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part |: production,
physico-chemical
characterization and C-sink
potential
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Carbon dioxide removal (CDR) at gigaton-scale is essential to meet the Paris climate
goals. Relevant CDR rates can only be achieved through the co-deployment of
multiple CDR approaches. However, synergisms between different CDR methods
and joint co-benefits beyond CDR have seldom been investigated. The combination
of pyrogenic carbon (PyC) and enhanced weathering of minerals (Mi) for carbon
capture and storage (CCS), in short PyMiCCS, presents a potentially synergetic
and multifunctional approach that may be achieved by either co-application
of biochar and rock powder to soils or the co-pyrolysis of biomass and rock
powder before soil use. Here, we mixed biomass (wood; straw) with 10 to 50 wt%
silicate rock powder (namely basanite or diabase) for co-pyrolysis to produce
twelve different rock-enhanced (RE-)biochars. Products were subject to physico-
chemical characterization, including an assessment of carbon yield and proxies
for biochar persistence. Rock-enhanced biochars showed higher nutrient content,
liming- and C-sink potential but lower solid-state electrical conductivity and
porosity compared to pure biochars. Co-pyrolysis resulted in a coating of rock
particles with secondary char but did not affect the net carbon yield. The thermal
stability of wood-based RE-biochars (+10 wt% rock) was higher than that of pure
woody biochars. However, the underlying mechanism and implications for biochar
persistence in the environment need further investigation. Despite the addition
of rock powder, the short-term release of ions from the ash fraction remains
dominated by cations and anions of biogenic (biochar) origin. Therefore, it is still
unclear whether the pyrogenic coating influences rock weathering. Co-pyrolysis
with rock dust opens further options for designing biochar properties and to
produce novel composite materials catering for multifunctional CDR.
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Highlights

» Rock-enhanced biochar facilitates synergistic CDR

» Low/No catalytic activity from alkali- and alkaline earth metals
in silicate rocks during pyrolysis at 650°C

o Rock enhancement can impact the density and thermal
properties of feedstock

o Coating of rock particles with secondary char during co-pyrolysis

Increased bulk density of rock-enhanced biochar can ease
application in industrial agriculture

1 Introduction

Carbon dioxide removal (CDR) on a gigaton scale, in addition to
rapid decarbonization, is essential to keep global warming well below
+2.0°C, as set out in the Paris Agreement. Historical emissions and
slow decarbonization trends make pathways based solely on emission
reductions futile (IPCC, 2018, 2023). Pyrogenic carbon capture and
storage (PyCCS, Schmidt et al., 2019) is a CDR technology that
includes the production and non-oxidative use of biochar. The use of
rock powder as a soil amendment generates CDR by enhanced rock
weathering (ERW, Hartmann et al., 2013). Synergies could be unlocked
by combining PyCCS and ERW when co-applying biochar with rock
powder to agricultural soils (Amann and Hartmann, 2019; Azeem
et al,, 2022; Janssens et al., 2022; Hagens et al., 2023; Honvault et al.,

2024) or by co-pyrolysis of biomass with rock powder (Buss et al.,
2024) to produce rock-enhanced (RE) biochar. Pyrogenic Carbon and
Carbonating Minerals for Carbon Capture and Storage (PyMiCCS)
refers to both co-application and co-pyrolysis.

Silicate rock powder is a beneficial soil amendment for liming and
providing primary minerals as well as essential macro-and
micronutrients (Chung et al., 2020; Lewis et al., 2021; Swoboda et al.,
20225 Schaller et al., 2023), along with CDR as the silicate rock
(powder) weathers (Hartmann et al., 2013). Silicate rock weathering
is a natural process sequestering 0.5 GtCO, year™" (Renforth and
Henderson, 2017). In the first step, CO, dissolves into water, forming
carbonic acid. The weak acid dissociates and hydrolyses the primary
silicate mineral. Reaction products are secondary minerals and/or
dissolved silicate, free cations, and alkalinity (mostly in the form of
bicarbonate HCO;") in solution. Alkalinity presents a stable form of
dissolved inorganic carbon, which ultimately can be transported to the
ocean. An exemplary summary equation for the weathering of the
mineral forsterite is shown in Equation 1. Forsterite is a mineral of the
olivine group, commonly found in silicate rocks, such as basanite.

Mg,SiO4 +4 CO, +4 Hy0 — 2 Mg®" +4 HCO;™ +H,Si04 (1)
The natural weathering process can be enhanced by crushing rock

material to increase its reactive surface area and exposing it to
conditions that promote weathering (moisture, high CO, partial
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pressure), such as in the rhizosphere (Hartmann et al, 2013).
Appropriately scaled, enhanced rock weathering can facilitate the
removal of additional 2 GtCO, year™ (Beerling et al., 2020).

Biochar is produced by the thermal conversion of biomass
(>400°C) in the partial presence, or total absence, of molecular oxygen
(pyrolysis). During pyrolysis, biomass is converted into permanent
pyrogases (mostly CH,, CO and H,), condensable liquids (‘bio-oil’)
and a solid product. The latter is considered biochar when the molar
ratio of hydrogen to organic carbon (H:C,,) is <0.7 (Global Biochar
C-Sink, 2024). Biochar use in soil can result in a wide range of
agronomic benefits, including increased water-holding capacity and
nutrient availability and retention (Joseph et al., 2021; Schmidt et al,
2021; Wei et al., 2023).

During co-pyrolysis, the presence of mineral particles may impact
the thermal conversion of biomass and, thus, the carbon speciation in
the RE-biochar. So far, co-pyrolysis with salts and wood ash has been
investigated to design sorbate-specific sorbents (Dicguez-Alonso
etal, 2019), to increase carbon yield and biochar stability (Zhao et al.,
2014; Buss et al., 2019; Masek et al., 2019), to shape biochar properties
like nutrient availability (Buss et al., 2020), and/or to add nutrients
(Grafmiiller et al., 2022). Alkali and alkaline earth metals (AAEM),
but also iron, phosphorus, and further elements such as silicon have
been tested for various purposes. Their effects include:

(a) catalytic reduction of temperature required for biomass
decomposition (Di Blasi et al., 2009; Patwardhan et al., 2010;
Giudicianni et al., 2021; Grafmiiller et al., 2022), which has
been demonstrated, e.g., for AAEMs.

(b) catalyzed formation of C-C linkages, including those in
aromatic moieties of primary and secondary char, due to
catalyzed dehydration and decarboxylation of biomass and its
decomposition products (Nishimura et al, 2009; Buss
etal., 2022)

(c) formation of heteroatom-containing carbon compounds
(organometallic complexes), including hetero-cyclic aromatic
compounds (Wu et al., 2002; Shao et al., 2018; Giudicianni
et al., 2021; Nan et al., 2022)

(d) enhanced retention time of volatile carbon species in the solid
and consecutive formation of secondary char (Anca-Couce
et al., 2014; Nan et al., 2020, 2022).

(e) formation of AAEM-carbonates during pyrolysis (Guo et al.,
2020; Tan et al., 2020; Nan et al., 2022).

The extent to which any of the effects mentioned above occur in
a specific application depends on the composition of the biomass
(inherent ash content, speciation of carbon compounds), the pyrolysis
conditions (temperature, residence time, etc.) as well as the selection
and dosage of the additives (Nan et al., 2020, 2021) and the mode of
mixing (Guo et al., 2012; Meng et al., 2021). Silicate rock powder was
suggested as a mineral additive (Buss et al., 2022, 2024), and consists,
depending on the source rock, of various minerals like plagioclase,
pyroxene, or olivine, which contain AAEMs (Buss et al., 2022; Nan
et al.,, 2022). However, it remains unclear whether these AAEM-
containing minerals influence carbon speciation and yields, or if their
incorporation into the rock matrix inhibits such effect.

Various advantages have been suggested for the co-application of
rock-powder and biochar as well as the application of RE-biochar:
Biochar may improve soil hydrology and raise CO, levels in soil pores
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due to stimulated biological activity, which can increase rock
weathering rates (Samuels et al., 2020; Verbruggen et al., 2021; Corbett
etal,, 2024). Biochar may further immobilize trace elements released
from the rock. Conversely, minerals can stabilize the added pyrogenic-
and the native organic carbon in the soil (Amann and Hartmann,
2019; Buss et al., 2023; Sokol et al., 2024). Biochar (Kammann et al.,
2015; Borchard et al., 2019) and silicate rock powder (Vienne et al.,
2022) added to soil both show the potential to reduce N,O emissions
and nitrate leaching and could therefore act synergistically. At large,
the use of regional rock powder sources for soil remineralization or
rock-enhancement of biochar could ease management of mine-
tailings and boost fertilizer self-sufficiency (Swoboda et al., 2022)
while counteracting soil nutrient depletion (Jones et al., 2013) and
thus contribute to the restoration of weathered, silicon-depleted
(tropical) soils (Haynes, 2014; Janssens et al., 2022). Therefore,
RE-biochar presents an avenue to bolstering soil fertility and
productivity (Haque et al, 2019; te Pas et al, 2023; Beerling
etal., 2024).

Here, RE-biochars were produced by co-pyrolysis of wood or
straw with basanite or diabase rock powder at 650°C to investigate the
hypothesis that rock-enhancement can (i) increase the carbon yield,
(ii) affect the carbon speciation and, thus, (iii) biochar stability. These
parameters may be affected by catalytic effects occurring during
co-pyrolysis or due to changes in physical properties of the feedstock
such as density, heat capacity or thermal conductivity. To this end,
RE-biochars were physico-chemically characterized, including proxies
of biochar stability such as solid-state electrical conductivity (SEC),
thermogravimetric analysis (TGA), and hydropyrolysis (HyPy).
Further, parameters of agronomic relevance such as nutrient content
and liming potential were evaluated.

2 Materials and methods
2.1 Biomass preparation and pyrolysis

Pollard willow (Salix viminalis L.) branches were cut on a farm in
Bielefeld, Germany. This biomass was shredded, air-dried and a share
of the shred biomass consecutively milled on a hammer mill (3 mm
sieve, HM420B, Evertec, Dieburg, Germany). Wheat straw (Triticum
aestivum L.) was purchased in Zurich, Switzerland. Basanite and
diabase rock powder, each as a fine (0-250 pm) and as a coarse
(0-2000 pm) powder, were obtained from Rheinische Provinzial-
Basalt- u. Lavawerke, Sinzig, Germany, and Hartsteinwerke Schicker,
Bad Berneck, Germany, respectively. Mean particle sizes were 42 pm
(basanite fine), 1,322 pm (basanite coarse), 36 pm (diabase fine) and
834 um (diabase coarse).

Milled biomass and fine rock powders (mixing ratios provided in
Table 1) were first homogenized and then pelleted to 6 mm with no
additional binder (WK230 pellet press, Evertec, Dieburg, Germany).
After drying (min. 12 h at 60°C), fines < 6 mm were removed via
sieving. Coarse rock powders were mixed with shredded wood chips
sieved to 2-6 mm with no further treatment (i.e., non-pelletized).
Treatments also included pure biomass controls. Finally, for selected
treatments for which more material was required to supply follow-up
experiments, a second batch of feedstock was prepared by Nature
Power Pellets (Wolferstadt, Germany), using the same rock powders
and mixing ratios but different batches of locally sourced biomass,
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TABLE 1 Pyrolysis feedstock compositions from wood (W) and straw (S), loosely mixed or pelletized (P), with actual basanite (Ba) or diabase (Dia) rock
powder content based on biomass analysis and nominal addition rate (10% or 50%) in brackets.

Biomass

Silicate rock

Rock content
(wt%) (hominal
value) *

Aggregation

Particle Density
(kg m)

1 10BaW-P Wood (1-3 mm) Basanite (fine) 8.4 (10) Pelletized n.a.
2 50BaW-P Wood (1-3 mm) Basanite (fine) 43.9 (50) Pelletized n.a.
3 10BaW Wood (2-6 mm) Basanite (coarse) 7.4 (10) Loose mixture n.a.
4 50BaW Wood (2-6 mm) Basanite (coarse) 23.9 (50) Loose mixture na
5 10DiaW-P Wood (1-3 mm) Diabase (fine) 9.4 (10) Pelletized n.a.
6 50DiaW-P Wood (1-3 mm) Diabase (fine) 40.3 (50) Pelletized n.a.
7 10DiaW Wood (2-6 mm) Diabase (coarse) 7.6 (10) Loose mixture na
8 50DiaW Wood (2-6 mm) Diabase (coarse) 36.1 (50) Loose mixture n.a.
9 10BaS-P Straw (1-6 mm) Basanite (fine) 7.6 (10) Pelletized n.a.
10 50BaS-P Straw (1-6 mm) Basanite (fine) 43.4 (50) Pelletized n.a.
11 10DiaS-P Straw (1-6 mm) Diabase (fine) 8.2 (10) Pelletized n.a.
12 50-DiaS-P Straw (1-6 mm) Diabase (fine) 44.3 (50) Pelletized n.a.
13 W-P Wood (1-3 mm) - 0 Pelletized n.a.
14 w Wood (2-6 mm) - 0 Loose mixture n.a.
15 S-P Straw (1-6 mm) - 0 Pelletized n.a.
16 10BaW-P (2nd) Wood chips Basanite (fine) 8.0(10) Pelletized 1,146
17 50BaW-P (2nd) Wood chips Basanite (fine) 42.9(50) Pelletized 1,398
18 10BaS-P (2nd) Straw Basanite (fine) 4.5(10) Pelletized 1,226
19 W-P (2nd) Wood chips Basanite (fine) 0 Pelletized 1,102
20 W-S (2nd) Straw Basanite (fine) 0 Pelletized 1,179

* Nominal value refers to the initial wt% of rock powder added to the biomass before processing (i.e., pelleting, sieving) thus including losses that occurred later. The nominal values of 10 and
50 are further used in the treatment IDs to differentiate between low and high rock amendment rates; (2nd) refers to products of the 2nd production batch as described in section 2.1.

with comparable ash content and elemental composition
(Supplementary Table S10). The particle density of feedstock pellets
(n = 30 per selected treatment) was calculated from their volume and
dry weight (Joka Yildiz et al., 2025; averaged mass of pure wood
pellet = 0.7 g). For rock-enhanced feedstock pellets, the measured
particle density was compared to the calculated, expected particle
density, based on the measured density of the corresponding pure
wood pellet, gravimetric rock content, and rock powder density
(approximated as 2.65 kg 1™") according to Equation 2.

Mpellet * Chio + Mpellet * Crock
Pbio Prock

Pexpected = (2)
Mpellet

With pegeced being the expected particle density, pyi, and proc
representing the particle density of pure biomass and rock poweder,
Cpio and C,oq the concentrations of biogenic matter and rock powder in
the observed pellet mass mye.

Pyrolysis was performed at 650°C with a residence time of 15 min
on a PYREKA research pyrolysis unit (Pyreg GmbH, Dorth,
Germany) under N, flow at 2 L min™" (Hagemann et al., 2020). The
feedstock container was flushed with argon. The PYREKA was
operating in one continuous process per treatment produced. The
biochar collection container was emptied in 30 min intervals
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(n=2-4). The produced (RE-)biochars were weighed and the
coefficient of variation (%CV of g biochar produced min™') was
calculated, to obtain a proxy for the variability of the continuous
process. The biochar produced during the start-up (the first 60 min
after the start of the biomass feed) and the shutdown (after the
feedstock container is empty) was weighed but discarded. The reactor
outlet was heated to 400°C, preventing the condensation of tar/oil on
the biochar. Before further analysis, all (RE-)biochars were milled <
3 mm in an impact mill.

2.2 Rock analysis

Grain size distribution of rock powder was measured by laser
granulometry, using a Sympatec Helos KFMagic (Sympatec GmbH,
Clausthal-Zellerfeld, Germany). Elemental composition was
determined by wavelength dispersive X-ray fluorescence (XRF)
analysis using Malvern Pananalytical Magix Pro (Malvern
Pananalytical, Kassel, Germany), the mineralogical composition by
bulk X-ray diffraction (XRD, D8 Advance, Bruker, Billerica
United States of America). The specific surface area was measured as
described in section 2.4.2. Water extractable AAEMs were quantified
by ICP-OES according to DIN EN ISO 17294-2 from the eluate after
1 h extraction of fine powder with ultrapure water at 150 rpm on an
orbital-shaker. The extraction was conducted in triplicate and eluates
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measured by Eurofins Umwelt-Ost GmbH (Bobritzsch-Hilbersdorf,
Germany).

2.3 Biomass analysis

Biomass analysis was performed by Eurofins Umwelt-Ost GmbH
(Bobritzsch-Hilbersdorf, Germany). Elemental analysis of biomass
was performed according to DIN EN ISO 16948. The ash content was
quantified according to DIN EN ISO 18122. Main elements were
quantified from a borate digestion of the biomass ash following DIN
51729-11:1998-11. Trace elements were quantified according to DIN
ENISO 16967/16968 (Supplementary Table S10).

2.4 Biochar analysis

2.4.1 Elemental composition

Biochars were analyzed according to the analytical guidelines of
the European Biochar Certificate (EBC, 2024) by Eurofins Umwelt-Ost
GmbH (Bobritzsch-Hilbersdorf, Germany). The organic carbon (C,,,)
content of the dry and ash free (daf) biochar content (Coy or) Was
calculated according to Equation 3.

C, . o
Corgmf (%) - Corg(blocha,) ( 0)

= *100% (3)
100— Cash(biuchar) (%)

Elemental analysis according to EBC standards was also
performed on samples after density fractionation. A triplicate of 3 g
RE-biochar (milled to <20 pm in a ball mill) was suspended in a
sodium-polytungstate solution adjusted to a density of 2.5 g cm ™. The
two fractions (<2.5 g cm™ = biochar-dominated; >2.5 g cm™ = rock
dominated) were separated and washed with de-ionized water in a
vacuum filtration system.

For biochars and RE-biochars of the 1st production batch, total
concentrations of main and trace elements were calculated according
to Equation 4:

CE,i = CE,i(biomass ash) *Cash(biuchur) + CE,i(rock) * Crock (4)

Where cg; is the total concentration of element i in the RE-biochar,
Chibiomass ashy the concentration of element i in the biomass ash
(Supplementary Table S10), Coniochar the content of biomass-derived
ash in the given RE-biochar (section 2.6.1 and Table 2), ¢gjoay the
concentration of element i in the rock powder
(Supplementary Table S7), with c,,q being the rock content in the
given RE-biochar (section 2.6.1 and Table 2). The cg; for main
elements is calculated as wt% (oxide form), for trace elements in ppm.
A comparison between calculated and measured Cg; is presented in
Supplementary Table S6. The liming potential, given as calcium oxide
equivalents (CaOe), was calculated based on threefold determination

of basic compounds following VDLUFA 1I.1, 6.3.2: 1995.
2.4.2 Further biochar characterization

The bulk density was calculated from the weight to volume ratio
of a 100-120 cm’ subsample, milled < 3 mm (standard procedure in
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comparative biochar analysis) and dried 24 h at 105°C. For the
calculation of the water holding capacity dried subsamples were
weighed into 25 mL glass filters in triplicate, subsequently submerged
in water for 12 h until consecutive draining for 12 h on a sand bed.
Based on recorded weight differences, the gravimetric water content
and water-holding capacity were calculated. The calorific value was
measured according to DIN 51900-3: 2005-1.

Specific surface area (SSA) and porosity were quantified by
Brunauer Emmett Teller (BET) method, based on nitrogen isotherms
at 77 K aquired on an AUTOSORB-IQ volumetric sorption device
from 3P-Instruments GmbH & Co KG (formerly Quantachrome
GmbH & Co KG, Odelzhausen, Germany). Between 0.1 g and 0.2 g of
sample was weighed into the sample cell, then degassed at 150°C for
12 h, with a final vacuum <1072 Pa applied before measurement. The
surface area was determined in accordance with DIN ISO 9277: 2014.
The mesopore size distributions (PSD) were determined, based on
DFT calculation (QSDFT-Kernel, carbon slit/cylindrical pores,
adsorption branch) by using ASiQwin Software package (Anton Paar,
Ostfildern-Scharnhausen, Germany; formerly Quantachrome Inc.,
Boynton Beach, US). The corresponding plots obtained are shown in
Supplementary Figure S8.

Fourier transformation infrared spectroscopy (FTIR) was
performed as attenuated total reflectance (ATR) measurement using
an Invenio X FT-IR Spectrometer (Bruker Corporation, Billerica,
United States of America). The calculated infra-red absorbance was
obtained from 60 consecutive scans, each covering the wavenumber
spectra of 400-4,000 cm™'. The absorbance spectrum was smoothed,
and the baseline corrected using the software Spectragryph v.1.2.26.1,
which also assisted with peak labeling. Peak identification was based
on de la Rosa et al. (2014), Hagemann et al. (2018), and
Johnston (2017).

Hydropyrolysis (HyPy) was performed as described in Meredith
et al. (2017). In brief, milled samples were mixed with 10 wt%
ammoniummolybdate-tetrahydrate as a catalyst. The samples were
heated in a reactor under 150 bar hydrogen pressure from ambient
temperature to 250°C at 300°C min™', then from 250°C to 550°C at
8°C min™" and held there for 2 min. The sample residues following
HyPy were weighed and analyzed for C,,, which is referred to as
BCypy and presented as wt% of the initial C,,, content.

For scanning electron microscopy (SEM) and energy-dispersive
X-ray spectroscopy (EDX), samples were fixed with carbon pads
(Plano GmbH, Wetzlar, Germany) to an aluminum sample holder and
were sputter-coated with a 3-5 nm gold layer using a Cressington
108auto (TESCAN GmbH, Dortmund, Germany), then subjected to
SEM analysis using a JSM-6610 LV (JEOL Ltd., Tokyo, Japan). A
working distance of 11 mm and 15 kV acceleration voltage were used.
Images were created as backscattered electron images (BES). A
20 mm?* Oxford X-mas detector (Oxford Instruments, Abingdon,
United Kingdom) was used for EDX.

Thermogravimetric analysis and differential scanning calorimetry
(TG-DSC) were performed on a STD 650 TG-DSC system (Waters,
New Castle, United States of America). The dry samples (5 mg) were
heated at a rate of 10°C min™" to 1,000°C under N, atmosphere. The
total weight loss recorded was corrected for the ash content of the
sample, which includes the rock content, to represent the weight loss
of dry and ash-free (daf) biochar. For diabase-containing RE-biochars,
the total weight loss during TGA was further corrected for weight loss
recorded for pure diabase due to the conversion of carbonate to CO,
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TABLE 2 Basic physico-chemical properties of biochar and rock-enhanced biochar.

212WI1D Ul S491U044

90

610 uISI13UO0L

Parameter 10BaW-P 10BaW-P 50B 50BaW-P 10BaW 50BaW 10Dia 50Dia 10DiaW 50Di 10BaS-P  10BaS-P = 50BaS-P 10DiaS-P 50Dia W-P  W-P
(2nd aW-P  (2nd batch) W-P  W-P aWw (2nd batch) S-P (2nd
batch) batch)

Basic characterization
Mass

28.0 n.a. 59.5 n.a. 31.4 54.9 27.8 56.2 273 53.5 327 n.a. 58.4 30.4 58.8 21.8 n.a. 229 244 n.a.
conversion (%)
Rock content

31.0 25.0 79.9 75.7 294 80.1 33.1 79.0 30.4 82.6 31.0 23.6 77.6 29.0 77.7 0.0 0.0 0.0 0.0 0.0
(wt%)
Biogenic

69.0 75.0 20.1 243 70.6 19.9 66.9 21.0 69.6 17.4 69.0 76.4 22.4 71.0 223 100.0 100.0 100.0 | 100.0 100.0
content (wt%)
Total ash (wt%) 38.4 35.1 82.1 78.9 36.8 82.4 40.3 81.3 379 85.0 45.2 419 82.3 43.4 82.4 10.8 13.5 9.3 204 237
Biogenic ash

7.4 10.1 22 32 6.3 2.0 72 23 6.4 21 14.2 18.3 4.7 14.4 4.7 10.8 13.5 9.3 204 23.7
(wt%)
C (wt%) 58.0 61.5 17.0 19.6 58.3 18.3 57.2 20.0 59.8 20.6 51.6 54.1 16.9 52.4 18.5 85.1 81.7 86.7 73.4 70.0
Corg (Wt%) 57.5 60.7 17.0 19.3 57.7 18.3 56.0 18.0 58.6 19.0 50.7 534 16.9 51.5 16.7 84.3 80.8 85.8 72.9 69.3
Corg dar (W) 93.3 93.5 95.0 91.5 91.3 >1000 93.8 96.3 94.4 >1000 92.5 91.9 95.5 91.0 94.9 94.5 93.4 94.6 91.6 90.8
TIC (wt%) 0.5 0.8 <0.1 0.3 0.6 <0.1 1.2 2.0 1.2 1.6 0.9 0.7 <0.1 0.9 1.8 0.8 0.9 0.9 0.5 0.7
Carbonate CO,

1.8 3.0 <0.4 12 2.0 <0.4 4.5 7.2 4.3 5.7 3.4 2.5 <0.4 33 6.5 2.8 3.4 32 2.0 2.6
(wt9%)
H (wt%) 0.8 1.0 0.5 0.3 0.9 0.6 1.0 0.6 0.9 0.6 0.9 0.8 0.5 0.8 0.6 1.4 1.4 1.4 1.1 12
O (wt%) 3.1 39 0.3 13 4.6 —0.9% 4.8 52 4.3 —1.49 22 34 0.2 52 52 4.1 5.7 4.0 4.7 5.6
N (wt%) 0.7 0.7 0.2 0.2 0.8 0.2 0.7 0.2 0.8 0.2 0.7 0.7 0.2 0.6 0.2 1.1 0.8 1.0 1.0 0.9
S (Wt%) 0.1 0.08 0.0 0.03 0.1 0.0 0.1 0.1 0.1 0.1 0.2 0.11 0.1 0.3 0.2 0.1 0.08 0.1 0.3 0.14
H:C,,, molar 0.17 0.19 0.36 0.19 0.18 0.36 0.22 0.39 0.18 0.38 0.21 0.19 0.33 0.19 0.4 0.20 0.21 0.19 0.19 0.20
ratio
CaOeq. (Wt%) 8.5 n.a. 9.6 n.a. 10.9 123 14.6 21.6 12.6 16.8 11.5 n.a. 11.9 15.0 212 6.8 n.a. 6.4 8.1 n.a.
pH 8.6 n.a. 9.2 n.a. 8.8 9.1 8.5 9.0 8.8 9.3 11.2 n.a. 10.8 9.1 10.8 8.5 n.a. 8.9 10.3 n.a.
SEC (mS$ 6.7 n.a. 0.6 n.a. 24.0 3.6 2.3 0.3 16.0 13 17.0 n.a. 2.0 7.5 0.3 8.0 n.a. 220 25.0 n.a.
cm™)?
BD at < 3 mm 230 480 440 1,000 140 480 210 430 130 520 210 470 420 140 340 170 400 150 130 410
(kg m™)"
WHC (wt%)" n.a. 110 n.a. 90 n.a. n.a. n.a. n.a n.a. n.a. n.a. 113 n.a. n.a. n.a. n.a. 133 n.a. n.a. 148
Calorific value n.a. 22,300 na. 7,330 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 19,600 na. na. n.a. na. 29,700 n.a. n.a. 25,500
(K kg™")

(Continued)
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TABLE 2 (Continued)

Parameter 10BaW-P 10BaW-P = 50B 50Baw-P 10BaW 50BaW 10Dia 50Dia 10DiaW 50Di 10BaS-P  10BaS-P  50BaS-P 10DiaS-P 50Dia W-P W

(2nd aW-P  (2nd batch) W-P  W-P aW (2nd batch) S-P (2nd
batch) batch)

Main elements as oxides

SiO, (wt%) 13.8* 12.7 35.1% 34.2 13.6* 35.3% 12.2% 28.8% 11.7% 30.3* 19.1% 17.9 35.8% 16.1% 30.1% 0.2% 2.3 0.2% 7.8% 9.0
ALO; (wt%) 4.4% n.a. 11.3% n.a. 4.4% 11.4% 4.0% 9.4% 3.8% 9.9% 4.4% n.a. 11.0% 3.5% 9.3% 0.04* n.a. 0.0%* 0.1% n.a.
Fe,0; (Wt%) 3.5% 2.7 9.0% 8.3 3.5% 9.1% 4.5% 10.6* 4.2% 11.1% 3.5% 2.8 8.8% 3.9% 10.4* 0.03%* 0.2 0.03*% | 0.04* 0.2
MnO (wt%) 0.1% n.a. 0.2% n.a. 0.1%* 0.2% 0.1% 0.1%* 0.1% 0.1%* 0.1%* n.a. 0.1% 0.1* 0.1%* 0.0% n.a. 0.0%* 0.0%* n.a.
MgO (wt%) 2.8% 2.1 6.6 6.2 2.8% 6.7% 1.9% 4.0% 1.8% 4.2% 2.9% 22 6.5% 1.8% 4.0% 0.4* 0.3 0.4* 0.5% 0.3
CaO (wt%) 6.9% 59 10.3* 8.8 6.9% 10.4* 7.9% 12.2% 7.8% 12.8* 5.8% 4.3 9.7% 6.3% 11.7* 4.9% 4.1 4.9% 3.1% 2.1
Na,O (wt%) 1.0* 0.8 2.6% 2.3 1.0% 2.6% 0.6* 1.4% 0.6% 1.5% 1.2% 0.8 2.6% 0.7% 1.4% 0.0* 0.1 0.0* 0.2% 0.2
K0 (wt%) 1.9% 2.5 2.9% 2.8 1.9% 3.0% 1.4% 1.6* 1.4% 1.7% 4.1% 5.4 3.6% 3.6% 2.3% 1.3% 1.8 1.3% 4.4% 6.0
P,05 (wt%) 0.8%* 0.5 0.7% 0.6 0.8* 0.7% 0.7% 0.5% 0.7% 0.5% 1.2% 0.9 0.8% 1.1% 0.6* 0.9% 0.4 0.9% 1.4% 0.9
SO; (wt%) n.a. 0.2 n.a. 0.1 n.a. n.a. 0.3% 0.2°% 0.3% 0.2% n.a. 0.2 n.a. 1.1% 0.5% 0.4% 0.2 0.4% 1.4% 0.2

Trace elements

Cu (ppm) 32.2% 27.0 56.2% 50.0 31.8% 56.7% 31.6% 51.8% 31.1% 54.4% 37.5% 22.0 56.8* 35.0% 53.1% 17.1% 12.0 17.1% | 24.5% 11.0
Zn (ppm) 195.4% 34.0 121.7% 83.0 195.0% 124.4% 221.9% 192.7% 225.9% 202.0% 64.8% 26.0 82.0% 89.0% 150.6* 244.4% 5.0 244.4% | 53.0% 4.0
Ni (ppm)* n.a. 110.0 n.a. 98.0 n.a. n.a. n.a. n.a. n.a. n.a. 44.1% 68.0 98.1% 45.8%* 109.1% n.a. 74.0 n.a. 8.2% 94.0
Cr (ppm)" n.a. 38.0 n.a. 93.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 43.0 n.a. n.a. n.a. n.a. 8.0 n.a. n.a. 12.0
Pb (ppm) n.a. 2.0 n.a. 3.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. <2 n.a. na. n.a. na. <2 n.a. n.a. <2

n.a. = not available (not measured/ not possible to be calculated);*Calculated value according to equation 4; 'A contamination by leaching from the Ni-Cr-steal of the small-scale experimental pyrolysis reactor material is possible; ?Calculated values <0% oxygen or
>100% Crg o are obtained when reduced ash-forming elements are oxidized during ashing, leading to false-high ash contents used to calculate O (= 100% — C — H — N — S — ash) and C 4, content.

“Solid-state electrical conductivity.

"Bulk density.

‘Water holding-capacity.
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(Supplementary Figure S1; Supplementary Table S5). The daf biochar
mass fraction resisting thermal degradation until 1,000°C was defined
as BCgoc in mass%.

2.5 Leaching experiment

A leaching experiment was conducted following Amann et al.
(2022) and Vorrath et al. (2025). In brief, (RE-)biochar was mixed
with washed quartz sand (supernatant electrical conductivity after
washing < 5 uS cm™) and filled in plastic columns (25 cm long, 5.6 cm
diameter, closed with 5-pm plankton mesh fixated at the bottom). Two
columns were set up per treatment, the mixing ratios are provided in
Supplementary Table S11. Before the experiment, 70 mL deionized
water was added to saturate the columns. During the 6-week
experiment (ambient air conditions, approximately 21°C, in the dark),
the columns were watered with 70 mL deionized water three times a
week (total: 1330 mL; equivalent to 540 L per m?). The leachate water
was collected weekly in polyethylene bottles positioned below the
column. The pH and EC of the leachate was measured weekly using a
WTW 3630 IDS (Xylem Inc., San Diego, United States of America).
Major ions were quantified after filtration to 0.45 pm in a syringe filter
(PES; Satorius Stedim Biotech, Gottingen, Germany) by ion
chromatography using a Metrohm 881 Compact IC Pro system
(Metrohm, Filderstadt, Germany). Based on the concentration of
major ions (M) and leachate volume, the total efflux of released ions
was calculated and normalized for 1 kg of RE-biochar.

2.6 Data evaluation

2.6.1 Rock content of biomass and biochar
The fraction of silicate rock (c,oq) in composite feedstock materials
or RE-biochar was calculated according to Equation 5.

Crock (%):Cash (%)_CCOVg(%)*r 5)

Where c,y, (%) is the ash content of the material, cco, (%) the
content of organic carbon, and r the ratio of c,g, (%) to ccorg (%) of the
corresponding pure biomass or pure biochar. The fraction of biomass
in the composite feedstock material or biogenic components in
RE-biochar (cy) is calculated according to Equation 6.

Chio (%) =100 —crock (%) (6)

2.6.2 Calculation of mass and carbon yield

The mass yield (y,,) is calculated according to Equation 7.

Mpjochar (g )

(7)
M feedstock (g)

I (%)=

Where Mgoa i the mass of the feedstock (dry matter) and
Mpiochyr 1S the mass (dry matter) of the resulting biochar.
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The carbon yield (y,) is calculated according to Equation 8.

Mpiochar (g) * CCorg(biochar) (%)

(8)
M feedstock (g) *Chio (%) * CCorg(biomass) (%)

ye(%)=

Here, Ccorgbiomass) 18 the organic carbon content of the pristine
biomass and Ccorgiochar) the organic carbon content of the biochar.

2.6.3 Carbon sink potential

The stoichiometric carbon sink (C-sink) potential of RE-biochar
is calculated as the sum of the stoichiometric C-sink potential of its
pyrogenic carbon content (PyC-Sink) according to Equation 9 and the
stoichiometric C-sink potential of the inorganic carbon, generated
from rock weathering (IC-Sink) according to Equation 10 (cf.
Renforth, 2019) both given in tCO,e t™".

Mcoa

M )

-1
PyCsink (t COzet ) =MRE_biochar * CCorg(biochar) *

Where mgg pioa,: is the mass of the RE-biochar, Mo, the molar
mass of CO, and M. the molar mass of carbon.

ICsink (tCOze t_l) = Myock (t)*%

CaO(%) , Mgo (%) . K,0(%)

Mcao Mmgo  Mkoo *240.85
N Na,0(%) 805 (%) 2%P04 (%) ‘
I Mpa,0 Mo, Mpo, (10)

Here, the respective Mciomgox20maorsosreos Tefer to the molar
mass of oxides, and CaO/MgO/ K,0/Na,0/SO,/P,0, (%) to the mass
fraction of the given metals as oxides in the rock.

The factor of 2 accounts for the stoichiometry of the oxides and
valence of the cations released. The factor of 0.85 represents the ratio
between the charge of the released cations and the sequestered CO,,
which accounts for CO, losses, due to equilibration of the oceanic
carbonate system once bicarbonate enters this final reservoir. The latter is
based on current ocean temperature, salinity and pCO, (Renforth, 2019).
For RE-biochars, the formula m,oq = Mgg piochar ¥ Crock 1S Used.

2.6.4 Statistical considerations

Production of RE-biochars was carried out in one continuous batch
with the yield recorded in regular intervals and the coefficient of variation
being calculated (section 2.1). Generally, analytics were performed on
representative samples without repeated measures, thus # = I with no
further statistical evaluation. Where repeated measures were performed
(density fractionation; section 2.4.1), statistical evaluation of paired data
was performed with GraphPad Prism version 10.4.1.

3 Results
3.1 Feedstock characterization

Blends of biomass and rock powder were prepared according to
Table 1. For wood this included both pelletized as well as loose

frontiersin.org


https://doi.org/10.3389/fclim.2025.1631368
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org

Meyer zu Drewer et al.

mixtures, whereas straw had always to be pelletized due to its low bulk
density. The pelleting technology and process was found to have a
profound effect on particle density (613-1,150 kg m™; Figures 1A,B).
Rock-enhancement of the feedstock also increased the particle density,
however not beyond the calculated, expected values of 1,156 kg m~
(10BaW-P) and 1,471 kg m~® (50BaW-P) (Figures 1C-E).

The measured rock powder content (Table 1) is generally lower
than the initially intended, nominal, content (i.e., 10 or 50%),
because some rock powder was lost during the pelleting and pellet
sieving procedures prior to pyrolysis. In the following, we indicate
the samples as 10 or 50% nominal addition despite the measured
variation. The woody biomass had an ash content of 1.9% and C,,
content of 49.2%, while the straw biomass had an ash content of
5.6% and C,,, content of 46.9%. The rock materials were classified as
basanite (Ba) and diabase (Dia), both mafic rocks of volcanic origin.
Basanite is rich in pyroxene, plagioclase and olivine, while diabase
is dominated by calcite (CaCO;) and pyroxene. The mineralogical
composition, based on X-ray diffraction analysis, is summarized in
Supplementary Table S7. Basanite had a ), AAEM-oxides content of
26.5 wt% and a stoichiometric IC-sink potential of 0.367 tCO,e t™".
Diabase had a ), AAEM-oxides content of 22.7 wt% and an IC-sink
potential of 0.309 tCO,e t™! (Supplementary Table 57). The water-
extractable fraction of AAEMs from fine basanite and diabase
0.32% 0.40%  (diabase)
(Supplementary Table S8).

ranged  from (basanite) to

10.3389/fclim.2025.1631368

3.2 Basic physico-chemical
characterization of (RE-)biochars

Biochars without rock dust blend showed a C,,, content of 72.9-
85.8% and a H:C,,, molar ratio of 0.19-0.20 (Table 2), which is in the
expected range based on the selected feedstock and pyrolysis
conditions (Ippolito et al., 2020). Rock-enhanced biochars showed
lower C,,, contents in the range of 16.7-19.3% for 50% nominal
addition of rock powder and 50.7-58.6% for 10% nominal addition of
rock powder. The carbon yield (c,) and C,, 4 content remained
unaltered. Ash contents were in the range of 9.3-20.4, 36.8-37.9%,
and 81.3-85.0% for 0, 10 and 50% nominal addition of rock powder,
respectively. The addition of rock powder increased the bulk density,
reduced the solid-state electrical conductivity (SEC) and also the
water-holding capacity (Table 2).

3.3 Yield and properties of pyrogenic
carbon in (RE-)biochars

3.3.1 Carbon yield and H:C,,, molar ratio

Carbon yield refers to the proportion of C,,, in the feedstock that
is converted to biochar-C,,, Pyrolysis of wood pellets (low ash, high
lignin feedstock) resulted in a carbon yield of 37.3 £ 1.1%. The
addition of rock powder tended to slightly reduce the carbon yield,

100% Wood Pellet
by Evertec WK230 pellet press

613 kgm®

100% Wood Pellet
by Nature Power Pellets

1150 kg m®

W-P (2"d batch)
by Nature Power Pellets

C

1102 kg m®

10BaW-P (2"d batch)
by Nature Power Pellets

50BaW-P (2" batch) E
by Nature Power Pellets

D

1146 kg m® 1398 kg m®

FIGURE 1

Feedstock pellets of exemplary treatments produced by pelleting biomass with or without rock powder. (A) Wood (Allspan, German Horse GmbH,
Karlsruhe, Germany) pelletized on an WK230 pellet press (Evertec, Dieburg, Germany). (B) Same type of wood, pelletized by Nature Power Pellets
(Wolferstad, Germany). (C) Pellet made entirely from wood (W-P 2nd batch), (D) Pellet from wood with 10% basanite (10BaW-P 2nd batch), and
(E) Pellet from wood with 50% basanite (50BaW-P 2nd batch). Particle density in kg m=. Further pictures in Supplementary Figures S18-S20.
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with a mean carbon yield of 35.4 + 2.4% for all W-P-based RE-biochars
(Figure 2A). For S-P-based (high ash, low lignin feedstock) biochar,
the carbon yield was 37.9 + 1.3%, which was not affected by rock
addition (37.4 + 1.7% for all S-P-based RE-biochars, Figure 2B).

The highest carbon yield of 39.9 + 0.6% was achieved for W-based
biochar (non-pelleted) (Figure 2C), which was not affected by low
rock powder additions of 10% but was reduced to 27-32% by higher
rock powder additions (50BaW, 50DiaW). An inspection of the
burning chamber after project completion revealed fine material
residues—potentially both from biomass and rock powder, indicating
mineral and carbon losses. Since the research pyrolysis unit lacked a
gas filter, some fine particles were likely drawn into the pyrolysis gas
combustion chamber. Consequently, the observed differences in mass
balance may result from these losses. Therefore, caution should
be exercised when drawing conclusions regarding the carbon yield
and ash content of non-pelleted RE-biochars.

All (RE-)biochars showed H:C,, ratios < 0.4. Pure biochars had
a H:C,, of 0.2 (Figures 1D-F), which remained largely unchanged by
10% nominal rock powder addition, but increased to 0.33-0.40 for
50% nominal rock powder addition. Density fractionations of
RE-biochar showed that the low-density fraction had a lower H:C,,,
ratio than the fraction with a density >2.5 g cm™ (Figure 3).

3.3.2 Thermogravimetric analysis

The fraction of dry and ash free (daf) biochar resisting thermal
degradation until 1,000°C under N, atmosphere, here referred to as
BC 000, was determined using TGA. W-P showed a BC, g content of
68.9% (Figure 4A), which was increased by addition of rock powder

10.3389/fclim.2025.1631368

at low dosages to 74.1% (+8%) and 75.1% (+9%) for 10BaW-P and
10DiaW-P, respectively, but decreased at high dosages to 47.9%
(50BaW-P) and 32.2% (50DiaW-P), respectively. Most daf biochar was
volatilized between 750°C and 1,000°C. The fraction of daf biochar
lost in this temperature range increased from 9.7% in W-P to 29.2 and
27.8% in 50BaW-P and 50DiaW-P, respectively.

The highest rate of weight loss, referred to as d(T)
(Supplementary Figure S7), occurred (closely aligned with the d(T) of
W-P) at 673°C in 10BaW-P and 50BaW-P, shortly after the initial
pyrolysis temperature (650°C) was exceeded. The d(T) peaks of
10DiaW-P and 50DiaW-P were shifted upwards to 714°C and 723°C,
respectively. This temperature range coincided with weight loss from
carbonates in pure diabase (Supplementary Figures S1, S9).

Straw biochar had a BC,yc content of 76.5% (S-P, Figure 4B),
which decreased to 63.5% (10DiaS-P) and 32.9% (50DiaS-P),
respectively, when diabase was added. Remarkably, thermal stability
was severely reduced in straw RE-biochars with basanite, resulting in
a BCggc content of zero. For S-P, d(T) peaked already at 550°C
(10BaS-P) and 593°C (50BaS-P), well below the initial pyrolysis
temperature (Supplementary Figure S7). Like W-P-based RE-biochar,
the BCgoc content of W-based RE-biochars (Figure 4C) decreased at
50% nominal rock powder addition yet remained unaffected at 10%
rock powder addition.

3.3.3 Hydropyrolysis

The BCpyyp, fraction corresponds to the fraction of C,, that
consists of clusters >7 fused aromatic rings (Howell et al., 2022), a
measure for the long-term stability of biochar. It accounted for

ot = « e «
= T3 9 %o A -
°\° 40 i +H b + °\¢
z H
T =
° °
> >
= <
o o
Ke] K-
= S
© ©
(8] [&]

Molar H:Cy ratio
Molar H:C,,q ratio

FIGURE 2

Carbon yield, given as the wt% of organic carbon in feedstock material converted to solid pyrogenic carbon during pyrolysis (A—C) and molar H:C,q
(D—F). Error bars in A=C present the standard deviation of repeated sampling (n = 2—4) during continuous production (c.f. section 2.1). (A + D) (rock
enhanced = RE-)biochars from wood pellets (W-P) containing 10-50% basanite (L0BaW-P, 50BaW-P) or 10-50% diabase (10DiaW-P, 50DiaW-P).

(B + E) (RE-)biochars from straw pellets (S-P) containing 10-50% basanite (10BaS-P, 50BaS-P) or 10-50% diabase (10DiaS-P, 50DiaS-P). (C + F) (RE-)
biochars from loose mixtures of wood chips (W) and rock powder, containing 10-50% basanite (10BaW, 50BaW) or 10-50% diabase (10DiaW, 50DiaW).

Carbon yield (wt%)

Molar H:C,q ratio
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90.3-95.5% of initial C,, for all samples (Figures 4D-F), except for
b 3 10DiaW, which showed a considerably lower BCy,p, content (81.8%).
Increases in BCyyp, by up to 2.5% in W-P RE-biochar with 10%
nominal rock powder addition are within the typical error of 2% in
HyPy analysis, which is limited by the accuracy of the elemental
analyzer (Meredith et al., 2012).

=
(3]
I

p=0.02

o
H
1

ons

3.3.4 Solid state electrical conductivity

The SEC of RE-biochar behaved inverse to the rock powder
content. Pure biochars showed a SEC in a range of 8 mS cm™ (W-P)
and 25 mS cm™! (S-P), which decreased to 2.3-24.0 mS cm™! at low
rock amendment rates, and to 0.3-3.6 mS cm™ at high rock
amendment rates, i.e., by up to 99%. The correlation between SEC and
H:C,, ratio is pronounced (Exponential one-pool; R’*=0.76;
Supplementary Figure S5). Still, the SEC of RE-biochars was higher
than the SEC of mass equivalent post-pyrolysis mixtures of biochar
and rock powder (Supplementary Table S15).

Corg ratio of

50BaW-P fracti
=
N
|

Molar H

Fraction > 2.5 g/cm?®
(Rock dominated)

3.3.5 Fourier transformation infrared

=
o
|

spectroscopy
FIGURE 3 An absorption spectrum typical of high-temperature biochar was
Molar H:C,q ratio of fractions of rock-enhanced biochar produced measured for W-P (Figure 5). Distinct peaks in the band of 1,020-

from pellets containing 50% basanite (50BaW-P) after density
fractionation (r = 2.5 g cm™), showing significant difference following a
paired t-test for parametric data based on n = 3 repeated measures Cal‘bOhYdI'ateS (Johnston, 2017) were absent, however, strong

and & = 0.05. absorption signals obtained in the band of 1,580-1,610 cm™" indicate
the presence of C-C bonds in aromatic moieties. Compared to W-P, the

1,160 cm™ relating to vibrations of C-O bonds of polysaccharides and
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FIGURE 4

Relative mass loss (wt%) of dry and ash free (daf) biochar mass in specific temperature ranges of thermogravimetric analysis (in gray scale) and BCygoc
fraction retained (in color) (A—C). Residual carbon after hydropyrolysis (BCyp,) in % of initial C, of the biochar (D—F). (A + D) (rock-enhanced = RE-)
biochars from wood pellets (W-P) containing 10-50% basanite (10BaW-P, 50BaW-P) or 10-50% diabase (10DiaW-P, 50DiaW-P). (B + E) (RE-)biochars
from straw pellets (S-P) containing 10-50% basanite (10BaS-P, 50BaS-P) or 10-50% diabase (10DiaS-P, 50DiaS-P). (C + F) (RE-)biochars from loose
mixtures of wood chips (W) and rock powder, containing 10-50% basanite (10BaW, 50BaW) or 10-50% diabase (10DiaW, 50DiaW).
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Fourier transformed infrared absorption spectra for wood pellet (W-P) based (rock-enhanced = RE-)biochars, containing 10-50% basanite (L0BaW-P,
50BaW-P) or 10-50% diabase (10DiaW-P, 50DiaW-P). Spectra were obtained directly from the (RE-)biochars, milled to < 3 mm particle size, by
attenuated total reflectance measurement. All spectra are baseline corrected. Grey boxes highlight wavenumber ranges in which substance specific
peaks can occur. Further FTIR measurements, describing S-P and W-based RE-biochars, resemble the same pattern (Supplementary Figure S3).
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peak intensity for O=C=0 (CO,) at 2349 cm™" decreased slightly in
10BaW-P and 10DiaW-P, with a stronger signal reduction in 50BaW-P
and 50DiaW-P. This relates to a reduced infra-red absorption by
gaseous CO, within the sample. There was a strong positive correlation

between peak intensity at 2349 cm™

and cumulative pore space
quantified by gas-adsorption, particularly for W-P based RE-biochar
(R*=10.71, Supplementary Figure S15B). The RE-biochars 50BaW-P
and 50DiaW-P showed lower peak intensity at 1580 cm™" compared to
W-P, which relates to stretching vibrations of C-C bonds, an indication
of aromatic carbon moieties (de la Rosa et al., 2014; Johnston, 2017).
Note that a decreased peak intensity may also be caused by dilution
effects, as 50BaW-P contains only 17.0% C,,,, compared to 84.3% C,,
in pure W-P. The correlation between peak intensity at 1580 cm™ and
C,y content was strong (W-P based RE-biochar: R’>=0.88,
Supplementary Figure S14B). It is worth noting that for wood-based
RE-biochars, employing nominal additions of 10% rock powder, the
peak intensity at 1580 cm™" did not decrease, despite a 25% decrease in
Coy content (Supplementary Figure S14B).

Between 700-890 cm™, the bending vibration of out-of-plane
C-H bonds located at the edge of aromatic structures, are observed.
Here, different peaks could be distinguished, e.g., for aromatic rings
with only one out-of-plane C-H bond (high wavenumber; low H:C,,,
of aromatic ring) and up to three or four out-of-plane C-H bonds (low
wavenumber; high H:C,,, of aromatic ring) (Supplementary Figure S4;
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Russo et al., 2014; Johnston, 2017; Chikamatsu et al., 2018). Peaks
from aromatic rings with single out of plane C-H bonds overlapped
with a peak at 880 cm™ that was also recorded for pure basanite and
diabase. However, the signal is also present in every biochar, including
W-P. Peaks from aromatic rings with three to four out of plane C-H
bonds became visible only in 10DiaW-P and 50DiaW-P.

Generally, absorption by minerals were located at bands between
950-1,500 cm™ (Johnston, 2017), thus interference with the
interpretation of the abovementioned aromatic and aliphatic carbon-
based absorption bands was unlikely. The amended silicate rock
material can be detected by peaks at 990 cm™ (Hagemann et al., 2018;
Smidt et al., 2002), indicating vibrations of Si-O along with strong
signals at 1420 cm™ for diabase amended RE-biochars, indicating the
presence of carbonates including CaCOs. Absorption bands for
phosphate (1000-1,050 cm™) are situated in the same region but
masked by Si-O vibrations.

3.4 Rock-enhanced biochar: nutrients,
trace elements and liming potential

3.4.1 Content of main and trace elements
The calculated content of essential (e.g., Mg, Ca) and beneficial
in RE-biochars increased

(Si) macro- and micronutrients
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proportionally with increasing rock powder content (Table 2). Taking
the example of 50BaW-P, the SiO, content increased from 0.2% in
W-P to 35.1%, the MgO content from 0.4 to 6.6% and the CaO content
from 4.9 to 10.3% when compared to W-P. These differences were
smaller for straw biochars, which originated from biomass rich in
calcium and potassium. Phosphorus content in RE-biochars was lower
than in pure biochar, since the amended basanite and diabase showed
low concentrations of P,Os. The calculated concentration of trace
metals (Cu, Zn, Ni, Cr) was proportionally increased in RE-biochar,
where trace metal concentrations in the rock powder were higher than
those in the pure biochar. Scanning electron microscopy coupled to
EDX showed the spatial heterogeneity of RE-biochar elemental
composition at the micron scale (Figures 6A-F).

The calculation of main- and trace metal contents in RE-biochar
according to Equation 4 led to results generally well comparable to
direct measurements following the EBC standard methodology
(Supplementary Table S6; EBC, 2024) and showed absolute differences
in the range of +2 wt% over all elements observed. However, where
concentrations of a given element were small, the difference between
calculated and measured nutrient concentrations often translated into
a larger relative error.

3.4.2 pH and liming potential

While the addition of 10% rock powder to biomass had negligible
effects on the biochar pH (material pH measured in CaCl, suspension),
RE-biochars produced from wood or straw with 50% rock powder
addition showed a higher pH than pure biochars (Table 2). Straw
biochar had a higher pH than any wood (RE-)biochar. Likewise, the
liming potential, given as wt% of CaO-equivalents (sum of basic
compounds) was higher for straw than for wood (RE-)biochars and

10.3389/fclim.2025.1631368

increased with rock powder addition, which was most pronounced in
diabase-based RE-biochars, increasing from 6.8 wt% in W-P to 21.6 wt%
in 50DiaW-P and from 6.4 wt% in S-P to 21.2 wt% in 50DiaS-P.

3.4.3 Leaching experiment

All biochars released ions during the leaching experiment, which
affected the EC and pH of the leachate water (Figures 7A-C;
Supplementary Table S12). Within the time horizon of the leaching
experiment, the cumulative ion release (normalized to 1 kg amendment)
decreased with an increasing rock content in the RE-biochar. This was
mainly mirrored in a lower K release, which was 97% lower in 50BaW-P
when compared to W-P (Figure 7). However, the release of Na, Mg, and
Ca tended to increase for RE-biochar compared to their pure biochar
counterpart. Sodium release was enhanced strongest in basanite-based
RE-biochar, being almost 5 times higher in 50BaW-P compared to
W-P. Magnesium and Ca release were enhanced strongest in diabase-
based RE-biochar, increasing by 165 and 68%, respectively, for
50DiaW-P (Figure 7A). Potassium release was highest in S-P and straw-
based RE-biochars (Figure 7B). It is worth noting that K release from
non-pelletized wood biochar was reduced by 30% compared to pelleted
blends, where the biomass had experienced more damage on a cellular
level during pelleting (Figure 7C). The leachate EC (Figures 7D-F) and
pH (Figures 7G-I) generally peaked within the first week of the
experiment. Pure biochar, followed by RE-biochars employing 10%
nominal rock powder addition, induced the highest spikes in leachate
EC, reaching close to 10" mS cm™ for S-P (conductivity of the MilliQ
water supplied to the columns <5 pS cm™). Similarly, the leachate pH
peaked in the first week of the experiment. The strongest pH elevations
were observed for S-P-based biochars. After six weeks, the leachate from
W and W-P-based RE-biochar amended columns reached a pH of
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(50BaW-P) and (C) biochar from wood pellets (W-P). (D—F) show the corresponding energy-dispersive X-ray spectroscopy (EDX) mappings, indicating
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FIGURE 7
(A—C) Cumulative release of major cations (K, Na, Mg, Ca) over a six-week leaching experiment (540 L MilliQ water per m?). Results are presented in
mmol kg~ (rock-enhanced = RE-)biochar applied to a non-buffered sand matrix, i.e., the results are normalized to 1 kg amendment, not to the “pure
biochar” weight. (D—F) Leachate electrical conductivity (EC) in mS cm™. (G-I) Leachate pH. Changes in pH and EC are displayed for each weekly
measurement interval and compared to the unamended sand matrix (grey line) (A,D,G) (RE-)biochar from wood pellets (W-P) containing 10-50%
basanite (10BaW-P, 50BaW-P) or 10—-50% diabase (10DiaW-P, 50DiaW-P). (B,E,H) (RE-)biochar from straw pellets (S-P) containing 10-50% basanite
(10BaS-P, 50BaS-P) or 10—-50% diabase (10DiaS-P, 50DiaS-P). (C,F,I) (RE-)biochar from loose mixtures of wood chips (W) and rock powder, containing
10-50% basanite (10BaW, 50BaW) or 10-50% diabase (10DiaW, 50DiaW). All data shown is the arithmetic mean of columns set up in duplicate (n = 2).

8.1+0.1 and the leachate from S-P-based RE-biochar amended
columns a pH of 8.4 +0.2, while the pH in leachate from the
non-amended sand matrix remained at 6.8.

3.5 Specific surface area and pore volume

The specific surface area (SSA) of pure biochar was in the range
of 185m? g™' (W) to 200 m*> g™! (S-P). For W-P- and S-P-based
RE-biochars, the measured SSA did not correspond to the expected
SSA, calculated as the proportional sum of pure biochar and rock
powder SSA. Co-pyrolysis caused a disproportional decrease in SSA
( -C). The nominal addition of 10% basanite reduced the
SSA by 74-76% below the expected SSA (23-86% for 50% basanite
and diabase). In contrast, 10DiaW-P and 10DiaS-P showed 8 and
24% higher SSA, respectively, than expected. The specific surface area
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of RE-biochars from co-pyrolysis of loose mixtures of woody
feedstock with the two rock powders matched the expected values.
The cumulative pore volume, in relation to its rate of increase

' g") is summarized in

(differential volume in cm® nm
. The underlying N, adsorption isotherms

are available online on Zenodo (DOI: ).
Corresponding to the lower measured SSA, a lower total pore
volume and altered pore volume distribution were measured for
RE-biochars (

of 50% rock powder, the total pore volume decreased by 56-86%

,I). In RE-biochars with nominal addition

compared to pure biochars, with near complete loss in micropores of
< 2 nm. Also, 10BaW-P, 10BaSp, and 10DiaW followed a similar
trend. In contrast, the micropore volume was preserved in 10DiaW-P,
10DjaS-P, and 10BaW. 10DiaW presented an exception where SSA
and pore volume did not correspond, and total pore volume was
exceptionally low.
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(A—C) BET specific surface area (SSA) of (rock-enhanced = RE-)biochar in m? g™ The grey bars represent the expected value, which is calculated based
on the data of pure biochar and pure rock powder (Supplementary Table S7) and their mass fraction in RE-biochar, assuming no interaction during
pyrolysis. (D—F) Cumulative pore volume distribution in cm?® g=*. Both parameters were derived from N, physiosorption. (A + D) (RE-)biochars from
wood pellets (W-P) containing 10-50% basanite (10BaW-P, 50BaW-P) or 10-50% diabase (10DiaW-P, 50DiaW-P). (B + E) (RE-)biochars from straw
pellets (S-P) containing 10—-50% basanite (10BaS-P, 50BaS-P) or 10—-50% diabase (10DiaS-P, 50DiaS-P). (C + F) (RE-)biochars from loose mixtures of
wood chips (W) and rock powder, containing 10-50% basanite (10BaW, 50BaW) or 10-50% diabase (10DiaW, 50DiaW).

TABLE 3 Calculated stoichiometric carbon sink potential of biochars, rock-enhanced biochars and rock powders based on 1 t of final product.

Mass (t) Corg (%) Rock PyC-sink IC-sink Total C-sink Difference to
content (%) potential (t potential (t potential (t corresponding
CO,e t?) CO,e t™?) CO,e t™?) pure biochar (%)

W-P 1.0 84.3 0 3.09 0 3.09 0

w 1.0 85.8 0 3.14 0 3.14 0

S-P 1.0 72.9 0 2.67 0 2.67 0

10BaW-P 1.0 57.5 31.0 211 0.11 222 —28.1
50BaW-P 1.0 17 79.9 0.62 0.29 0.92 -70.3
10BaW 1.0 57.7 294 211 0.11 222 293
50BaW 1.0 18.3 80.1 0.67 0.29 0.96 —-69.3
10DiaW-P 1.0 56 33.1 2.05 0.10 2.15 -303
50DiaW-P 1.0 18 79.0 0.66 0.24 0.90 -70.7
10DiaW 1.0 58.6 304 2.15 0.09 2.24 -28.7
50DiaW 1.0 19 82.6 0.70 0.26 0.95 —-69.7
10BaS-P 1.0 50.7 31.0 1.86 0.11 1.97 -26.2
50BaS-P 1.0 16.9 77.6 0.62 0.28 0.90 —66.2
10DiaS-P 1.0 515 29.0 1.89 0.09 1.98 -26.0
50DiaS-P 1.0 16.7 77.7 0.61 0.24 0.85 —68.1
Basanite 1.0 0 100 0 0.37 0.37 n.a.

Diabase 1.0 0 100 0 0.31 0.31 n.a.

3.6 Carbon sink potential However, the C-Sink potential of one ton of basanite (Ba) or diabase

(Dia) is only 0.43 and 0.36 t CO,e, respectively. In RE-biochars the

One metric ton of wood biochar (W-P) has a stoichiometric  total C-Sink potential consists of the pyrogenic C-Sink (PyC-Sink) of
C-sink potential of 3.09 t CO,e, one metric ton of straw biochar (S-P) its biogenic fraction and the inorganic C-Sink (IC-Sink) that can
has a stoichiometric C-sink potential of 2.67t CO,e (Table 3).  be generated by weathering of its rock fraction (c.f. section 2.6.3).
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TABLE 4 Calculated stochiometric carbon sink potentials of biochar and rock-enhanced biochar based on 1 t available biomass (wood or straw) for

pyrolysis.
Rock in Total (RE-) Corg Of Rock PyC-sink  IC-sink Total Difference to
feedstock feedstock  biochar (RE-) content potential potential  C-sink corresponding
(wt%) mass (tt* produced biochar in(RE-) (tCO,e (tCO,e  potential  pure biochar
biomass) (tt? (VA biochar tt tt (t CO.e (VA
biomass) (%) biomass) biomass) tt
biomass)

W-P 0 1.00 0.22 84.3 0 0.67 0 0.67 0
w 0 1.00 0.23 85.8 0 0.72 0 0.72 0
S-P 0 1.00 0.24 72.9 0 0.65 0 0.65 0
10BaW-P 8.4 1.09 031 57.5 31.0 0.64 0.03 0.68 0.9
50BaW-P 439 1.78 1.06 17 79.9 0.66 031 0.97 44.6
10BaW 7.4 1.08 0.34 57.7 29.4 0.72 0.04 0.75 49
50BaW 23.9 1.31 0.72 183 80.1 0.48 021 0.70 -32
10DiaW-P 9.4 1.1 031 56 33.1 0.63 0.03 0.66 -16
50DiaW-P 403 1.68 0.94 18 79.0 0.62 0.23 0.85 265
10DiaW 7.6 1.08 0.29 58.6 30.4 0.63 0.03 0.66 -8.0
50DiaW 36.1 1.56 0.84 19 82.6 0.58 021 0.80 10.8
10BaS-P 7.6 1.08 035 50.7 31.0 0.66 0.04 0.70 6.8
50BaS-P 434 1.77 1.03 16.9 77.6 0.64 0.29 0.93 431
10DiaS-P 8.2 1.09 033 515 29.0 0.63 0.03 0.66 0.5
50DiaS-P 443 1.8 1.06 16.7 77.7 0.65 0.25 0.90 38.1

Thus, for RE-biochars, the total C-Sink potential per ton of material
decreased by 26-70% relative to those of one ton of the corresponding
pure biochar, as a function of its rock content. This was mirrored in a
strong correlation between C,,, and total C-Sink potential (R* = 0.99,
Supplementary Figure S21). Similarly, the total C-Sink potential of
RE-biochar decreased relative to pure biochar, if calculated on a
volume basis (t CO,e m™; Supplementary Table 517).

One of the limiting factors in biochar production is biomass
availability. Given the availability of one ton of biomass, rock-
enhancement can increase the C-Sink potential of the final product
(Table 4). Pyrolysis of one ton of wood pellets (W-P) yielded 0.22 t of
biochar that presented a stoichiometric C-sink potential of 0.67 t
CO,e. Pyrolysis of one ton of straw pellets into biochar (S-P) yielded
0.24 t of biochar, presenting a stoichiometric C-sink potential of 0.65 t
CO,e. If the same biomass was used to produce RE-biochar, the C-sink
potential increased substantially, by 45 and 27% for 50BaW-P and
50DiaW-P, respectively, due to the additional contribution of the
IC-sink potential (additive effect).

4 Discussion

4.1 Effects of silicate rock powder on
biochar carbon yield and speciation

The addition of 10% rock powder did not affect the carbon yield
(Yo)> Corg aar content or H:C,, ratio of the produced RE-biochar when
compared to its pure biochar counterpart. For the addition of 50%
rock powder, the y. and C,,, 4 content remained likewise unaffected,
albeit the H:C,, molar ratio of 50%-RE-biochars increased
substantially (Figures 2D-F). Thus, at high application rates, the

Frontiers in Climate

presence of rock powder during pyrolysis seemed to have affected the
pyrolysis process and resulting pyrogenic carbon speciation. Still, the
H:C,,, molar ratio of these RE-biochars was low compared to other
biochars produced in the temperature range of 600-699°C (Ippolito
et al., 2020) and typical biochars used in incubation studies (Azzi
etal, 2024). All RE-biochars showed a H:C,,, molar ratio well below
the threshold of 0.7 defining biochar (EBC, 2024). Generally, the
H:C,,; molar ratio decreases with increasing pyrolysis temperature and
severity (Leng and Huang, 2018) due to the preferential volatilization
of hydrogen rich compounds. Thus, a relatively higher H:C,,, may
point towards a less intense pyrolysis (Enders et al., 2012; Hu et al,,
2019) due to lower temperature, larger particle size, and/or shorter
residence time. However, FTIR analysis suggests that the
decomposition of biomass during pyrolysis at 650°C was complete for
all (RE-)biochars. Distinct peaks in the bands of 1,020-1,160 cm™
relating to vibrations of C-O bonds of cellulose and hemicellulose are
absent, irrespective of rock powder addition (de la Rosa et al., 2014;
Johnston, 2017). However, process intermediates such as heterocyclic
and aliphatic carbon species from the condensable fraction
(Giudicianni et al., 2021) may have polymerized, forming secondary
char with higher H:C,,, molar ratio compared to bulk biochar (Anca-
Couce et al., 2014). This was supported by the finding of a higher
H:C,, molar ratio on the rock-associated fraction in density
fractionation. The additional formation of secondary char due to
additional surfaces from the rock powder would be expected to
increase carbon yield. However, no increase in carbon yield was
observed for any RE-biochar (Figures 2A-C). Potentially, antagonistic
effects occur simultaneously during co-pyrolysis, affecting pyrolysis
and speciation of PyC, however, not the net carbon yield.

Regarding biochar persistence, BCyyp, remained unchanged, as the
observed differences are within expected variations (Meredith et al,
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2017; Hagemann et al, submitted). Thermal stability increased
10BaW-P (+8% BCqc) and 10DiaW-P (+9% BC,goc), respectively,
pointing towards increased aromaticity or presence of organometallic
bonds (Nan et al, 2022), improving the thermal stability of the
biochar. For 10BaW-P, this observation corresponds well to a decrease
in H:C,,, ratio (0.20 to 0.17), which was not observed for 10DiaW-P
(0.20 to 0.22). Note that diabase also contained about 1% of hydroxides
(Monosubstituted alumina, and ferric oxides, i.e., AFm and spinel-
type minerals; Supplementary Table 57), that may have affected the
bulk H:C,,, ratio. Notably, the FTIR peak intensity at 1580 cm™
(aromatic C=C, Supplementary Figure S14) did not decrease for
10BaW-P and 10DiaW-P, despite a 25% reduction in C,,, content
compared to the pure biochar; this hints towards a higher proportion
of carbon in aromatic moieties. For RE-biochars with nominal
addition of 50% rock powder, both, BC,yc and SEC decreased,
pointing towards a lower degree of aromatization (Hagemann et al,
submitted), while BCyyp, remained on a high level of >90%. Potentially,
high amendment rates of rock powder prevent aromatization reactions
that lead to the formation of clusters and of >7 condensed aromatic
rings and larger closed planes of condensed aromatic rings. In the
following, possible effects of rock-enrichment on the thermal
conversion of biomass and resulting speciation of pyrogenic carbon
will be discussed.

4.1.1 Catalytic effects of alkali and alkali-earth
metals (AAEMs)

The addition of 10 wt% rock powder adds 1.85 and 1.59 wt%
AAEMs from basanite and diabase, respectively, while 50% rock
powder adds 9.3 and 7.9%. Catalytic effects have been demonstrated
with low AAEM additive levels, e.g., >0.73% Z[Ca, Mg, K] added as
wood ash (Grafmiiller et al., 2022) or >1 wt% K from potassium
acetate (Masek et al., 2019). However, for catalytic effects to occur, the
AAEMs must be reactive and come in contact with pyrolyzing organic
compounds (Dalluge et al., 2017), e.g., as substances that melt or
decompose during pyrolysis, like sodium acetate decomposing at
>324°C (Dalluge et al., 2017; Masek et al., 2019; GESTIS, 2025). In
many silicate rocks, however, AAEMs are mainly covalently bound in
crystalline aluminosilicates. When considering only the water-
extractable AAEMs in the rock powder, even the addition of 50%
basanite resulted in the addition of only 0.03% AAEMs, i.e., one order
of magnitude below the effective dose used by Grafmiiller et al. (2022)
(Supplementary Table S8). Also, the melting point of such igneous
silicate rocks, formed from molten rock, is higher than the pyrolysis
temperature (650°C). In consequence, we expect most AAEMs to
remain enclosed in rock particles during pyrolysis. Thus, AAEMs
embedded in aluminosilicate structures show a low catalytic activity,
resulting in limited impact of rock powder addition on carbon yield
and speciation, even when pelleting provided a good biomass-to-rock
contact area.

4.1.2 Modification of the thermal properties of
rock-enhanced feedstock

Rock additives have pronouncedly different thermal properties
compared to wood or straw. The heat capacity of rock is about threefold
lower than that of biomass (literature data summarized in
Supplementary Table 513), meaning that less energy is required to heat
up the rock material to a given temperature. Further, the thermal
conductivity of rock is one order of magnitude higher than that of
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biomass (Supplementary Table S14), facilitating heat transfer.
Combined, these effects of rock enrichment can create heat bridges that
increase the heating rate of organic matter adjacent to the rock material,
thus likely increasing pyrolysis intensity. At the same time, energy from
exothermic biomass decomposition would be distributed faster. Even
after initial pyrolysis, the heat capacity of wood and straw based
biochar (Huang et al., 2023) and the thermal conductivity of biochar
(Patwa et al., 2022), remain below those of basanite and diabase. An
increased pyrolysis severity will result in a decreased carbon yield due
to enhanced decomposition, while (locally) increasing aromaticity. To
the best of our knowledge, the impact of heat capacity and conductivity
of biomass on pyrolysis products have not yet been systematically
investigated. Kray et al. in preparation, show that the SEC of biochar
produced on a PYREKA at 650°C further increased when the residence
times were prolonged beyond 15 min. This highlights the potential of
an increased heating rate and, thus, higher pyrolysis intensity at
constant temperature due to rock-enrichment. Higher pyrolysis
intensity would shape RE-biochar properties and carbon speciation
when produced at residence times < 15min, as done in the
present study.

4.1.3 Rock powder as surface for the formation of
secondary char

Rock particles may provide additional surfaces for the formation of
secondary char. It was shown for soot formation that hydrocarbon
radicals condense onto an initial particle, triggering chain reactions
forming solid substances form gaseous precursors (Johansson et al.,
2018). Rock particles likely provide these initial sites and become coated
with secondary char. This was confirmed by the density fractionation
of RE-biochar (Figure 3), which showed that carbonaceous compounds
are physically associated with rock particles and have a higher H:C,,,
ratio than the lighter, non-rock-associated biochar fraction. Given the
distinct differences in the H:C,, ratio, rock particles appeared to
be rather coated with secondary char than cross-contaminated with
bulk biochar. Typically, (primary-)biochar is less hydrogenated and
shows a lower H:C,,, ratio than secondary biochar (i.e., soot) (Feng
etal., 2021). Carbon was also detected on rock particle surfaces via EDX
analysis (Supplementary Figure 53). An increase in SEC of co-pyrolyzed
RE-biochar, compared to the SEC of equivalent post-pyrolysis mixtures
of pure biochar and rock powder (Supplementary Table S15), further
supports the hypothesis of rock particles being coated with (conductive)
secondary char during pyrolysis. This could not be observed with
particles that were only cross contaminated with carbon from the
primary biochar. To the authors’ best knowledge, coating of rock
particles with pyrogenic carbon is a novel observation, not yet
investigated. Further research is needed to determine whether
secondary char coating (probably non-polar and hydrophobic) reduces
rock weathering rates due to surface inertization. The surface coating
of basaltic glass and dolerite with precipitated calcite (polar compound),
as observed during a batch weathering experiment by Stockmann et al.
(2011, 2013), had proven to be sufficiently porous (or discrete
crystalline) and did not affect the dissolution kinetics of the materials
studied by Stockmann et al. (2011, 2013).

Potential adverse effects of the pyrogenic coating, regarding rock
weathering rates, may also be counteracted by the thermal treatment
of the rock powder during co-pyrolysis and WHC of adjacent biochar.
Thermal treatment showed the potential to increase weathering rates
as observed in other studies using serpentine minerals, which also
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comprised 6% of the here employed diabase (Supplementary Table 57;
Gerdemann et al,, 2007; Kelemen et al,, 2011). Also, the close
association of rock to the wet bulk biochar can increase the availability
of water to weathering processes, especially as the RE-biochars still
showed WHC in the same range as biochars obtained from pure
biomass. However, the leaching experiments conducted here were too
short and dominated by the dissolution of the biogenic ash to answer
these questions. Leaching experiments of 6-12-month duration may
provide for a disentanglement of biogenic and geogenic elemental
fluxes. Follow-up experiments should systematically investigate how
secondary char coating affects the dissolution kinetics of silicate rock
and thus CDR from enhanced rock weathering.

4.1.4 Rock addition altered feedstock pellet
properties and RE-biochar porosity

The formation of secondary char depends on the retention time
of (intermediate) gaseous pyrolysis products in the particle. Increased
retention time increases the chance of polymerization of these gases
into secondary char (Anca-Couce et al., 2014). The addition of
mineral additives can increase the retention time of the pyrolysis gases
by enveloping or encapsulating biomass. However, for this purpose,
the mineral is applied in very high doses (sometimes >50% of the total
mass of the feedstock) and in dissolved form (Rosas et al., 2009) as
suspended nanoparticles (Zhao et al., 2019), or a combination of
dissolved and suspended matter (Rawal et al., 2016) and then dried,
so that the formation of an (almost) gas-tight shell is plausible. Such
an effect has not yet been demonstrated for rock powder and seems
unlikely. Still, 10BaW-P showed a much lower SSA than expected (37
vs. 137m* g7') and 60% less pore volume than W-P (0.04 vs.
0.1 cm® g'), whereas in non-pelletized RE-biochars (Figure 8C), the
SSA was at the expected level; however, pelleting barely affected
biochar SSA (197 vs. 185 m* g~' for W-P and P, respectively). This does
not necessarily mean that rock dust always has a direct influence due
to pore clogging. Rock dust may also indirectly affect the pelleting and
the properties of the pellets as shown for additives used in industrial
pelleting, such as dolomite (Tarasov et al., 2013).

Generally, pelleting technology was found to have a strong effect
on particle density. The feedstock for the 1st and 2nd RE-biochar
batch were pelletized on different presses (section 2.1). In the 2nd
batch, feedstock and RE-biochar bulk densities increased by
approximately 100% compared to first batch made with a different
press (selected treatments Figures 1 A,B; Table 2), resulting in similar
H:C,,, ratios between W-P, 10BaW-P and 50BaW-P, i.e., not repeating
the increase of H:C,,, in 50BaW-P from the 1st batch (Figure 2). Also,
rock-enrichment led to an increased particle density (Figures 1C-E),
however, not beyond expected particle densities. These observations
point out that, at the given application rates, rock powder did not
affect the pelleting process in a manner that increased the density of
the pellets’ biogenic fraction (e.g., due to increased friction/ pressure/
matrices temperature) but only increased the total particle density due
to rock powder incorporation between and around biogenic particles.
It is unlikely that this phenomenon leads to a complete and airtight
closure of pores, and has, thus, a limited effect on vapor retention times.

Repolymerization of secondary char may lead to the closing of
micropores (< 2nm; cf Figures 7D-F). According to their
stoichiometry (Giudicianni et al., 2021), secondary char and
condensates would both contribute to an elevated H:C,, ratio of the
RE-biochar. A strong reduction in pore volume was observed for most
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RE-biochars and includes a complete closure of the micropore volume
in 50Ba- and 50Dia- RE-biochars. This corresponds to an increase in
H:C,,, for 50Ba- and 50Dia- RE-biochars. The total pore volume of the
RE-biochar from feedstock with 10% diabase (10DiaW-P, 10DiaS-P)
was less affected, and the H:C,,, ratios remained at a similar level as in
pure biochar. This suggests that a nominal addition of 10% fine diabase
may not modify vapor retention times as basanite does; it could
be explained by diabase’s high calcite content (22% CaCOs), which
partially (29%) disintegrates during co-pyrolysis at 650°C, as shown by
the TGA analysis of pure rock powder (Supplementary Figure 52).
Partial obstruction of pores and consecutive formation of secondary
char are not exhaustive explanations for elevated H:C,,, ratios. For
example, in the non-pelletized mixtures (10BaW, 50BaW, 10DiaW,
50DiaW), no decrease in SSA and pore volume beyond expected
dilution effects was measured, albeit a pronounced increase in H:C,,
and a decrease in thermal stability occurred for 50BaW and 50DiaW,
which cannot be fully explained. Further research should also focus on
the effects that altered thermal properties (section 4.1.2) may have on
pyrolysis intensity and thus on H:C,,, HyPy, SEC, and BCgc, also how
changes in porosity affect nitrate capture and nitrous oxide emission
reductions in soils (Borchard et al., 2019; Kammann et al., 2015).

4.1.5 C-sink potential: options to improve the
effects of silicate rock powder on carbon yield
Co-pyrolysis did not lead to synergistic effects altering the measured
y. and thus the exploited biogenic C-Sink potential. In the present study,
only additive effects could be observed. The addition of rock powder
(IC-Sink potential: 0.36-0.43 t CO,e t rock™) to biochar (PyC-Sink
potential: 2.67-3.09 t CO,e t biochar™) led to a proportional decrease in
the total C-sink potential when calculated per unit mass of RE-biochar
produced (cf. Table 3). However, when the calculation is reframed from
the perspective of available biomass (cf. Table 4), the additive
contribution of the IC-sink potential increases the total C-sink potential.
Albeit, the limited influence of rock powder addition on yg as
observed in the present study, could be increased to a relevant level. Wet
impregnation, prolonged incubation, or ultrasonic immersion (Guo
etal,, 2012) of biomass with rock powder could mobilize AAEM beyond
the water dissolvable fraction quantified in the present study. The use of
phyllosilicates, which show lower contents of AAEMs but larger surface
areas (Liu etal, 2020; Lu et al., 2020; Buss et al.,, 2024), may support the
formation of more secondary char by particle coating. Moreover, the
densification of blended feedstocks could increase the retention time of
volatiles in the solid matrix to promote the formation of secondary char
(Anca-Couce et al,, 2014). Thus, the impact of feedstock pelleting and
densification on the carbon yield and biochar properties needs to
be further investigated, both in the presence and absence of rock powder.

4.2 Conversion of carbonates

At higher temperatures, carbonates are converted to oxides
(calcination). This was observed by Kwon et al. (2018) in co-pyrolysis of
sewage sludge and calcium carbonate (CaCO;) at >625°C. Still, diabase-
based RE-biochars contain geogenic carbonate (22.1 wt-%), as they
show a higher content of total inorganic carbon (TIC) compared to all
other (RE-)biochars and calcination is not expected to be completed for
temperatures <1,000°C. Expected values for TIC content of RE-biochars
based on the carbonate content of the rock after thermal treatment at
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650°C and TIC content of biochar from pure biomass largely matched
with measured values (Supplementary Table S16). We, therefore, assume
the release of CO, from calcination during co-pyrolysis of carbonate-
rich rock and the formation of CaO and/or MgO. These oxides could
also absorb atmospheric CO, when biochar is applied to soil (Ca/
MgO, + CO, - Ca/MgCO;), which could make this effect climate-
neutral overall, however, this needs to be verified. Unless verified, the
release of CO, from calcination of carbonate-bearing rock during
pyrolysis would need to be considered an emission of fossil carbon in a
RE-biochar life-cycle assessment.

4.3 Rock-enhanced biochar: higher
content of major and trace elements

Compared to pure biochar, RE-biochar exhibited a higher content
of most of the essential (P, K, Mg, Ca) and beneficial (Si) plant
nutrients, largely because the rock powders contained these elements
in greater concentrations than the biomass (Supplementary Table 57;
Buss et al., 2022), except for P, due to the latter’s low concentration in
the rocks (Table 2). The magnitude of short-term K release (6-week
leaching) is governed by the amendment’s biochar content, while Ca,
Mg, and Na release clearly increased for RE-biochars. The release of
geogenic macronutrients was also observed and suggested by other
studies (Amann et al., 2020; Swoboda et al., 2022; Vorrath et al., 2025).
However, most of the released elements during the 6-week leaching
experiment likely originated from biochar ash, as elemental release
from rock is much lower in general (Vorrath et al, 2025). To
specifically quantify geogenic nutrient release, longer experiments
and/or water/acid washing of RE-biochar prior to the leaching
experiment would be needed to remove swiftly soluble, biogenic ash.
The availability of rock-derived nutrients depends on weathering
rates, making RE-biochar a slow-release fertilizer.

The addition of rock powder can also increase the content of
potentially toxic trace elements (“heavy metals”) in RE-biochar. The
RE-biochars produced here remained within applicable limit values of
the EU fertilizer product ordinance, e.g., for Zinc (<800 mg kg™') and
Copper (<300 mg kg™"), however partly challenge limit values for Nickel
(<100 mgkg™") (EU 2019/1009), while pure biochars had considerably
lower trace element contents. Biochars generally show low availability of
trace elements compared to biomass feedstocks (Rathnayake et al., 2023).
Geogenic trace metals are released along the weathering process of the
rock fraction, as observed for Ni and Cr in mesocosm experiments by
Amann et al. (2020). However, simultaneous biochar addition to soil
may reduce the uptake of trace elements by plants (Peng et al., 2018).
Rock enhancement opens an avenue to produce micronutrient fertilizers,
yet attention must be paid to trace metal loads when selecting rocks.

4.4 Rock-enhanced biochar: increased pH
and liming potential

Rock-enhanced biochars showed higher pH values than pure
biochars. However, these values are still comparable to the pH of
other biochars produced at similar temperatures, including those
with high ash contents (> 20%) (Ippolito et al., 2020). Biochar
raises soil pH through protonation, and the release of its alkaline
ash fraction, but the latter effect is short-lived due to the high
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solubility and leaching of biochar ash (Kong et al., 2014; Smider
and Singh, 2014; Xiao et al., 2020). This is mirrored in sharp
decreases of initially high EC and high pH within the first two
weeks of the (non-buffered) leaching experiment, observed for
both biochar and RE-biochars with high biogenic content
(Figure 7). Leached loads of cations will likely differ in real soils,
which show biological activity that can accelerate weathering, but
also show greater cation exchange capacities which can delay
leaching (Paessler, 20225 te Pas et al., 2024). Rock powder and
RE-biochar with high rock content bear the potential to stimulate
slower but long-lasting pH elevation (Swoboda et al., 2022; Van Der
Bauwhede et al., 2024).

The total liming potential of a material is given as CaO equivalents
(CaOeq = sum of basic compounds, Table 2), and relates to the
potential of neutralizing hydronium ions (H* in solution). Industrial
quicklime, commonly used in agriculture, serves as the reference
(100% CaO). The liming potential of RE-biochar increases by >50%
for 50% nominal rock powder addition compared to pure biochar
(Table 2). Thus, 5-10 t RE-biochar may replace 1t of quicklime,
abating 1.0-1.2t CO, emissions from quicklime production (Wu
etal,, 2023). However, this effect could also be achieved by the direct
application of rock powder with an equivalent liming potential;
co-pyrolysis does not in itself add any value here. The realization of
the complete (stochiometric) liming potential will not only depend on
the liming potential of the biochar (Murtaza et al., 2024; Van Zwieten
et al,, 2010) and swiftly available carbonates, but also on the silicate
rock weathering rate. Thus, silicate rock powder induced pH
adjustments will be slower compared to those of quicklime soil
application. The liming potentials of RE-biochars are not totally
achieved before the rock is fully weathered or retarded/prevented if
basic compounds are retained in secondary minerals.

5 Conclusion

Production of rock-enhanced biochar and its agronomic
application was suggested as an avenue for the co-deployment of
PyCCS and enhanced rock weathering as CDR methods with potential
synergies regarding carbon yield and biochar persistence. This study
provided context to the material production, product properties and
CDR potential, including the release of CDR relevant cations using
fast leaching experiments. The following main findings add
information for the applicability evaluation of the proposed method.
We demonstrated (a) the general feasibility of co-pyrolysis of biomass
with silicate rock powder, (b) confirmed the pyrogenic coating of rock
particles, and (c) highlighted the impact of pellet physical properties
on biochar and RE-biochar characteristics, which needs further
systematic investigation. The present study could not confirm effects
from co-pyrolysis, increasing the fixed carbon yield. At large, no
adverse effects of rock powder addition on biochar properties were
identified, yet the changes in thermal stability, especially of straw
biochars, could not be explained. Pyrogenic coating of the minerals is
an interesting effect that could be used to increase carbon yield and
create functional materials for uses beyond soils (sorbents,
construction material, etc.).

Based on the physicochemical properties of RE-biochar, we could
not identify an advantage of co-pyrolysis over the co-application of
rock powder and biochar. Effects on weathering and plant growth still
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need to be investigated in appropriate experimental setups, such as
long-term leaching experiments assessing alkalinity production and
agronomic field trials. However, co-pyrolysis can have practical
advantages, as it increases the bulk density of the biochar, which can
make it easier to spread with a fertilizer spreader. Furthermore,
co-pyrolysis after pelleting allows the use of very fine rock powder,
which is, for example, a by-product of rock cutting and crushing that
does not have to be deliberately ground, yet its particle size hampers
direct soil application due to dust formation. Beyond their agricultural
use, RE- biochars are interesting materials that offer a wide range of
applications, be it the basic component of agricultural CDR-fertilizer
blends, or industrial applications which should be investigated in
more detail.
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