 
package “vegan”. The Euclidean distance matrix was used for each 
analysis, and significance was assessed based on 999 permutations. In 
PERMANOVA, the R2 value represents the proportion of variation in a 
distance matrix explained by grouping factors. Unlike the R2 defined in 
Eq. 2, it operates on pairwise distances without assuming linearity or 
normality. It quantifies explanatory power in a multivariate, 
non-parametric framework, with significance tested by permutations.

4. Results

4.1. Calibration and evaluation of DSSAT-Nwheat

In the calibration phase, the model could simulate different crop 
variables appropriately (Table 4, Supp. Fig. S1). Phenological stages, 
represented by anthesis and maturity dates, were simulated with high 
accuracy (d > 0.951) and precision (R² > 0.838), with RRMSE ranging 
from 1.2 % to 2.1 %. Yield simulates had an agreement index of 
d = 0.759, with an R² of 0.517 and an RMSE of 895.5 kg ha− 1. The mean 
observed yield from field experiments was 5570.5 kg ha− 1, while the 
model simulated an average yield of 6139.6 kg ha− 1. Total aboveground 
biomass showed lower agreement, with d = 0.252 and R² = 0.295. For 
other variables, accuracy ranged from d = 0.478–0.619, while precision, 
represented by R², ranged from 0.143 for grain number to 0.393 for 
grain weight.

In the evaluation phase, both anthesis (d = 0.982 and R² = 0.979) 
and maturity dates (d = 0.961 and R² = 0.867) were accurately and 
precisely simulated by the model, while other variables were often 
underestimated (Table 4, Supp. Fig. S1). The precision of vegetative 

Table 3 
Default (minimum and maximum) and calibrated cultivar coefficients values of winter wheat genotype CH Nara for DSSAT-Nwheat (v. 4.8.2.000).

Genotype Cultivar coefficients
VSEN PPSEN P1 P5 PHINT GRNO MXFIL STMMX SLAP1

Defaultmin 0 1.20 380.0 200.0 85.0 20.0 1.60 1.00 200.0
Defaultmax 4.00 4.50 530.0 700.0 130.0 32.0 2.90 3.00 400.0
CH Nara 1.00 4.0 500.5 550.0 86.3 25.0 1.80 3.00 250.0
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variables varied, with R² values ranging from 0.061 for grain weight to 
0.660 for yield, and RRMSE between 15.1 % for grain weight and 
30.6 % for total aboveground biomass (Table 4). Accuracy was highest 
for yield (d = 0.742), followed by grain number (d = 0.704), total 
aboveground biomass (d = 0.596), grain N content (d = 0.348), and 
grain weight (d = 0.232). Additionally, in both calibration and simu-
lation phases, the model produced similar simulated values for a wide 
range of observed values in the field. For instance, during calibration, 
observed grain weight values ranged from 29.8 mg to 34.3 mg, whereas 
the corresponding simulated values were between 37.0 mg and 37.2 mg 
(Supp. Tab. S1 and S2, Supp. Fig. S1).

4.2. Winter wheat grain number, weight and yield simulations

4.2.1. Rainfall decreases during stem elongation
The simulated responses of winter wheat to reduced rainfall 30 days 

before anthesis with different N fertilizer supply is shown in Fig. 2. In 
this scenario, considering all N treatments together, means of both grain 
number and yield decreased with rainfall reductions, while grain weight 
means, had variable responses. The greatest mean grain number was 
obtained in HS (10,435.6 grains m− 2), followed by R20 (10,416.1 grains 
m− 2), R40 (10,329.0 grains m− 2), R60 (10,094.7 grains m− 2), R80 
(9616.0 grains m− 2), and R100 (8742.5 grains m− 2). As for the yields, 
the greatest mean was observed in HS (4.06 t ha− 1), followed by R20 
(4.04 t ha− 1), R40 (3.97 t ha− 1), R60 (3.85 t ha− 1), R80 (3.67 t ha− 1), 
and R100 (3.48 t ha− 1). Grain weight means varied between rainfall 
reduction levels, being greater in R100 (38.1 mg), followed by HS 
(37.1 mg), R20 (37.0 mg), R40 (36.8 mg), R80 (36.6 mg), and R60 
(36.5 mg). The N0 treatment presents more consistent results along the 
different rainfall levels than the other N treatments, for the three 
variables.

When comparing the N treatments (Supp. Tab. S9), the N140 had the 
greatest means of grain number and yield in all rainfall reduction levels, 
while N0 had the lowest. In N140, grain numbers went from 10,530.4 
grains m− 2 (R100) to 13,353.5 grains m− 2 (HS), and yields from 4.22 t 
ha− 1 (R100) to 5.29 t ha− 1 (HS). In N0, grain numbers went from 5790.6 
grains m− 2 (R100) to 6144.0 grains m− 2 (R40), and yields from 2.11 t 
ha− 1 (R100) to 2.28 t ha− 1 (R40). N60 and N100 had intermediary re-
sponses, with N100 being greater than N60 in all cases. The N60 had its 
greatest values in R20 (10,283.6 grains m− 2 and 3.93 t ha− 1), and lowest 
in R100 (8699.6 grains m− 2 and 3.55 t ha− 1), while N100 had its 
greatest values in HS (12,081.8 grains m− 2 and 4.81 t ha− 1), and lowest 
in R100 (9949.2 grains m− 2 and 4.03 t ha− 1). As for the grain weight, its 
greatest means were obtained by N100, in all levels except in R100, 

while the lowest, by N0. N140 had grain weights from 36.9 mg (R60) to 
38.8 mg (R100), N100 from 37.3 mg (R80) to 39.2 mg (R100), N60 from 
36.4 mg (R60) to 39.5 mg (R100), and N0, from 35.1 mg (R100) to 
35.4 mg (both R40 and R60).

Analysis of variance confirmed that rainfall reduction, N supply, and 
their interaction significantly affected grain number and grain yield 
(p < 0.001 for all effects). For grain weight, N supply and rainfall 
reduction were significant factors (p < 0.001 and p = 0.014, respec-
tively), but their interaction was not significant (p = 0.744, Supp. Tab. 
S9).

4.2.2. Rainfall decreases during end of flowering and grain filling
The simulated responses of winter wheat to reduced rainfall 30 days 

after anthesis with different N fertilizer supply is shown in Fig. 3. In this 
scenario, considering all N treatments together, means of both grain 
weight and yield decreased with rainfall reductions, while grain number 
means were greater in R20 and R40 than in HS. As in the previous 
scenario, the greatest yield mean occurred in HS (4.06 t ha− 1). It was 
followed by the rainfall reductions levels of R20 (4.00 t ha− 1), R40 
(3.90 t ha− 1), R60 (3.74 t ha− 1), R80 (3.51 t ha− 1), and R100 (3.30 t 
ha− 1). The grain weight means had similar tendence, being greater in HS 
(37.1 mg), followed by R20 (36.5 mg), R40 (35.5 mg), R60 (34.2 mg), 
R80 (32.4 mg), and R100 (31.1 mg). As for the grain numbers, as 
mentioned, was greater in R20 (10,451.6 grains m− 2) and R40 (10,447.1 
grains m− 2), than in HS conditions (10,435.6 grains m− 2). Then, it 
decreased with rainfall reductions, with 10,409.6 grains m− 2 in R60, 
10,308.0 grains m− 2 in R80, and 10,166.2 grains m− 2 in R100. The N0 
treatment presents more consistent results along the different rainfall 
levels than the other N treatments, especially for grain number and 
yield.

Considering the N treatments (Supp. Tab. S10), the N140 had the 
greatest means of grain number and yield in all rainfall reduction levels, 
while N0 had the lowest. In N140, grain numbers went from 12,673.3 
grains m− 2 (R100) to 13,353.5 grains m− 2 (HS), and yields from 3.95 t 
ha− 1 (R100) to 5.29 t ha− 1 (HS). In N0, grain numbers went from 6035.1 
grains m− 2 (HS) to 6169.3 grains m− 2 (R80), and yields from 2.02 t ha− 1 

(R100) to 2.23 t ha− 1, in both HS and R20. N60 and N100 had inter-
mediary responses, with N100 being greater than N60 in all cases. N60 
mean yields went from 3.84 t ha− 1 (R100) to 4.81 t ha− 1 (HS), and mean 
grain numbers, from 10,152.2 grains m− 2 (R100) to 10,310.3 grains m− 2 

(R40). N100 mean yield went from 3.37 t ha− 1 (R100) to 3.92 t ha− 1 

(HS), and mean grain number, from 11,725.3 grains m− 2 (R100) to 
12,081.8 grains m− 2 (HS). As for the grain weight, the lowest mean of 
every N treatment occurred in R100, while the greatest, in HS. N140 had 

Table 4 
Statistical analysis of observed and simulated values of CH Nara. Observed (Obs.) and simulated (Sim.) anthesis and maturity date (in days after sowing), total 
aboveground biomass (in t ha− 1), grain (G.) number per m2, grain weight (in mg) and grain nitrogen (N) content (in g per 100 g of dry matter or DM), and yield (in t 
ha− 1) for the DSSAT-Nwheat model calibrated for the winter wheat genotype CH Nara.

Variable Unit Obs. Mean ±standard error Sim. Mean ±standard error d R2 RMSE 
(Unit)

RRMSE 
(%)

 Calibration
Anthesis DAS 216.8 ± 3.2 218.3 ± 3.5 0.991 0.981 2.5 1.2
Maturity DAS 256.4 ± 3.5 256.4 ± 3.0 0.951 0.838 5.5 2.1
Biomass t ha− 1 19.5 ± 0.3 17.6 ± 0.2 0.295 0.252 2753.3 14.1
G. number G. m− 2 14699.0 ± 360.6 15797.9 ± 448.7 0.616 0.143 2084.7 14.2
G. weight mg 37.8 ± 1.2 38.9 ± 0.5 0.619 0.393 3.8 10.1
G. N content g 100 g− 1 DM 2.37 ± 0.07 1.94 ± 0.04 0.478 0.152 0.5 21.2
Yield t ha− 1 5.5 ± 0.2 6.1 ± 0.1 0.759 0.517 895.5 16.1

 Evaluation
Anthesis DAS 220.5 ± 1.6 222.2 ± 1.8 0.982 0.979 2.3 1.0
Maturity DAS 259.8 ± 1.8 259.6 ± 1.6 0.961 0.867 3.2 1.2
Biomass t ha− 1 12.7 ± 0.5 10.3 ± 0.6 0.596 0.156 3907.9 30.6
G. number G. m− 2 11727.1 ± 542.2 9479.9 ± 424.1 0.704 0.548 2876.0 24.5
G. weight mg 38.8 ± 0.8 37.4 ± 0.7 0.232 0.061 5.9 15.1
G. N content g 100 g− 1 DM 2.05 ± 0.06 1.75 ± 0.03 0.348 0.154 0.5 24.0
Yield t ha− 1 4.5 ± 0.2 3.5 ± 0.2 0.742 0.660 1091.4 24.3
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grain weights from 29.7 mg to 38.2 mg, N100 from 31.3 mg to 38.3 mg, 
N60 from 31.8 mg to 36.6 mg, and N0, from 31.5 mg to 35.1 mg.

Analysis of variance indicated that N supply significantly affected 
grain number (p < 0.001), whereas rainfall reduction and the rainfall 
× N interaction were not significant (p = 0.349 and p = 0.994, respec-
tively). For grain weight, both rainfall reduction and N supply had sig-
nificant effects (p < 0.001), while their interaction was marginally non- 
significant (p = 0.063). Grain yield was significantly influenced by 
rainfall reduction, N supply, and their interaction (p < 0.001, Supp. Tab. 
S10).

4.2.3. Rainfall decreases between stem elongation and grain filling
The simulated responses of winter wheat to reduced rainfall 30 days 

before and after anthesis associated with different N fertilizer supply is 
shown in Fig. 4. In this scenario, considering all N treatments together, 
the means of yield, grain number and grain weight, decreased with 
rainfall reductions, being greatest in HS and lowest in R100. Yields went 
from 2.58 t ha− 1 (R100) to 4.06 t ha− 1 (HS), grain numbers from 7673.8 
grains m− 2 (R100) to 10,435.6 grains m− 2 (HS), and grain weights from 
32.4 mg (R100) to 37.1 mg (HS). The N0 treatment presents more 

similar and consistent results along the different rainfall levels than the 
other N treatments for grain number and yield.

As for the N treatments, the N140 had the greatest means of grain 
number in all rainfall levels, while for yield and grain weight, it varied. 
Grain numbers in N140 varied from 8642.2 grains m− 2 (R100) to 
13,353.5 grains m− 2 (HS). In the case of the yields, the N140 had 
greatest mean values in HS (5.29 t ha− 1), R20 (5.03 t ha− 1), R40 (4.63 t 
ha− 1), and R60 (4.02 t ha− 1), while N100 had them in R80 (3.28 t ha− 1) 
and R100 (2.91 t ha− 1) (Supp. Tab. S11, Supp. Fig. S2). The lowest yield 
and grain number means were found in N0 in all rainfall levels. For grain 
weight in HS, similar results were found for N100 (38.3 mg) and N140 
(38.2 mg), the greater values among N treatments in that rainfall level. 
N100 had also the greatest means in R20 (37.4 mg) and R40 (35.7 mg), 
while N60 had them in R60 (33.5 mg), R80 (31.9 mg) and R100 
(33.4 mg). On the other hand, while the lowest mean within a rainfall 
level occurred in N0 for HS (35.1 mg), R20 (35.0 mg), R40 (34.3 mg), 
and R100 (31.1 mg), the mean of N0 (32.9 mg) was greater than N140 
(32.4 mg) in R60, as well as greater (31.5 mg) than both N100 (30.9 mg) 
and N140 (30.1 mg) in R80.

Analysis of variance revealed that rainfall reduction, N supply, and 

Fig. 2. Simulated responses of winter wheat to reduced rainfall 30 days before anthesis under four nitrogen fertilizer supplies. Winter wheat grain number (a), grain 
weight (b) and yield (c) responses to reductions of rainfall of 20 % (R20), 40 % (R40), 60 % (R60), 80 % (R80) and 100 % (R100) of the Historical Series (HS, 
1981–2022) 30 days before anthesis (totalizing 31 days), for the N treatments: non-fertilized (N0) and N fertilizer supply of 60 kg N ha− 1 (N60), 100 kg N ha− 1 

(N100), and 140 kg N ha− 1 (N140), for all five soil profiles (Table 1, Supp. Tab. S4 to S8). Since values below zero were not simulated (i.e., negative yields do not 
exist and are not simulated), the y-axis scale represents the range between the simulated minimum and maximum values.
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their interaction significantly affected grain number and grain yield 
(p < 0.001). For grain weight, rainfall reduction and N supply had sig-
nificant effects (p < 0.001 and p = 0.002, respectively), while their 
interaction was not significant (p = 0.149, Supp. Tab. S11).

4.2.4. Rainfall decreases during the entire season
The simulated responses of winter wheat to reduced rainfall during 

the entire season with different N fertilizer supply is shown in Fig. 5. 
Considering all N treatments together, means of grain weight decreased 
with rainfall reductions (from 37.1 mg in HS to 23.9 mg in R100), while 
means of yield was the greatest in R20 (4.14 t ha− 1), followed by HS 
(4.06 t ha− 1), and the mean of grain number was the greatest in R40 
(10,930.6 grains m− 2), followed by R20 (10,839.6 grains m− 2) and HS 
(10,435.6 grains m− 2). Also, differently than the previous scenarios, the 
N0 treatment presents similar and consistent results along the different 
rainfall levels. In some cases, under the R100 treatment, although grain 
weight varied between 33.6 mg and 42.2 mg (Fig. 5b), the grain number 
was significantly reduced (with very low values ranging from 18.0 
grains m− 2 to 20.0 grains m− 2, Fig. 5a). This resulted in extremely low 
yields, close to zero (0.006 t ha− 1 to 0.008 t ha− 1, Fig. 5c), primarily due 

to the low grain number rather than the individual grain weight.
As for the N treatments, N140 had, generally, the greatest grain 

number and yield means in all rainfall levels. Grain number means went 
from 5500.1 grains m− 2 (N100) to 13,353.5 grains m− 2 (HS), while yield 
means went from 2.02 t ha− 1 (R100) to 5.29 t ha− 1 (HS). However, yield 
means of N140 were similar to the ones of N100 in R40, R60, R80 and 
R100, close to N60, and somehow to N0, in both R80 and R100 (Supp. 
Tab. S12, Supp. Fig. S2). The grain weights had differing outcomes. In 
HS, N100 and N140 presented similar results. In R20 and R100, N140 
and N60 had similar results, being 36.4 mg and 36.6 mg in R20, and 
23.8 mg and 23.9 mg in R100, respectively. In R40, N140 had the lowest 
grain weight mean (33.8 mg) and the other N treatments had similar 
means (either 34.3 mg or 34.4 mg). In R60, N0 had the greatest grain 
weight (31.4 mg), and, in R80, the means of all N treatments were 
similar (between 27.0 mg and 27.2 mg).

Analysis of variance revealed that rainfall reduction, N supply, and 
their interaction significantly affected grain number and grain yield 
(p < 0.001). For grain weight, only rainfall reduction had a significant 
effect (p < 0.001), whereas N supply and the rainfall × N interaction 
were not significant (p = 0.514 and p = 0.875, respectively, Supp. Tab. 

Fig. 3. Simulated responses of winter wheat to reduced rainfall 30 days after anthesis under four nitrogen fertilizer supplies. Winter wheat grain number (a), grain 
weight (b) and yield (c) responses to reductions of rainfall of 20 % (R20), 40 % (R40), 60 % (R60), 80 % (R80) and 100 % (R100) of the Historical Series (HS, 
1981–2022) 30 days after anthesis (totalizing 31 days), for the N treatments: non-fertilized (N0) and N fertilizer supply of 60 kg N ha− 1 (N60), 100 kg N ha− 1 (N100), 
and 140 kg N ha− 1 (N140), for all five soil profiles (Table 1, Supp. Tab. S4 to S8). Since values below zero were not simulated (i.e., negative yields do not exist and are 
not simulated), the y-axis scale represents the range between the simulated minimum and maximum values.
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S12).

4.2.5. Principal Component analysis
Three PCAs were used to identify associations among variables 

(Figs. 6a to 6c). The PCAs included twelve crop and soil variables (i.e., 
wheat grain yield, grain number per m2, grain weight, total above-
ground biomass, grain protein content, N in grain, N in straw, plant N 
uptake, NHI, NUtE, LAI, and soil N leached) in two dimensions (the 
number of PCs selected). The PCA revealed a strong and consistent 
positive relationship between the yield and grain number (Fig. 6a, and 
Fig. 6c), which presented an even more consistent relationship with N in 
grain and total aboveground biomass (Figs. 6a to 6c). Yield and N 
leached were both negatively (Fig. 6a) and positively correlated 
(Fig. 6b), depending on the conditions highlighted. Also, N leached 
presented close relationship with NHI and NUtE (Figs. 6b and 6c), but 
these showed inconsistent relationships with the other variables across 
the figures (Figs. 6a to 6c). Grain protein showed a close association with 
both N in straw (Figs. 6a and 6b) and plant N uptake (Figs. 6a and 6c). 
Additionally, plant N uptake had a strong relationship with LAI (Fig. 6a 
to Fig. 6c). The contributions of the variables to PC1 and PC2 in each 
case, can be found in Supplementary Fig. S3. Differences between levels 

of N fertilizer supply, rainfall reduction and scenario of rainfall re-
ductions were highlighted in Fig. 6a, Fig. 6b, and Fig. 6c, respectively.

In PCA with varying N fertilizer supplies (Fig. 6a), two principal 
components (PC1 and PC2) accounted for 92.2 % of variance for all 
seasons analyzed together. All variables are positively correlated to PC1, 
except for N leached, NUtE and NHI, which are opposed to yield-related 
traits (Fig. 6a). Also, the PERMANOVA analysis revealed that N supply 
explained 80.7 % of the variance in multivariate space (R2 = 0.807, 
p = 0.001), indicating a highly significant separation between N treat-
ments. A cluster can be seen for each N treatment, with N0 being the 
closest to N leached and farthest from yield, while for N140, it is the 
opposite. Both the N0 and N140 treatments exhibit the greatest vari-
ability, whether in relation to PC1 (horizontally) or PC2 (vertically).

In the PCA focused on levels of rainfall reduction (Fig. 6b), PC1 and 
PC2 explained 80.85 % of the variance for all seasons combined. All 
variables positively correlated with PC1 (Fig. 6b). The R100 data 
generally positioned further from yield, whereas HS was closer, indi-
cating more favorable outcomes under actual conditions. Rainfall 
reduction treatments significantly influenced the multivariate distribu-
tion of samples, explaining 41.9 % of the total variance (R2 = 0.419, 
p = 0.001). However, sample clustering was only partial, with 

Fig. 4. Simulated responses of winter wheat to reduced rainfall 30 days before and after anthesis under four nitrogen fertilizer supplies. Winter wheat grain number 
(a), grain weight (b) and yield (c) responses to reductions of rainfall of 20 % (R20), 40 % (R40), 60 % (R60), 80 % (R80) and 100 % (R100) of the Historical Series 
(HS, 1981–2022) 30 days before and after anthesis (totalizing 61 days), for the N treatments: non-fertilized (N0) and N fertilizer supply of 60 kg N ha− 1 (N60), 
100 kg N ha− 1 (N100), and 140 kg N ha− 1 (N140), for all five soil profiles (Table 1, Supp. Tab. S4 to S8). Since values below zero were not simulated (i.e., negative 
yields do not exist and are not simulated), the y-axis scale represents the range between the simulated minimum and maximum values.
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noticeable overlap between rainfall treatments in PCA space (Fig. 6b). 
Specifically, in the R60 treatment (green points in Fig. 6b), the analysis 
revealed higher N uptake and grain N content compared to other rainfall 
treatments, although this did not translate into yield changes relative to 
other treatments. The R80 and, particularly, the R100 treatments 
exhibited the greatest variability in points concerning PC1 and PC2, 
showing that other factors such as soil characteristics, N supply, and 
timing of water stress become more influential on the growth and N 
variables of wheat in these conditions.

The two principal components accounted for 84.59 % of the variance 
for all seasons analyzed together when focusing on the different sce-
narios of rainfall reductions (Fig. 6c). All variables demonstrated a 
positive correlation with PC1 (Fig. 6c). The PERMANOVA analysis 
showed that the scenario factor explained 24.8 % of the variance in 
multivariate space (R2 = 0.248, p = 0.001), thus a statistically signifi-
cant but moderate separation between scenarios. As anticipated, the 
scenarios of rainfall reduction exclusively around anthesis exhibited 
similar characteristics due to their overlapping conditions. Notably, 
grain number and grain weight were the variables most strongly 
correlated with grain yield. The greatest variability in points relative to 

both PC1 and PC2 only occurred when the rainfall reduction occurred 
during the entire season.

5. Discussion

Our study systematically assessed the interaction between phased 
rainfall reduction and N management across five different Cambisols, 
using 42 years of climatic data to ensure a robust evaluation of winter 
wheat resilience under Swiss conditions. By integrating multiple factors 
(rainfall reductions, timing of these reductions, and N supply) the study 
provides a comprehensive framework for understanding crop responses 
to future climate scenarios with reduced rainfall.

5.1. Calibration and evaluation of the DSSAT-Nwheat

The calibration and validation of the DSSAT-Nwheat model for the 
genotype CH Nara demonstrated its capacity to accurately simulate key 
crop variables, particularly phenological stages, such as anthesis and 
maturity dates. The high accuracy and precision achieved during this 
phase suggest that the model effectively captured the main drivers of 

Fig. 5. Simulated responses of winter wheat to reduced rainfall during the entire season under four nitrogen fertilizer supplies. Winter wheat grain number (a), grain 
weight (b) and yield (c) responses to reductions of rainfall of 20 % (R20), 40 % (R40), 60 % (R60), 80 % (R80) and 100 % (R100) of the Historical Series (HS, 
1981–2022) from sowing to July 31st, for the N treatments: non-fertilized (N0) and N fertilizer supply of 60 kg N ha− 1 (N60), 100 kg N ha− 1 (N100), and 140 kg N 
ha− 1 (N140), for all five soil profiles (Table 1, Supp. Tab. S4 to S8). Since values below zero were not simulated (i.e., negative yields do not exist and are not 
simulated), the y-axis scale represents the range between the simulated minimum and maximum values.
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crop development, such as temperature and solar radiation responses. 
Similar results for phenology in wheat calibration were found by 
Shoukat et al. (2024) and Liu et al. (2020), applying two (DSSAT 
CROPSIM-CERES and DSSAT-Nwheat) and three (CERES-Wheat 
included) models, respectively. Simulations of other variables, such as 

grain yield and grain number, showed a lower, but still acceptable level 
of accuracy and precision. Ye et al. (2020) applying DSSAT-Nwheat, also 
found a RMSE for winter wheat grain yield in China of 1.1 t ha− 1 in 
model evaluation. However, this could also reflect the high volume of 
rainfall that often occurs in the region of the field trials used in our study 
(Fig. 1), and its potential for waterlogging, which is not yet fully re-
flected in the model’s structure (Nóia Júnior et al., 2023b). Although 
some studies have indicated the inclusion of a waterlogging module in 
DSSAT-Nwheat, considering the effects of waterlogging on root activity 
and leaf area index (LAI) (Shelia et al., 2019), or on photosynthesis, 
growth, transpiration, biomass partitioning, and phenology (Nóia Jú-
nior et al., 2023a), these versions of DSSAT-Nwheat with waterlogging 
module are still not available for download via the DSSAT platform 
website. The version of DSSAT-Nwheat used in this study does not ac-
count for the negative impacts of waterlogging on wheat growth, 
potentially leading to overestimations in simulated yields compared to 
observed values during seasons with excess water, as observed in this 
study.

Additionally, while the use of field trials in the same location and 
under mainly similar weather conditions might be viewed as a limitation 
for model calibration, the inclusion of three contrasting seasons, one of 
which includes a field representation of the projected reduction in 
rainfall (with rainout shelters), along with five soil profiles, provides 
sufficient variability for an effective calibration process. According to He 
et al. (2017), calibrating a CM with data from contrasting seasons 
(which was represented by different sowing dates in their study) can 
reduce the error or uncertainty to minimum, while calibrating it with 
one or multiple similar seasons often leads to equifinality, resulting in 
high uncertainty in the simulation outcomes. Although this study used a 
single model for calibration, which may limit performance, CMs inher-
ently involve various uncertainties due to the complexity of their sys-
tems (Battisti, 2016; Wang et al., 2017), the number of parameters 
requiring calibration, and the extensive input data needed (Duarte, 
2018). To further reduce these uncertainties, future studies could 
consider the use of a multi-model ensemble approach, which tends to 
outperform individual models in terms of accuracy (Asseng et al., 2013; 
Bassu et al., 2014; Battisti et al., 2017). In general, while the calibration 
and evaluation in this study achieved adequate accuracy, incorporating 
experimental data from a wider range of genotypes and climatic con-
ditions, along with a multi-model ensemble approach, could further 
enhance the precision and robustness of simulations for more complex 
variables.

5.2. Winter wheat sensitivity to rainfall decrease during stem elongation 
and N compensation

Greater reductions in rainfall (>60 %) during stem elongation (sce-
nario anthesis minus 30 days) led to a significant decrease compared to 
HS in both grain number (up to 21 %) and yield (up to 20 %), reflecting 
the critical importance of water availability during early crop develop-
ment. This is in line with previous experimental studies emphasizing 
water as a limiting factor in determining yield potential during early 
growth stages (Brisson et al., 2010; Liu et al., 2016). Liu et al. (2016)
reported that a drought-resistant winter wheat genotype showed greater 
yields under mild drought conditions (80 mm of irrigation) during the 
reviving-jointing, jointing-anthesis, and grain filling stages, and lower 
under moderate (60 mm) and severe drought (40 mm) across all stages. 
On the other hand, N fertilizer showed a compensatory effect by main-
taining similar levels of both grain number and yield in different reduced 
rainfall conditions during stem elongation. This aligns with other 
studies, in which N supply was able to alleviate the effects of drought 
stress, on crop growth and development (Zhang et al., 2008; Xiong et al., 
2018; Moghaddam et al., 2023; Ru et al., 2023). Grain weight was found 
to be greatest under HS and in R100 conditions compared to other 
rainfall scenarios. Across all rainfall treatments, grain weight was 
consistently higher at the N100 level, except in R100, and lowest in N0. 

Fig. 6. Principal Component analysis (PCA) of simulated winter wheat pro-
duction variables. The figure contains the first two principal components, PC1 
and PC2, and their respective scores explaining variation within the data of all 
seasons analyzed together, focused on N fertilizer supply (a), rainfall reduction 
(b), and scenario of rainfall reductions (c). Arrows indicate the strength of the 
trait influence on the first two PCs. Factors included wheat grain yield (Yield), 
grain number per m² (G. number), grain weight (G. weight), total aboveground 
biomass (Biomass), grain protein content (G. protein), grain N (G. N), straw N, 
plant N uptake (N uptake), N harvest index (NHI), N utilization efficiency 
(NUtE), leaf area index (LAI), soil N leached (N leached).
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These results indicate that under actual conditions, the crop was able to 
achieve higher grain weight when sufficient N fertilizer was applied, 
supporting the role of N in enhancing yield under actual weather 
patterns.

5.3. Limited yield impacts of rainfall reductions from anthesis to grain 
filling

In the end of flowering and grain filling scenario (scenario anthesis 
plus 30 days), both grain weight and yield decreased with rainfall re-
ductions, with just a reduction up to − 40 % of rainfall (from 4.06 t ha− 1 

to 3.90 t ha− 1), consistent with findings that post-anthesis water re-
striction can have major effects on grain yield (Gevrek and Atasoy, 2012; 
Liu et al., 2016; Mohammadi, 2024). This is also in agreement with 
experimental findings of Bongiovani et al. (2024), in which reductions of 
up to 40 % of rainfall during grain filling did not affect yield compared 
to rainfed conditions. Grain number was higher in the moderate rainfall 
reduction scenarios (R20 and R40) compared to HS, suggesting that a 
slight reduction in rainfall in the region might foster better nutrient use 
efficiency, which could result in higher grain numbers. Yield and grain 
number were greatest in the N140 treatment, while the lowest values 
were observed at N0, reaffirming the importance of adequate N fertil-
ization for attaining greater yields. This was also demonstrated by Wang 
et al. (2023). Interestingly, grain weight was lowest in R100 across all N 
treatments, while it peaked in the HS scenario.

5.4. Rainfall reduction across phenological stages intensifies yield losses 
despite N input

Rainfall reductions between stem elongation and grain filling (sce-
nario anthesis ±30 days) consistently led to a decrease in grain weight, 
grain number, and yield, highlighting the overarching importance of 
adequate water availability throughout the reproductive crop phase. 
This corroborates with results of Liu et al. (2016). Similarly, Qaseem 
et al. (2019) obtained reductions in grain yield (-44.66 %) and yield 
components (including grain number), by imposing a drought stress of 
30 % of field capacity, from heading to maturity of 180 elite wheat 
genotypes. Grain number was highest in the N140 treatment and lowest 
in N0, with similar trends observed for yield, which suggests that N 
fertilization plays a crucial role in mitigating the negative effects of 
water stress. Adequate N supply could alleviate drought stress on wheat 
(Ru et al., 2023), by boosting plant growth and biomass accumulation 
(Agami et al., 2018). Also, the similar performance of N140 and N100 
suggests that under certain conditions, including HS, it may be possible 
to reduce N application without significant yield losses, making it more 
sustainable and cost-effective. These findings have important implica-
tions not only for optimizing fertilizer use in rainfall-limited environ-
ments, but also in Swiss wheat production, in which 140 kg N ha− 1 is 
recommended as input (PRIF, Sinaj et al., 2017).

5.5. Extended water limitation emphasizes the need for N use 
optimization

When analyzing the entire season scenario, grain weight consistently 
decreased with reduced rainfall. However, yield and grain number were 
higher in the R20 and R40 scenarios compared to HS. This suggests that 
this particular drought tolerant winter wheat genotype (Touzy et al., 
2019) may be adapted to slightly drier environments than the studied 
region, with potential to benefit from the 40 % projected rainfall 
decrease (CH2018, 2018). On the other hand, even under severely 
limited rainfall, wheat could sustain yield if it effectively accesses and 
conserves soil water. In a study by Angus et al. (1980), wheat grown 
with only 50 mm of in-season rainfall in a subtropical environment 
achieved grain yields of up to 3 t ha− 1 by relying on stored soil moisture 
from the previous summer and by extracting deep soil water gradually to 
maintain moisture for the grain-filling phase. Also, the high capacity of 

CH Nara to allocate the accumulated N to the grains (Caldelas et al., 
2023; Bongiovani et al., 2024), could improve its response to moderate 
drought conditions, by reallocating resources more efficiently. Addi-
tionally, although more extreme than the actual climate projections for 
the region (CH2018, 2018), the similar results across N140, N100, and 
N60 indicate a potential opportunity to reduce N fertilizer use without 
compromising yield. Reduced N applications in N100, and N60 treat-
ments achieved yields equivalent to higher N levels (N140), indicates 
that minimizing N use could decrease agricultural costs and mitigate 
environmental degradation. This finding corroborates Zörb et al. (2018), 
highlighting the ecological advantages of curbing excessive fertilization. 
However, it is important to note that the present study primarily 
considered rainfall reduction as the climate stressor. The effects of 
increasing temperatures and CO2 concentration, both of which are ex-
pected under future climate scenarios, were not directly incorporated 
into the simulations. Elevated temperatures can enhance N losses 
through volatilization and other processes, potentially requiring higher, 
not lower, N applications to maintain yield stability (Drame et al., 2023; 
Wang et al., 2021). Rising atmospheric CO₂ concentrations can impair 
key physiological processes of N uptake and assimilation in C3 plants, 
such as wheat, reducing tissue N content and potentially limiting NUE 
(Gojon et al., 2023). Thus, while the results suggest opportunities for N 
reduction under rainfall-limited conditions, future studies should inte-
grate not only temperature and rainfall changes but also elevated CO2 
effects to better refine N management recommendations.

In the absence of N supply (N0), wheat yields were unaffected by 
rainfall variations during grain filling or anthesis. However, when 
rainfall reductions occurred throughout the entire season, the R20, R40, 
and R60 treatments resulted in yield increases of 16 % (2.6 t ha− 1), 33 % 
(2.9 t ha− 1), and 26 % (2.8 t ha− 1), respectively, compared to the actual 
scenario (HS), which yielded 2.2 t ha− 1.

5.6. Key relationships between wheat and soil variables influenced by N 
and water availability

The results from the PCA analysis reveal key associations between 
crop and soil variables under different conditions. Across all four PCAs, 
strong positive relationships were identified, particularly between 
wheat grain yield, grain number, grain N and total aboveground 
biomass. This is consistent with the studies of Fischer (2011), Pedro et al. 
(2012), and Bongiovani et al. (2024). Bongiovani et al. (2024) found 
that grain number per m2 was more closely related to grain yield, which 
was highlighted by the genotype Cellule, of intermediate drought 
tolerance, while the genotype CH Nara (drought tolerant) had greater 
protein content in grains, thus higher grain N content. Nevertheless, 
Golba et al. (2018) found that in a warm-summer humid continental 
climate, the number of ears per m² is the key factor for achieving high 
grain yields.

Grain protein content, a crucial factor for farmer financial compen-
sation in Swiss bread wheat production (Swiss granum, 2020), demon-
strated strong correlations with N in straw and plant N uptake, 
highlighting that increased N uptake significantly enhances protein 
levels (Figs. 6a to 6c). Furthermore, plant N uptake was positively 
associated with LAI across all PCA analyses, underlining the role of N in 
fostering canopy development and biomass, where higher N levels are 
tied to enhanced LAI and vegetative growth (Bali et al., 1991; Rahman 
et al., 2014). However, excessive N can lead to increased water con-
sumption due to greater canopy transpiration without yielding benefits, 
as suggested by Steduto et al. (2012). This pattern is evident in our 
findings, for instance, in the R60 treatment (60 % rainfall reduction), 
where higher N uptake and grain N content, comparable to other rainfall 
reductions levels, did not translate into higher yields (Fig. 6b). This in-
dicates that excessive N application does not necessarily result in yield 
increases, particularly under conditions of high rainfall, common during 
the Swiss wheat growing season (Fig. 1), where even significant re-
ductions in rainfall during key phenological stages do not necessarily 
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impact productivity adversely.
The PCA analysis also indicates the contrasting relationship between 

yield and N leached, being both negative (Fig. 6a) and positively 
correlated (Fig. 6b), depending on what treatment was highlighted. This 
shows that, at this location, environmental factors influence differently 
the trade-off between N efficiency and crop productivity. Their negative 
correlation was found when different N supplies (Fig. 6a) were evi-
denced, with yield being more associated with higher N supplies, while 
N leached, with lower N. On the other hand, their positive correlation 
was found when rainfall reductions were evidenced, notably in condi-
tions closer to HS, of more rainfall (HS and R20; Fig. 6b). Another 
relationship found particularly under higher rainfall conditions (HS and 
R20; Fig. 6b) was between N leached and both NHI and NUtE, as well as 
under conditions of shorter durations of rainfall reduction (30 days 
before anthesis and 30 days after anthesis; Fig. 6c). This suggests that 
under mild reductions in rainfall, although N leaching is still likely to 
occur due to the naturally high annual precipitation of the location 
(Fig. 1), the plant’s ability to accumulate N and efficiently remobilize it 
to the grain may remain largely unaffected. This is especially relevant 
given that wheat accumulates most of its N before anthesis, which is 
subsequently remobilized to the grain during grain filling for protein 
synthesis (Triboi and Triboi-Blondel, 2002; Kong et al., 2016). Beyond 
this, no other consistent relationships between NHI and NUtE and the 
studied variables were observed in this analysis.

The impact of varying N fertilizer supply and reduced rainfall on 
these relationships was also evident. For instance, the PCA analysis with 
highlighted N treatments reveals distinct clusters for different N levels 
(Fig. 6a), with N100 and N140 displaying some overlapping points, 
which were also identified in previous yield analysis (Supp. Tab. S11 and 
S12, Supp. Fig. S2). This supports the findings of Levy et al. (2007) in 
Switzerland, in which varying N doses (65 kg N ha− 1, 105 kg N ha− 1, 
145 kg N ha− 1, and 185 kg N ha− 1) were applied. They reported that the 
marginal gains in both yield and quality decline with each incremental 
increase in N fertilization (Levy et al., 2007). In contrast, rainfall re-
ductions had more variable effects, with rainfall treatments producing 
less defined clusters, reflecting similarities in response. Thus, the PCAs 
provided insights into how these variables interact under different 
agronomic and environmental conditions.

This study investigates the relationship between N use and varying 
rainfall conditions in Swiss wheat production. Employing the DSSAT- 
Nwheat model calibrated for a wheat production region using rainout 
shelters experiments to control rainfall, the study demonstrates that 
wheat yields remain stable under up to 40 % rainfall reduction across 
different N application rates and timings. However, when rainfall re-
ductions exceed 60 %, particularly at N levels above 100 kg ha− 1, sig-
nificant yield decreases are observed. While the optimal yield was 
achieved at 140 kg N ha− 1, the effectiveness of this N rate declined 
under scenarios of reduced rainfall, suggesting that N guidelines might 
need adjustment in anticipation of future climatic changes. This research 
is important for tailoring N management to optimize winter wheat 
production in the face of climate change, as also suggested by Martre 
et al. (2024).

Some limitations of this study must be acknowledged. First, the 
calibration was based on a 4-year field dataset, which, although incor-
porating seasonal variability, remains relatively short when compared 
to the 42 years of simulation period. Extrapolating from a limited cali-
bration period can introduce uncertainties, particularly regarding pro-
cesses influenced by long-term soil and climatic variability. Second, 
some soil parameters were empirically estimated, and the DSSAT- 
Nwheat version used does not simulate the effects of waterlogging 
(Nóia Júnior et al., 2023b), which may have influenced yield simula-
tions under wetter conditions. Future work should focus on expanding 
the field dataset across more years and varying climatic conditions, and 
on integrating updated model versions that include waterlogging 
responses.

6. Conclusions

This study systematically integrated multiple sources of variation 
(rainfall reduction timing and magnitude, N management, and soil di-
versity) using a robust long-term dataset, providing a solid framework 
for evaluating wheat resilience strategies under climate change. Our 
simulations indicated that a rainfall reduction of up to 40 % (as 
currently projected for Switzerland; CH2018, 2018) did not significantly 
affect wheat yields, regardless of N rate or phenological. A substantial 
negative impact on yield was only observed with rainfall reductions of 
over 60 % throughout the entire cropping season, demonstrating 
considerable resilience of CH Nara genotype to reduced rainfall.

In treatments where N fertilizer application exceeded 100 kg ha− 1, 
yield reductions occurred with rainfall declines as low as 20 % and were 
more pronounced under reductions above 60 %. These effects were in-
dependent of the phenological stage during which the rainfall reduction 
occurred, highlighting greater yield sensitivity when N applications 
exceed 100 kg ha− 1 in Switzerland.

Under current rainfall scenarios (i.e., simulations based on the his-
torical rainfall patterns from 1981 to 2022), the highest yields were 
obtained with 140 kg N ha− 1. However, under future scenarios with 
reduced rainfall, the yield advantage over 100 kg N ha− 1 diminished. 
This suggests that under drier conditions, the current N rate recom-
mendation for Swiss wheat farmers (140 kg N ha− 1; PRIF, Sinaj et al., 
2017) could be revised and potentially reduced, especially when 
considering resilience to climate variability. Furthermore, grain number 
per m² emerged as a critical factor in ensuring grain yields under varying 
N supply and rainfall conditions in Switzerland. While this study focused 
mainly on grain yield, further studies of Swiss wheat production should 
also assess grain quality and environmental consequences.

A key limitation of this study is the exclusion of projected increases 
in temperature and CO2, which could significantly influence N dy-
namics. Higher temperatures could exacerbate N losses, and elevated 
CO2 could reduce plant N uptake and efficiency, both potentially off-
setting benefits of reduced fertilizer inputs. Future research should 
therefore integrate rainfall, temperature and CO2 projections to develop 
more comprehensive N management strategies under climate change. 
Additionally, broader field validation across years and environments, as 
well as inclusion of other climatic stressors like heat and waterlogging, is 
essential to refine recommendations and better support wheat produc-
tion in increasingly variable climates.
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Jägermeyr, J., Müller, C., Ruane, A.C., Elliott, J., Balkovic, J., Castillo, O., Faye, B., 
Foster, I., Folberth, C., Franke, J.A., Fuchs, K., Guarin, J.R., Heinke, J., 
Hoogenboom, G., Iizumi, T., Jain, A.K., Kelly, D., Khabarov, N., Lange, S., Lin, T.-S., 
Liu, W., Mialyk, O., Minoli, S., Moyer, E.J., Okada, M., Phillips, M., Porter, C., 
Rabin, S.S., Scheer, C., Schneider, J.M., Schyns, J.F., Skalsky, R., Smerald, A., 
Stella, T., Stephens, H., Webber, H., Zabel, F., Rosenzweig, C., 2021. Climate impacts 
on global agriculture emerge earlier in new generation of climate and crop models. 
Nat. Food 2, 873–885. https://doi.org/10.1038/s43016-021-00400-y.

Ji, X., Shiran, B., Wan, J., Lewis, D.C., Jenkins, C.L.D., Condon, A.G., Richards, R.A., 
Dolferus, R., 2010. Importance of pre-anthesis anther sink strength for maintenance 
of grain number during reproductive stage water stress in wheat. Plant Cell Environ. 
33, 926–942. https://doi.org/10.1111/j.1365-3040.2010.02130.x.

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., 
Wilkens, P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping 
system model. Eur. J. Agron. 18, 235–265. https://doi.org/10.1016/S1161-0301 
(02)00107-7.

Kassie, B.T., Asseng, S., Porter, C.H., Royce, F.S., 2016. Performance of DSSAT-Nwheat 
across a wide range of current and future growing conditions. Eur. J. Agron. 81, 
27–36. https://doi.org/10.1016/j.eja.2016.08.012.

P.F. Bongiovani et al.                                                                                                                                                                                                                          European Journal of Agronomy 170 (2025) 127728 

14 

https://doi.org/10.1016/j.eja.2025.127728
https://doi.org/10.1016/j.agwat.2018.08.034
https://doi.org/10.1016/j.agwat.2018.08.034
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref2
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref2
https://doi.org/10.1016/S0378-4290(97)00117-2
https://doi.org/10.1016/S0378-4290(97)00117-2
https://doi.org/10.1016/j.eja.2011.12.005
https://doi.org/10.1016/j.eja.2011.12.005
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref5
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref5
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref5
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref5
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref5
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref5
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref5
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref5
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref5
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref6
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref6
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref6
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref6
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref7
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref7
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref7
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref7
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref7
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref7
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref7
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref7
https://www.teses.usp.br/teses/disponiveis/11/11152/tde-03102016-162340/en.php
https://www.teses.usp.br/teses/disponiveis/11/11152/tde-03102016-162340/en.php
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref8
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref8
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref8
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1016/j.fcr.2024.109272
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref11
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref11
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref11
https://doi.org/10.1016/j.fcr.2010.07.012
https://doi.org/10.1016/j.fcr.2024.109251
https://doi.org/10.1016/j.fcr.2024.109251
https://doi.org/10.1016/j.foodchem.2022.134565
https://doi.org/10.1016/j.foodchem.2022.134565
https://doi.org/10.1016/j.jenvman.2023.118671
https://doi.org/10.1016/j.jenvman.2023.118671
https://teses.usp.br/teses/disponiveis/11/11152/tde-15052018-104958/pt-br.php
https://teses.usp.br/teses/disponiveis/11/11152/tde-15052018-104958/pt-br.php
https://doi.org/10.1007/s42106-019-00073-5
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref17
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref17
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref17
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref18
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref18
https://doi.org/10.1016/j.cliser.2022.100288
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref19
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref19
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref20
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref20
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref20
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref21
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref21
http://refhub.elsevier.com/S1161-0301(25)00224-2/sbref21
https://doi.org/10.1016/j.tplants.2022.09.002
https://doi.org/10.2135/cropsci2017.07.0425
https://doi.org/10.2135/cropsci2017.07.0425
https://doi.org/10.1016/j.agrformet.2016.12.015
https://doi.org/10.1016/j.envsoft.2014.07.009
https://doi.org/10.19103/AS.2019.0061.10
https://doi.org/10.19103/AS.2019.0061.10
https://doi.org/10.1038/s43016-021-00400-y
https://doi.org/10.1111/j.1365-3040.2010.02130.x
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1016/j.eja.2016.08.012
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Birkhofer, K., 2018. Design and manual to construct rainout-shelters for climate 
change experiments in agroecosystems. Front. Environ. Sci. 6. https://doi.org/ 
10.3389/fenvs.2018.00014.

Ladha, J.K., Pathak, H., Krupnik, T.J., Six, J., van Kessel, C., 2005. Efficiency of fertilizer 
nitrogen in cereal production: retrospects and prospects. Adv. Agron. 87, 85–156. 
https://doi.org/10.1016/S0065-2113(05)87003-8.

Ladha, J.K., Tirol-Padre, A., Reddy, C.K., Cassman, K.G., Verma, S., Powlson, D.S., van 
Kessel, C., Richter, D., de, B., Chakraborty, D., Pathak, H., 2016. Global nitrogen 
budgets in cereals: A 50-year assessment for maize, rice and wheat production 
systems. Sci. Rep. 6, 19355. https://doi.org/10.1038/srep19355.

Lehmann, N., Finger, R., Klein, T., Calanca, P., Walter, A., 2013. Adapting crop 
management practices to climate change: Modeling optimal solutions at the field 
scale. Agric. Syst. 117, 55–65.

Levy, L., Schwaerzel, R., Kleijer, G., 2007. Influence de la fumure azotée sur la qualité des 
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