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A B S T R A C T

VNIR-SWIR spectra acquired in the field are inherently affected by uncontrolled conditions, such as variable 
illumination, surface roughness, and soil moisture. As a result, models trained on soil spectral libraries (SSLs), 
typically composed of dry, sieved samples analyzed in the lab, often fail when applied directly to field spectra. 
With this study we propose a routine to succeed with this desirable approach. We collected field spectra from 178 
locations across seven countries under heterogeneous field conditions using different spectrometers. At each site, 
two surface smoothing intensities were compared. Two SSLs, LUCAS topsoil and GEO–CRADLE, were used to 
train machine learning models for predicting soil organic carbon (SOC), later applied to the field spectra under 
different correction scenarios: with or without Internal Soil Standard (ISS) harmonization and External Param
eter Orthogonalization (EPO) to mitigate the effects of soil moisture. Combining ISS and EPO enables SSL-based 
models to reliable predict SOC from field-acquired spectra, particularly when using the LUCAS SSL in combi
nation with a spectrally localized approach to reduce training set size (R² = 0.70; RPD = 1.66). Model perfor
mances are consistent with previous laboratory-based studies despite the diverse field conditions. A refined 
workflow for SOC estimation using hybrid spectral data is proposed, consisting of three steps: i) Spectral 
acquisition on highly smoothed surfaces; ii) ISS harmonization to align spectra across from different instruments; 
iii) EPO correction to reduce non-systematic spectral variability due to masking factors such as moisture, 
enhancing spectral consistency under variable field conditions.
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1. Introduction

Soil reflectance measurement across the visible–near infrared–
shortwave infrared (VNIR–SWIR; 400 – 2500 nm) region is a widely 
employed technique for both proximal and remote sensing of soil 
properties [1–4]. The technique has proven effective in predicting 
various soil properties in the laboratory with air dried and sieved soils, 
offering faster results compared to traditional wet chemistry methods, 
and maintaining reliable accuracy [5–7]. Over the years, numerous soil 
spectral libraries (SSLs) have been generated using spectral and chem
ical information of soil samples stored in physical archives. These are 
valuable resources forming a basis for efficient and robust estimation of 
soil properties. Additionally, VNIR–SWIR spectroscopy has found ap
plications not only in laboratory settings but also in the field. Techni
cally, spectroscopy in this wavelength range is well suited for field 
applications and offers significant advantages in terms of time and cost, 
as it eliminates the need for sample preparation steps such as drying, 
grinding, and sieving [8]. However, soil reflectance measurements in 
the field are influenced by numerous environmental factors that are 
avoided in the laboratory.

A standard method for measuring soil reflectance in the field for 
quantitative estimation of soil composition should be robust, rapid, 
representative, and as reproducible as possible considering soil envi
ronment aspects such as moisture and surface structure. For field spec
troscopy, various measurement setups and optical geometries for sample 
presentation are employed [9]. Collecting reflectance using a bare fiber 
(BF) relies on solar radiation and thus suffers from challenges such as 
variations in solar elevation, atmospheric attenuation, bidirectional 
reflectance distribution function (BRDF) effects, operator skills and a 
lack of information in certain wavelength regions due to atmospheric 
attenuation. A contact probe (CP) with an internal light source rules out 
these challenges and allows stable, pinpointed measurements. On the 
other hand, a CP is limited by its small sampling area, which ranges from 
a few square centimeters to several hundred cm², over which spectral 
information is captured either on soil surfaces or along sampling cores. 
Another limitation is that the sapphire window of the CP must be in full 
contact with the surface. A rugged and uneven surface may prevent full 
contact between the CP and the soil surface; in very dry soil conditions, 
it may be necessary to break soil crusts, while in extremely wet condi
tions, the CP lens may become covered with mud. Several replicate 
spectral acquisitions may be required to account for spatial variation. As 
an alternative to a contact probe the SoilPRO(R) device [10,11] for 
instance combines a stable light source with a relatively large sample 
area of 700 cm2 and screens off ambient light ensuring a consistent 
geometric acquisition. This is particularly advantageous in studies 
where an undisturbed soil surface is required regardless of atmospheric 
and sun illumination conditions, but spectra will be affected by any soil 
surface contamination.

Soil property estimation models, calibrated using soil spectral li
braries (SSL) based on dry and sieved samples in the lab, typically fail 
when applied to spectra collected in the field [12], mainly due to the 
differences in environmental factors. Such factors are soil moisture 
(SM), roughness, surface sealing, light source variations, atmospheric 
attenuation and sun elevation changes. Additionally, other factors 
related to the measurement setup, such as user experience, measurement 
geometry, and measurement procedures must also be considered [10,
13]. These factors further introduce uncertainties in data and pose 
challenges in harmonizing data from field and laboratory. As a result, 
the accuracy of quantitative estimates from acquired field spectral will 
be affected and the estimation of soil properties based on SSLs is not 
straightforward. Since SM and roughness are the two factors with the 
greatest impact on the spectral responses of soils, SSL and field spectra 
will not correspond as a default [14] and novel approaches are required 
to integrate them.

Pronounced and variable soil roughness can cause transmittance, 
shadows, multiple reflections and scatter, between surface irregularities 

and particle arrangements. The results in reduced albedo and changed 
curvatures in spectra [7]. Conversely, a smoother surface generates a 
better signal-to-noise ratio and more uniform and repeatable measure
ments. When the aim is to match with laboratory spectra this is desir
able. To transform spectra to improve spectral quality is a standard 
procedure also for laboratory measurements. Common transformations 
like first and second order derivatives and Standard Normal Variate and 
De-Trending (SNV-DT) [15] correct for baseline shifts and linear trends 
in spectra and thereby reduce the effects of scatter [7].

In general, when soil is scanned, electromagnetic radiation travels 
through a thin layer of particles and is reflected back to the sensor, 
producing a soil spectrum influenced by both the real and imaginary 
components of the refractive index, indicating, respectively, the phase 
speed and the amount of absorption loss when the electromagnetic wave 
propagates through the material [16]. The complex refractive index of 
soil results from the combined effects of its mineral and water content; 
when the soil is dry, the mineral component dominates the imaginary 
part of the refractive index. In contrast, under moist conditions, the 
contribution of water to the real part becomes increasingly dominant as 
moisture levels rise, gradually masking spectral features associated with 
the mineral fraction. The influence of moisture on the soil spectrum 
stems from changes in the relative refractivity at particle surfaces caused 
by the presence of a thin water film in the visible range, and also from 
the strong absorption features of water in the infrared range [17]. As a 
result, the spectral features of mineral and organic constituents are 
diminished or "masked" out by the spectral contribution of water [7,18,
19]. Several mathematical approaches exist to mitigate or remove SM 
effects on spectra such as Direct Standardization, Piecewise Direct 
Standardization (PDS) and Orthogonal Signal Correction (OSC) (e.g [14,
20]).

According to [14], who reviewed mathematical techniques for 
reducing moisture effects on the VNIR–SWIR spectra, the External 
Parameter Orthogonalization (EPO) algorithm is the most effective 
method, focusing on the spectral variability linked to the effects origi
nating from external factor only. It can significantly reduce errors in 
estimating SOC, total nitrogen, or clay content [21,22], particularly 
under varying SM levels. Ackerson et al [23] successfully tested the EPO 
algorithm for predicting clay content using a dried and ground SSL on 
moist soils. However, they collected spectra in the laboratory from moist 
samples, assuming these conditions were similar to in-situ. Wijewardane 
et al [24] and Murad et al [25] used a U.S. spectral library to predict soil 
properties from spectral data acquired in the field with a multi-sensing 
penetrometer system equipped with the same spectroradiometer as the 
SSL. Both studies successfully applied EPO to improve prediction accu
racy, also thanks to the reduction of other disturbing factors during field 
acquisitions. In fact, the penetrometer system enabled spectral acquisi
tion without the influence of sunlight and with limited effects from 
roughness and temperature.

Independent to data sources, spectral harmonization between SSLs 
and the spectra of the samples to be predicted is essential, particularly 
when data are collected using different spectroradiometers, setups or 
protocols. For this purpose, the Australian white sand from Lucky Bay 
(LB) has been successfully used as an internal soil standard (ISS) for 
spectral normalization across diverse datasets [26–28].

The LUCAS topsoil spectral library includes a large number of spectra 
collected across Europe, providing an exceptional spectral resource with 
extensive soil variability [29–31]. However, LUCAS samples were 
scanned using a benchtop spectroradiometer and did not use the ISS 
harmonization procedure, making it challenging to align these data to 
field measurements or to other soil spectral libraries that have been 
assembled using other spectrometers and setups.

To the best of our knowledge, there are no successful attempts in the 
literature to exploit existing laboratory based VNIR-SWIR SSLs, such as 
the LUCAS dataset, to predict soil properties from entirely independent 
spectral data collected under field conditions using different portable 
spectroradiometers. Within the scope of the EJP SOIL ProbeField 
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project, we tested different approaches for estimating SOC content 
through field spectroscopy [32]. Here we report on the effectiveness of 
two in-field soil surface pre-treatments to reduce spectral noise caused 
by surface roughness, spectral harmonization performed using the LB 
sand as an ISS and the effect of mitigating SM in field spectra by applying 
the EPO algorithm. Spectral transformations were also applied to reduce 
scatter effects remaining after soil pre-treatments in the field. We hy
pothesized that this three-step workflow could create a dataset of field 
spectra that closely resembles the spectra of dry and sieved soils, such as 
those in existing laboratory-based SSLs. In this approach we may facil
itate the development of SOC prediction models from SSLs that can be 
applied directly to field spectra at various SM conditions. Consequently, 
the objectives of this study are: i) to evaluate the impact of surface 
pre-treatments on harmonizing in-field spectral measurements, and ii) 
to test the effectiveness of combining spectral harmonization with the 
EPO transformation in improving the accuracy of in-field SOC pre
dictions using machine learning models trained on dried and sieved 
lab-based VNIR–SWIR SSLs.

2. Materials and methods

2.1. Soil spectral libraries

Two large soil spectral libraries (SSLs) were used to train machine 
learning models for predicting SOC on independent validation spectra 
collected in the field (Table 1 and Fig. 1): Land Use and Coverage Area 
frame Survey (LUCAS) 2015 European topsoil dataset [33] and GEO
–CRADLE regional soil spectral library [34].

For calibration, a total of 12,907 soil samples from 28 European 
countries were selected from the LUCAS SSL taking only soil samples 
collected on agricultural land. From each soil sample, the SOC content 
and the VNIR-SWIR spectrum were extracted for our study. Soil spectra 
in the SSL were obtained using a FOSS XDS rapid content analyzer (FOSS 
NIR Systems Inc., Laurel, MD, USA) acquiring the spectral range be
tween 400 and 2499 nm with a spectral resolution of 0.5 nm. The spectra 
were resampled to 1 nm of resolution to homogenize them with those 
provided by the main spectroradiometers operating in our field study. 
The SOC values were determined using the dry combustion method 
(elementary analysis) (ISO 10,694:1995) in a central laboratory in 
Hungary.

The GEO–CRADLE database SSL contains spectral data of 1754 soil 
samples collected on agricultural lands from 9 Mediterranean and 
Eastern European countries which were measured for reflectance be
tween 350 and 2500 nm with a spectral resolution of 1 nm. The spectra 
were acquired using two different spectroradiometers following a 
standardized protocol: ASD Fieldspec PRO FR (PANanalytical B-V, 
Boulder, CO, USA) and PSR+ (Spectral Evolution Inc. Lawrance Mas
sachusetts, USA). The spectroradiometers and the protocol are specified 
in [26]. For this SSL, spectra were harmonized by using the Lucky Bay 
(LB) sand as internal soil standard (ISS). The LB sand was chosen as ISS 
due to its spectral stability (being composed almost entirely of quartz), 
grain size and shape, which are similar to natural soils, and negligible 

spectral features. The SOC content was not determined in a central 
laboratory, but each country involved in the SSL measured SOC in their 
own laboratory following the Walkley-Black method. Only those sam
ples for which both the spectrum and the SOC value were present were 
kept for subsequent analysis (1621). Due to the limited geographical 
area and the similar climatic region covered by the GEO–CRADLE 
dataset, the SOC range and variability are narrower than those observed 
in LUCAS (Fig. 2). On the contrary, the clay range is wider in GEO
–CRADLE (1 - 91 %) as compared to LUCAS (2 - 62 %).

Both the LUCAS and GEO–CRADLE spectra were measured in lab
oratory conditions on air-dried samples that were gently crushed and 
then sieved to < 2 mm.

2.2. Field spectra collection

Topsoil spectra were acquired directly in the field at 178 sampling 
locations across seven European countries (Table 2) between 350 and 
2500 nm (1 nm spectral resolution) under naturally moist and field 
roughness conditions using different spectroradiometers (Table 2), 
which all were equipped with a contact probe including a built-in 
halogen light source furnished with fiber optic to collect reflected 
spectra relative to white reference on Spectralon(R). A different brand 
and model of spectroradiometer was used for each national campaign, 
with the exception of Switzerland and Poland, where the Spectral Evo
lution PSR 3500 was employed for both, and the Italian and Slovenian 
campaigns, which utilized the exact same instrument: a Spectral Evo
lution RS5400 (Table 2).

A protocol over two surface pre-treatments based on [36] was fol
lowed (Fig. 3): 

Light smooth (LS): lightly smoothing the surface after removing 
green and dry vegetation, stones and other contaminating materials.
High smooth (HS): after LS, highly smoothing and flattening the 
surface using a plastic hammer or similar tools.

At each scanning location, a soil sample was collected and brought 
into the laboratory for SOC measurement by wet chemistry. The soil 
samples were collected within the same area interested by spectral 
measurements and at a maximum depth of 20 cm (Fig. 3d). Moreover, 
the soil samples were air dried in the laboratory and then sieved at <2 
mm and soil spectra were acquired in laboratory condition using the 
same instruments as used in the field forming dry spectral (DS) dataset. 
Thus, for each sampling location we collected spectra according to the 
LS, HS and DS. According to the protocol followed, five replicates of soil 
spectra were collected within each sampling location for LS, DS and HS, 
respectively. The average spectrum was calculated for further analysis 
(Fig. 3). Moreover, for each sampling location s, the standard deviation 
of the reflectance values for the five replicates was computed for each 
wavelength (σsλ) and the average standard deviation across the spectral 
range 400 – 2450 nm was calculated (σs). For each spectral measure
ment protocol (DS, LS, HS) the average standard deviation σp was 
computed according to the following formula 

Table 1 
Main characteristics of the soil spectral libraries used in this work. RM: spectral library composed of re-moistened soil samples; LS: spectral library obtained by field 
measurement on lightly-smoothed surface; HS: spectral library obtained by field measurement on Highly-smoothed surface; DS: spectral library obtained by laboratory 
measurement on dried and sieved soil samples.

Spectral dataset Name N Laboratory measurements Field measurements

Dry and sieved Sieved and re-wetted Wet

Soil spectral libraries LUCAS 12,907 X ​ ​
​ GEO–CRADLE 1754 X ​ ​
Re-moistened dataset RM 81 X X ​
Validation field spectra LS 178 ​ ​ X
​ HS 178 ​ ​ X
Validation lab spectra DS 178 X ​ ​
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Fig. 1. Four workflow scenarios (R, H, E and HE) for estimating soil organic carbon (SOC) using field VNIR-SWIR spectra and soil spectral libraries (SSL) with 
increasing complexity. LS: spectral library obtained by field measurement on lightly-smoothed surface; HS: spectral library obtained by field measurement on Highly- 
smoothed surface; DS: spectral library obtained by laboratory measurement on dried and sieved soil samples. LB spectra refers to the Lucky Bay sands as internal 
soil standard.
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σp =
1
k
∑k

s=1
σs (1) 

where k is the number of sampling locations. The σp was computed to 
evaluate the variability of the spectral measurement protocols. Lower σp 

values could indicate greater spectral uniformity, likely resulting from 
reduced spectral noise due to surface conditions (e.g. soil moisture and 
roughness) and other influencing factors. The σp of the spectral mea
surement protocols was compared using the Welch’s test (p-value <
0.05) [37], a robust and appropriate statistical test for comparing groups 
of measurements when the homoscedasticity assumption is not satisfied.

The field spectral campaign was conducted in locations across 
different climatic regions: a hot-summer Mediterranean climate (Csa) in 
Italy, a temperate oceanic climate (Cfb) in Denmark, Switzerland, 
Austria, and Slovenia, and a warm-summer humid continental climate 
(Dfb) in Sweden and Poland (Table 2).

2.3. Re-moistened spectral dataset

For calibrating the moisture correction model described in section 
2.5, a dataset of 81 soil samples was collected from French, Italian, 

Fig. 2. Violin diagrams describing the soil organic carbon (SOC) range of the 
LUCAS and GEO–CRADLE soil spectral libraries (SSL).

Table 2 
Information about the sites where the field spectral campaign was conducted. All the Soil organic content values were determined using the Dry combustion method 
except for the Switzerland sample for which the Walkley-Black method was used. *Koppen-Geiger climate types (adapted from Peel et al., 2007), ** [35].

Country Region Climate* 
region

Land use Soil type** N◦ soil 
samples

SOC range ( 
%)

SM % Instrument

Italy Tuscany Csa Cropland Vertisol 23 0.59 – 1.13 9.8 – 
14.1

Spectral evolution 
RS-5400

Sweden Västra Götaland Dfb Cropland Cambisol and Regosol 12 1.2 – 5.5 19.5 – 
33.8

ASD FieldSpec Pro FR

Poland Lublin Voivodeship Dfb Cropland and 
Meadow

Luvisol, Podzol, Alluvial 
soils

8 0.63 – 1.91 7.0– 
16.8

Spectral Evolution RS 
3500

Denmark Central Jutland Cfb Cropland Cambisol/Phaeozem 8 2.2 – 11.96 13 – 
27.9

ASD LabSpec

Switzerland Cantons of Vaud, Zürich, 
Thurgau

Cfb Cropland Cambisol, calcaric 
Cambisol, Luvisol

96 1.03 – 4.6 11.1 – 
48.5

Spectral Evolution 
PSR 3500

Austria Marchfeld Cfb Cropland Chernozem 9 1.67 – 2.05 12.6 – 
16.1

ASD FieldSpec PRO 
FR

Slovenia Drava Cfb Cropland and 
Meadow

Cambisol, Eutric; 
Cambisol, Dystric

22 1.07 – 2.59 19.1 – 
47.7

Spectral evolution 
RS5400

Fig. 3. Example of the surface soil pre-treatments: before surface pre-treatment (A), after lightly smoothed (LS) (B), after highly smoothed (HS) surface (C) and the 
soil sampling collection (D). The white circles approximately indicate the five areas where spectral measurements were taken (5 replicates).
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Polish, Swedish, and Swiss soil archives (Table 3), where SOC and 
texture measurements were available. The selection aimed to include 
different soil types and ensure a wide variability in SOC and soil texture. 
This dataset, henceforth referred to as RM, is completely independent of 
the field spectral dataset described in section 2.2, therefore these 81 soil 
samples were not collected in the same sampling locations as the field 
spectral measurements. The soil samples were air dried and sieved at 2 
mm. The SOC ranged between 0.2 and 9.2 %, and clay content between 
4 and 55.4 %. Soil spectra were collected in the country of origin using 
different spectroradiometers (Table 3). Before collecting the soil spectra, 
each lab scanned the ISS LB sands. Each soil sample was split into five 
subsamples and placed in five petri dishes: one was left dry, while a 
quantity of water was added to the other four subsamples to reach 5, 10, 
20 and 30 % of gravimetric soil moisture. Spectral measurements were 
performed in laboratory dark rooms using a contact probe and at con
stant temperature and humidity for all 5 subsamples and 3 replicate soil 
spectra were collected for each subsample and the average spectrum was 
computed.

2.4. SOC and spectral data harmonization

Since SOC content was measured using different methods (Dry 
combustion and Walkley-Black), for the various SSLs used in this work, a 
data harmonization was carried out by multiplying the SOC values 
determined by the Walkley-Black by a correction factor according to 
[38].

To harmonize the spectral data acquired using different instruments, 
the LB sand was used as an ISS [26] for all the spectral datasets used for 
this work, that is both large SSLs, field and lab spectral data.

The reflectance spectrum of the ISS (relative to a white reference; WR 
panel) was scanned for each instrument i used to scan the soils of all 
spectral datasets described so far (Table 1; Fig. 4). A correction factor for 
each wavelength λ was then computed according to the following 
formula 

CFλi = 1 −
Sλi − Mλi

Sλi
(2) 

Where Sλi is the LB reflectance measured at the user’s setup and Mλi is 
the soil benchmark ISS reference measured at the CSIRO laboratory. 
Each spectrum collected using instrument i was then multiplied by the 
CFi vector: CFi=[CF(λ1),CF(λ2),…,CF(λN )].

2.5. Reducing/removing soil moisture effects

From the RM dataset, a spectral matrix D was computed as a dif
ference between the dry spectra and those collected at different soil 
moisture levels. The matrix D was used for the EPO algorithm. This al
gorithm aims to identify the spectral variability due to the external 
parameter, that is the water content in this case, therefore projecting the 
spectral regions orthogonal to the space where the effects of external 
parameters are dominant [18,39]. The EPO algorithm aims to remove 
the parasitic information, i.e. that affected by the external parameter, 
decomposing the spectra matrix (X) into three main components: 

X = XP + XQ + N (3) 

Where XP is the informative component that we would like to isolate 
for extracting only the information related to the target variables, XQ is 
the parasitic component and N is the spectral noise. To obtain XP, the 
correction matrix P is calculated, obtaining the projection matrix of XQ 
as a singular value decomposition of D, and multiplied by X. The Wilks’ 
Λ method was used to determine the optimal number of EPO compo
nents [39]. The Wilks’ Λ value is obtained as the ratio between the trace 
of the inter-group variance-covariance matrix of EPO-transformed 
spectra averaged across all the five moisture levels for each sample 
and the trace of the variance-covariance matrix of the EPO-transformed 
spectra, therefore Λ values close to 1 indicate that the inter-sample 
variation is close to the intra-sample variation and, consequently, the 
EPO worked properly and there is a good separation of samples in the 
spectral space [40]. Several combinations of spectral pre-treatment were 
tested for the optimization of the EPO’s performance based on the 
maximization of the Wilks’ Λ value. The spectral transformations were 
carried out using the prospectr package in R [41]. Moreover, to evaluate 
whether the EPO algorithm effectively reduces spectral variability 
caused solely by changes in soil moisture content, we calculated the 
standard deviation (SD) of the spectral measurements before (ρraw) and 
after EPO transformation (ρepo), taken at four different moisture levels 
(m), for each wavelength (λk) and each of the 81 samples (n) of the 
re-moistened spectral dataset. 

SDraw(λk) = sd
(

ρraw
1,m, ρraw

2,m, ρraw
3,m, ρraw

4,m

)
(4) 

SDepo(λk) = sd
(

ρepo
1,m, ρepo

2,m, ρepo
3,m, ρepo

4,m

)
(5) 

We then compared the average standard deviation before and after 
applying the EPO transformation. This comparison allowed us to test 
whether the differences were statistically significant, that is, whether 
the EPO algorithm leads to a meaningful reduction in spectral 
variability.

2.6. Spectral transformation

All spectral datasets in both SSLs (LUCAS and GEO–CRADLE), LS, 
HS and DS (Table 1 and Fig. 1) were tested in three formats:

Table 3 
Information about the soil spectral measurements conducted to create the re- 
moistened spectral dataset in the laboratory.

Country N Instrument SOC range ( %)

France 8 ASD QualitySpec Trek 1.2 - 5.9
Italy 26 Spectral evolution RS5400 0.6 - 3.0
Poland 17 Spectral Evolution PSR 3500 0.2 - 2.3
Sweden 20 ASD FieldSpec Pro FR 1.4 - 9.2
Switzerland 10 Spectral Evolution PSR 3500 0.7 - 2.9

Fig. 4. Lucky Bay (LB) spectrum used as internal soil standard (ISS) acquired by using different spectroradiometers and by different labs.
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R: Raw spectra without any transformation
H: harmonized spectra using the ISS
E: the EPO correction matrix was applied to R spectra
HE: the EPO correction matrix was applied to H spectra
The only exception is the GEO–CRADLE SSL for which the original 

reflectance data (R) were not available and consequently, it was not 
possible to obtain the E processing stage

For the field spectra, eight combinations of surface pre-treatments 
and spectral transformations were obtained: LS_R, LS_H, LS_E, LS_HE, 
HS_R, HS_H, HS_E, HS_HE where the letters before the underscore 
indicate the surface pre-treatment (see 2.1) and the letter after the un
derscore the spectral transformation (Table 4).

2.7. SOC prediction models from SSLs

Due to the different numerosity and SOC range (Fig. 2) of the two 
SSLs, two different and independent SOC prediction strategies were 
followed: for the GEO–CRADLE dataset we used all the data for training 
a global Random Forest model [42], while for LUCAS we adopted a 
local-spectral approach to reduce the size of the training dataset, similar 
to that proposed by [43], selecting a different training dataset for each 
validation spectrum according to the spectral similarities based on the 
Mahalanobis distance. A principal component analysis (PCA) was pre
viously applied to the spectral matrix to reduce the dimensionality of the 
spectral dataset to a number of components for which the eigenvalues 
were greater than 1. Therefore, the LUCAS and GEO–CRADLE SSLs 
were always used separately and were never combined to build a single 
training dataset.

For the local-spectral approach we tested models using 100, 200, 500 
and 1000 samples for the training dataset, in order to evaluate the in
fluence of the number of the calibration data on SOC prediction 
accuracy.

The SOC prediction models generated from SSLs were tested on the 
spectra acquired in the field (LS and HS) and the estimation accuracy 
was assessed by computing the root mean square error (RMSE; Eq. (6)), 
ratio of performance to deviation (RPD; Eq.7) and the coefficient of 
determination (R2; Eq.8) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(6) 

RPD =
SD

RMSE
(7) 

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (8) 

Where yi are the observed values, ̂yi are the predicted values, yi is the 
average observed value, n and SD respectively the number and the 
standard deviation of the observed values.

Furthermore, considering the heterogeneity of the soil samples being 
assessed, the normalized error (NE; Eq.9) was calculated as the per
centage error estimate for each sample i. 

NE =
yi − y⌢i

yi
x 100 (9) 

All the models were trained and validated using all the three spectral 
formats indicated in section 2.6 (Table 4) separately, to assess the 
effectiveness of the ISS and EPO transformation according to the four 
scenarios described in Fig. 1.

3. Results

3.1. Field spectral library

The dataset exhibits a wide variability in soil types, although Cam
bisols are the most prevalent, particularly in Denmark, Sweden, 
Switzerland, and Slovenia. Most spectral measurements were performed 
in croplands, with the exception of a few locations in Poland and 
Slovenia, where meadows were surveyed. The SOC content in the 
samples ranges from 0.59 % in Italy to 11.9 % in Denmark. Clay content 
ranges between 1.87 % in Poland and 55.46 in Switzerland, while soil 
moisture content at the time of spectral measurement also varied 
greatly, from dry conditions in Italy (average of 10 %) and Poland (12 
%) to very high moisture levels in Slovenia (47 %). Significant SM 
variability was observed even within individual national campaigns, 
driven by differences in soil types, land management practices or rain 
events prior to the measurements.

3.2. Uniformity of field spectroscopy procedures

The σp value of DS measurements was the lowest (0.020); however, it 
was not significantly different from HS (0.022) according to the analysis 
of variance and Welch’s test (Fig. 5). Both DS and HS values are 
significantly lower than LS (light smooth) measurements (0.043). In 
other words, LS resulted in the least uniform spectral measurements, 
whereas the HS (high smooth) surface pre-treatment achieved a spectral 
uniformity comparable to that obtained in the DS lab.

The σp values did not show a significant correlation with SM and SOC 
content, therefore neither of the two variables had an effect on mea
surement uniformity.

3.3. EPO transformation

We tested the efficiency of the EPO transformation by computing the 
Wilk’s Λ values for a number of EPO components ranging from 1 to 15 
and using different spectral pre-treatments and spectral transformations. 

Table 4 
Description of the three surface pre-treatments and four spectral trans
formations/scenarios for the laboratory and field spectral libraries.

Dataset 
code

Surface pre-treatment

DS Spectra collected in the laboratory condition
LS Spectra collected in the field after lightly smoothing the ground 

surface
HS Spectra collected in the field after highly smoothing the ground 

surface
​ Spectral transformation/Scenario
R No spectral transformation applied
H Spectral harmonization using ISS correction
E Spectral correction using EPO transformation
HE Spectral harmonization using ISS correction + spectral correction 

using EPO transformation

Fig. 5. Mean standard deviation of the spectral measurements for each group of 
soil pretreatment: DS (lab spectra acquired on dried and sieved soils), LS (field 
spectra acquired on lightly smoothed surfaces), HS (field spectra acquired on 
highly smoothed surfaces).
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The combination of Savitzky-Golay filter and detrend transformation 
using three EPO components provided the highest Wilk’s Λ value: 0.94. 
Consequently, before applying the EPO algorithm, all the spectral data 
were smoothed by the Savitzky-Golay filter (window size of 11 nm), 
detrended applying a standard normal variate transformation, and 
finally a second order linear model was fitted returning the fitted re
siduals (Fig. 6).

The Wilcoxon test demonstrated the average value of the standard 
deviation after EPO transformation (SDpost= 0.03) is significant lower 
than the average value measured before the correction (SDpre= 0.16) (p 
< 0.01).

3.4. SOC prediction

The Random Forest models trained on the LUCAS and GEO
–CRADLE spectral libraries (under DS conditions) were applied to in- 
field spectra collected under LS and HS pre-treatments and those scan
ned under laboratory conditions (DS). The statistics presented in Table 5
for Scenario R, which uses raw spectra without any spectral trans
formation, revealed poor performance (with RPD close to 1). Scenario H, 
where spectra were harmonized using ISS, generally showed slightly 
poorer accuracy compared to Scenario R, while significant improve
ments were observed with the application of the EPO transformation 
(Scenario E). The best prediction performance was achieved in Scenario 
HE using the LUCAS SSL dataset, DS spectra, and 100 samples for cali
bration (RPD = 1.65; Table 5). The same level of accuracy (RPD = 1.66) 
was also obtained under Scenario HE with HS spectra and 500 samples 
for generating the training model. For the GEO–CRADLE models, Sce
nario HE delivered the highest accuracy as well, with RPD values of 1.35 
for LS spectra and 1.33 for HS spectra (Table 6), but with over three 
times more calibration samples used to train the model as compared to 
LUCAS models.

In Fig. 7, we show the scatterplots related to the best performing 
prediction models using LUCAS and GEO–CRADLE SSLs. The figure 
highlights the better correlation between observed and predicted SOC 
values obtained through LUCAS SSL (Fig. 7a and b) as compared to those 
achieved using GEO–CRADLE (Fig. 7c and d), in particular for OC-rich 
soils (SOC >3 %) and for those collected in Switzerland.

The relationship between the normalized error (NE) and the 
observed SOC values is positive and significant (p < 0.05 according to 
the Spearman’s rank correlation coefficient) and showed a similar log
arithmical trend for all the models (Fig. 8): we observed high and 
negative values (overestimation) for the lowest observed values, that 
correspond to Italian and Polish samples, and increasing NE values up to 
around 5 % of SOC, after that the NE is generally very close to 0. 
Comparing the difference between LUCAS and GEO–CRADLE models in 
terms of NE values we observed the negative values were lower for 
GEO–CRADLE models, however within the SOC range where we can 

find most of the soil samples (1 – 3 %), the NE is closer to 0 for the LUCAS 
models (Fig. 8a and b).

The absolute value of NE (|NE|) has a weak, though significant, in
verse correlation with SM (− 0.40; p < 0.05). Considering the average 
|NE| for country, the only significant differences (p < 0.05) exists be
tween the Polish dataset (mean |NE| = 124%) and Danish (mean |NE| =
18 %), Austrian (mean |NE| = 21 %) and Swiss (mean |NE| = 38 %) 
datasets according to Dunn’s test and Bonferroni method to adjust p 
values for multiple comparisons.

4. Discussion

4.1. Data harmonization and mitigation of moisture effects

In general, robust prediction models require that the training pop
ulations are representative and share key characteristics with the pre
diction samples, such as particle and aggregate size distribution, sample 
preparation methods and spectrometer type. When a training dataset 
consists of laboratory-prepared samples, but the prediction targets are 
field samples, discrepancies arise due to differences in measurement and 
sample conditions. This mismatch can make field predictions difficult or 
even impossible using laboratory-based SSLs for calibration. This chal
lenge was evident in this study, as the R-scenario consistently under
performed (Table 5 and 6; Fig. 9).

However, the integration of both ISS and EPO on field spectra from 
highly smoothed soil surfaces (HS) in the field yielded the highest ac
curacy and thus represents best practice for estimating organic carbon 
from laboratory-based calibration using both LUCAS and GEO
–CRADLE SSLs (Table 5 and 6). This dual correction approach not only 
improved SOC prediction accuracy to match that of the corresponding 
DS procedure but also aligned model performance with expectations 
arising from a wide range of previous laboratory studies (Fig. 9) or 
studies using stratification approaches to align different databases rep
resenting different methods and data quality [31]. This is despite our 
spectral acquisition being performed under diverse field conditions with 
diverse instrumentation that in turn was different from that used for SSL 
development. Notably, studies summarized in Fig. 9 are all entirely 
laboratory based, and with one exception [2] based on spectra origi
nating from the same instrument and laboratory conditions with data 
sets split into calibration and validation sets. This highlights the effi
ciency of the ISS+EPO protocol (HE scenario) in mitigating discrep
ancies from disparate measurement systems and the combination of 
heterogeneous data sets. The heterogeneous scenario represented by the 
present study resembles what could be expected from in practice 
implementation. Additionally, the study included disperse reference 
methods for SOC which, from the perspective of wet chemical analysis, 
is known to involve considerable uncertainty and divergence [38]. 
Similar results were reached by Ji et al., [78] without ISS for paddy 

Fig. 6. Example of spectra acquired at different soil moisture content on the same soil sample before and after the external parameter orthogonalization (EPO) 
transformation.
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fields from one province in China. However, their sample and data 
origin were comparably homogenous and they used the same instrument 
in the field and for the SSL. They suggested Direct Standardization as the 
better method for moisture correction, but it must be taken into 
consideration that this approach requires access to soil samples from the 
calibration SSL, which would not be feasible working towards large 
open data bases, like LUCAS [78].

Globally, interest in using SSLs is increasing and various initiatives 
are put forward for developing open-access SSLs [79]. In our study the 
LUCAS SSL performed slightly better than GEO–CRADLE for the 
ISS+EPO corrected spectra. This is not surprising as the LUCAS SSL is 
substantially larger, more diverse and represents the entire Europe and 
thus geographically also the origin of our field samples. GEO–CRADLE 

is dominated by samples from the Mediterranean and Eastern Europe. 
Interestingly, GEO–CRADLE did not perform substantially worse than 
LUCAS, despite none of the sample locations in the present study being 
geographically represented. Instead, SOC-content appears to be a reg
ulatory factor (Fig. 8). Similar findings were reported by [80], who 
found that geographical origin, or climate, or soil type, are not neces
sarily the drivers for successful training sample selection, but rather the 
consistency in the relationship between studied soil property and soil 
spectra.

The most effective methods for identifying spectral similarities 
related to soil properties are based on Mahalanobis distance [63], 
therefore in this study we implemented a training set selection approach 
for the LUCAS SSL based entirely on spectral similarity using Mahala
nobis distance that allowed for a reduction of the dataset size without 
compromising the model’s accuracy. In fact, the localized selection of 
100 samples showed very similar statistics to those obtained with 
200–1000 samples (Table 5). Using 1000 samples never showed the best 
result indicating the importance of selecting a representative training 
set. Thus, the selection of a spectrally local modeling set for reducing the 
required number of training samples is effective for both processing time 
and for extracting relevant information out from the SSL. These insights 
support that global machine learning models trained on large SSLs are 
rarely optimal in relation to local models [81].

In theory, ISS is limited to correcting systematic biases, such as those 
arising from differences in spectrometer types or calibration protocols, 
and alone, it cannot correct for differences in moisture content or ag
gregation stages in the field [27], while EPO corrects for non-systematic 
effects like soil moisture and particle size variation [14]. In our study, 
predictions from field spectra without any correction, and predictions 
with only ISS correction failed, while spectra from samples dried and 
sieved (DS) in the laboratory reached RPDs slightly over 1 without any 
corrections. Unexpectedly, ISS correction did not improve predictions 
from DS spectra either, despite moisture and particle size effects should 
be largely reduced by drying and sieving in the laboratory. EPO 
correction, on the other hand, did improve prediction results on its own 
from both laboratory and field spectra, especially from highly smoothed 
surface field spectra. Interestingly, ISS combined with EPO improved 
results further and both laboratory and highly smoothed surface spectra 
reached similar accuracy (Table 5 and 6). These results suggest that ISS 
is sensitive to disturbances it cannot correct for. However, when 
examining the results obtained using the GEO–CRADLE dataset, the 
differences in SOC prediction accuracy between scenarios H and HE 
(Table 6) appear less pronounced than those observed with the LUCAS 
dataset (Table 5). This suggests that the ISS algorithm may have per
formed more effectively for GEO–CRADLE than for LUCAS. A possible 
explanation lies in the type of instruments used to build the two spectral 
libraries. For GEO–CRADLE, laboratory spectra were collected using 

Table 5 
Validation results of the soil organic carbon (SOC) prediction models using the 
LUCAS spectral library. The statistics used are: R2 

= coefficient of determination; 
RMSE = root mean square error; RPD = ratio of performance to deviation. SSL =
soil spectral libraries. DS = lab spectra acquired on dried and sieved soils, LS =
field spectra acquired on lightly smoothed surfaces, HS = field spectra acquired 
on highly smoothed surfaces. Scenario R = Raw spectra without any trans
formation, Scenario H = harmonized spectra using the ISS, Scenario E: the EPO 
correction matrix was applied to R spectra, Scenario HE = the EPO correction 
matrix was applied to H spectra. N ◦Cal is the number of LUCAS soil samples 
used to train the SOC prediction model.

Scenario SSL Soil pre-treatment N ◦Cal RMSE % R2 RPD

R LUCAS DS 100 1.41 0.25 1.11
​ ​ ​ 200 1.38 0.28 1.13
​ ​ ​ 500 1.37 0.29 1.15
​ ​ ​ 1000 1.37 0.28 1.15
R LUCAS LS 100 4.05 0.05 0.39
​ ​ ​ 200 3.44 0.14 0.46
​ ​ ​ 500 3.50 0.26 0.45
​ ​ ​ 1000 3.73 0.18 0.42
R LUCAS HS 100 4.52 0.04 0.35
​ ​ ​ 200 3.60 0.10 0.44
​ ​ ​ 500 2.85 0.34 0.55
​ ​ ​ 1000 2.92 0.31 0.54
H LUCAS DS 100 1.67 0.17 0.94
​ ​ ​ 200 1.52 0.23 1.03
​ ​ ​ 500 1.52 0.23 1.03
​ ​ ​ 1000 1.50 0.24 1.04
H LUCAS LS 100 3.49 0.08 0.45
​ ​ ​ 200 3.51 0.16 0.45
​ ​ ​ 500 4.19 0.21 0.38
​ ​ ​ 1000 4.43 0.16 0.36
H LUCAS HS 100 5.00 0.02 0.31
​ ​ ​ 200 4.09 0.05 0.38
​ ​ ​ 500 3.52 0.26 0.44
​ ​ ​ 1000 3.58 0.25 0.44
E LUCAS DS 100 1.27 0.35 1.24
​ ​ ​ 200 1.21 0.43 1.3
​ ​ ​ 500 1.18 0.46 1.33
​ ​ ​ 1000 1.21 0.41 1.29
E LUCAS LS 100 1.55 0.24 1.01
​ ​ ​ 200 1.52 0.27 1.04
​ ​ ​ 500 1.5 0.34 1.05
​ ​ ​ 1000 1.51 0.34 1.04
E LUCAS HS 100 1.15 0.54 1.37
​ ​ ​ 200 1.16 0.56 1.35
​ ​ ​ 500 1.22 0.56 1.28
​ ​ ​ 1000 1.25 0.59 1.25
HE LUCAS DS 100 0.95 0.67 1.65
​ ​ ​ 200 0.96 0.66 1.62
​ ​ ​ 500 1.00 0.64 1.56
​ ​ ​ 1000 0.98 0.64 1.60
HE LUCAS LS 100 1.31 0.45 1.20
​ ​ ​ 200 1.33 0.42 1.18
​ ​ ​ 500 1.33 0.44 1.18
​ ​ ​ 1000 1.34 0.47 1.18
HE LUCAS HS 100 1.04 0.63 1.51
​ ​ ​ 200 0.98 0.67 1.59
​ ​ ​ 500 0.94 0.70 1.66
​ ​ ​ 1000 0.97 0.71 1.62

Table 6 
Validation results of the soil organic carbon (SOC) prediction models using the 
GEO–CRADLE spectral library. The statistics used are: R2 

= coefficient of 
determination; RMSE = root mean square error; RPD: ratio of performance to 
deviation. SSL = soil spectral libraries. DS =lab spectra acquired on dried and 
sieved soils, LS = field spectra acquired on lightly smoothed surfaces, HS = field 
spectra acquired on highly smoothed surfaces. Scenario H =: harmonized 
spectra using the ISS, Scenario HE = the EPO correction matrix was applied to H 
spectra. N ◦Cal is the number of GEO–CRADLE soil samples used to train the 
SOC prediction model.

Scenario SSL Soil pre- 
treatment

N 
◦Cal

RMSE 
%

R2 RPD

H GEO–CRADLE DS 1621 1.69 0.44 0.92
H GEO–CRADLE LS 1621 2.88 0.35 0.54
H GEO–CRADLE HS 1621 1.76 0.55 0.89
HE GEO–CRADLE DS 1621 1.16 0.64 1.34
HE GEO–CRADLE LS 1621 1.16 0.68 1.35
HE GEO–CRADLE HS 1621 1.17 0.66 1.31
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two portable spectrometers operating in direct reflectance mode, similar 
to the method used for field measurements in our study. In contrast, 
LUCAS samples were scanned using a benchtop instrument (FOSS XDS) 
that acquires spectra in diffuse reflectance using an integrated dome 
(S1). This fundamental difference in spectral acquisition methods likely 
introduced a greater heterogeneity between the LUCAS SSL and our field 
dataset, thereby reducing the effectiveness of ISS in this case. It also 
shows that EPO corrected for other disturbances than the moisture 
variability the EPO calibration was set up for. Presumably those related 
to instrument differences, laboratory conditions, and surface 
characteristics.

Unlike previous studies that reported reduced prediction accuracy in 
wetter soils (e.g [40,82]), our application of EPO removed any positive 
relation between soil moisture and prediction errors. In fact, a slight 
negative correlation was observed. This suggests that EPO effectively 
mitigates the typical decline in accuracy associated with higher moisture 
levels.

The EPO matrix used in this study was developed using an inde
pendent spectral dataset. Therefore, we propose that it could be effec
tively applied to remove the influence of soil moisture from other field- 

acquired spectral datasets, provided they have similar soil organic car
bon (SOC) content, moisture ranges, and soil types to those used in this 
study. In particular, the harmonization sequence developed in this study 
(ISS+EPO) could be applied to other soil attributes analyzed using wet 
laboratory methods with established consensus protocols and known 
uncertainties, broadening the applicability of spectroscopy in soil 
analysis.

4.2. Field-spectroscopy procedures and mitigation of roughness effects

The uncertainty of the spectral measurements, calculated as the 
average standard deviation (σp) of repeated scans at the same sampling 
point, did not show significant differences between spectra acquired in 
the laboratory (DS) and those collected in the field after highly 
smoothing the soil surface (HS; Fig. 5). This indicates that the me
chanical smoothing procedure applied just before the field scans was 
effective in reducing noise and artefacts not related to soil properties. 
The lightly smoothing procedure (LS), resulted in a significantly higher 
σp compared to the HS procedure. Presumably this difference was pri
marily due to surface roughness as soil moisture conditions were similar. 

Fig. 7. Scatterplots of the validation results using different soil spectral libraries and acquisition scenarios. HE_DS: spectra acquired under laboratory conditions on 
dried and sieved samples (a, c), then harmonized using ISS correction and adjusted with the EPO transformation. HE_HS: spectra acquired in the field after highly 
smoothing the soil surface, then harmonized using ISS correction and adjusted with the EPO transformation (b). HE_LS: spectra acquired in the field after lightly 
smoothing the soil surface, then harmonized using ISS correction and adjusted with the EPO transformation (d).
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This demonstrates that the additional flattening step, involving soil 
compression, effectively reduced surface irregularities and allowed a 
more homogenous sample structure resulting in higher quality spectra. 
The HS procedure in combination with ISS+EPO correction led to an 
increase in SOC prediction performances with the LUCAS SSL (Table 5). 
The positive effect of this procedure in the field was not surprising as 
EPO was not systematically calibrated for the type of structure vari
ability that can be expected in the field. The influence of structure on 
spectral quality is well established [83] as a coarse structure causes both 
scatter and shadow effects, and decreased signal to noise ratios [84].

4.3. Future directions

VNIR-SWIR spectroscopy is on track to become a standard method 
for in-field agricultural soil analysis [9,85]. This study suggests a po
tential to reach an accuracy for field spectra in line with what is achieved 
in studies purely based on laboratory spectra. In addition, this study 
largely resembles real case situations, with a range of operators sam
pling in the field and, although using a common protocol, with a di
versity of spectrophotometers and field accessories, resulting in data sets 
totally independent from each other in every aspect. This should be a 
strong incentive to focus future research and development efforts to 
refine and develop approaches that can ensure reliable and robust re
sults from field spectroscopy and still take advantage of the efficiency of 
using existing laboratory-based large and robust SSLs. We also find it 
important that aspects emerging from the heterogeneity and indepen
dence of real case scenarios are accounted for in future studies. This 

Fig. 8. Normalized error (NE) as related to the observed soil organic carbon value for each soil sample according to different scenarios.

Fig. 9. The R_HS (red cross) and HE_HS (green cross) results from Table 5
projected on the relationship between RMSE and SD in 58 observations from 38 
studies in the last 25 years. The regression line and 95 % confidence interval are 
indicated. The calibration methods used are PLS and PCR, Machine learning, 
and spectrally localized selections. Only studies from regional scale and up, 
without the influence of organic soils and where both RMSE and SD could be 
extracted are included [2,7,29,44–77].
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should include field sampling procedures. The apparent requirement of 
some degree of soil preparation in the field is a draw-back that pre
sumably can be partly mitigated by automated sampling platforms. 
Removing non-soil contamination of the surface can hardly be avoided, 
but we should not exclude the possibility to manage structure issues 
mathematically or by improved probe geometry.

To harmonize the reference method for SOC will not change pre
dictions but can be assumed to improve validation results and prevent 
undermining reliability. It could be expected that the harmonization of 
instrumentation would further improve results in addition to the ISS 
correction. However, the widespread use of a universal SSL like LUCAS 
is unlikely to be feasible, as field instrumentation, like in this study, will 
inevitably vary between operators and evolve over time. Therefore, 
procedures and algorithms for aligning datasets and instruments will 
remain crucial.

In future research, the instance-based transfer learning approaches 
suggested by [80] can be tested for localization in combination with ISS 
+ EPO. This would be especially feasible for monitoring small scale 
variation, like in fields, farms or watersheds. This involves measuring 
the studied variable, such as SOC, for a few samples in the field along 
with field spectra to extract the most relevant information from the large 
SSLs based on the relationship structure between spectra and the studied 
soil variable.

We systematically calibrated EPO for moisture effects, but found that 
it also corrected for other but not fully identified artefacts, as well as for 
dried and sieved soil. Possibly there is room for further improvements of 
the EPO calibration by establishing mechanisms behind these 
corrections.

5. Conclusions

Our approach demonstrates that in-field spectroscopy following a 
standardized protocol for reducing surface roughness and contamina
tion, such as described in [36], can aid in the collection of good enough 
spectra and facilitate a rapid and low-cost assessment of SOC. Together 
with an internal soil standard for alignment of spectral data of dispersed 
origin, and EPO correction for artefacts like the influence of moisture, 
field spectra can be used together with existing laboratory based soil 
spectral libraries. This enables efficient large-scale employment of in 
field soil spectroscopy for a number of applications, such as soil moni
toring and high resolution soil mapping for adoption in the study and 
management of agriculture and environmental systems.

This study further demonstrates that highly heterogeneous data 
collected by a range of operators using different instrumentation in 
terms of spectrophotometers and field accessories, and varying sample 
conditions in both field and laboratory environments can be successfully 
harmonized. EPO in addition to ISS was to a very large extent able to 
overcome this heterogeneity.

For our heterogenous data the ISS had no effect on its own, for lab
oratory or field spectra alike, but results improved when EPO was also 
applied. This suggests that EPO has the potential to correct for a di
versity of factors simultaneously and should be considered for hetero
geneous data sets also when of altogether laboratory origin. Our 
approach opens up broad application potential, and could potentially be 
used for the estimation of other soil properties that exhibit spectral 
features within the VNIR-SWIR range and derived information. That 
calibrations can be conducted or adapted from existing SSLs, and that 
building geographically local calibration sets or extensive field spectral 
SSL’s is found superfluous is a game-changing insight that should make 
the difference for widespread adoption of field spectroscopy in 
agriculture.
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D. Shepherd, Z. Shi, B. Stenberg, A. Stevens, V. Adamchuk, H. Aïchi, B.G. Barthès, 
H.M. Bartholomeus, A.D. Bayer, M. Bernoux, K. Böttcher, L. Brodský, C.W. Du, 
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