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Abstract

It is widely considered that conversion of natural landscapes to agriculture results in biotic homogenization. A recent study comparing
soil biota of 27 paired natural steppe soil (NS) and agricultural soil (AS) sites across 900 km in north-eastern China found that
conversion to agriculture had increased spatial gradients in soil functional genes. Using the same shotgun metagenome samples, and
bacterial amplicon data, we instead analyzed total observed variation at the between-site and within-site level. We found that from
the perspective of community taxonomic composition, archaeal and fungal community variation was decreased in AS compared to
NS at both within- and between-site scales. In contrast, the bacterial and metazoal community was homogenized only at the local
scale. Total functional KEGG gene assemblage was homogenized in AS at both the local and regional scale, whereas “Y-A-S” strategies
in bacteria were homogenized at the local scale but not the between-site scale. Overall, these results show a clear homogenizing effect
of agriculture with respect to multiple aspects of soil taxonomic and functional diversity, though varying by scale. Certain abiotic soil
properties showed homogenization in AS at within-site and between-site scales may explain this homogenization, and uniformity of
plant cover in croplands likely contribute to the effect. These findings confirm and extend global-scale studies showing homogenization
of soil biota in agricultural environments, revealing that effects extend to functional genes and the broad taxonomic spectrum of life—
with potential loss of soil ecosystem resilience to environmental change resulting from agriculture.
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Agricultural ecosystems are characterized by frequent human
intervention that impose various environmental stressors on soil
microorganisms [5, 6]. These stressors include the application of
chemical fertilizers, pesticides, as well as alterations in tillage

Introduction

Humans exert a pervasive and increasing influence on the world’s
ecosystems, frequently converting natural landscapes into agri-

cultural fields or cityscapes [1]. From the perspective of plants
and animals, these human-modified environments are typically
characterized by a loss of native biodiversity and a reduction in
beta diversity across sites. They are increasingly dominated by
cultivated crops, domesticated animals, and a limited suite of
ruderal plants and generalist species that thrive under the uni-
form conditions created by intensive human management [2, 3].
Given the fundamental importance of soil services to both natural
and anthropogenic ecosystems, there is considerable interest in
understanding the degree of homogenization and simplification
of soil biota as a result of conversion from natural to anthro-
pogenic landscapes [4].

practices [7-9]. In response to these challenges, soil microbial
communities are expected to undergo shifts in their functional
potential genes [7, 10]. Specifically, these functional potential
genes should shift towards adapting the system to environmental
stress in agricultural ecosystems. This adaptive capacity is crucial
for maintaining the resilience and functionality of soil microbial
communities, which in turn support the overall health and pro-
ductivity of agricultural systems [11].

Beyond its ecological significance, the spatial heterogeneity
of soil biota carries important implications for environmental
change adaptation [12]. Soil communities collectively form a func-
tional reservoir that could safeguard soil processes against future
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disturbances, such as land use modifications and climate change
[13, 14]. However, contemporary agricultural intensification may
undermine this adaptive capacity through biotic homogenization,
a process that erodes microbial spatial diversity and biogeo-
graphic patterns essential for ecosystem flexibility 1, 15]. This
loss of microbial spatial diversity threatens to reduce agroecosys-
tem buffering capacity against emerging environmental stresses
[16, 17], underscoring the importance of preserving microbial
biogeographic patterns for sustainable soil management [18, 19].

Soil bacterial communities contain vast functional genetic
diversity, much of it poorly characterized. This hinders progress
in predicting soil microbial responses to environmental change
[20]. The life history strategy framework has proven effective
for comparing broad organismal strategies [21], critical gaps
persist in understanding microbial trait associations. Although
plant life history strategies are well defined across established
trait dimensions, analogous frameworks for soil microorganisms
remain underdeveloped [22, 23]. Advances in large-scale metage-
nomic datasets now enable systematic exploration of microbial
functional gene diversity, allowing researchers to link community
level traits to environmental drivers [24]. For example, a previous
study indicated the importance of microbial yield (Y), resource
acquisition (A), and stress tolerance (S) traits, concepts adapted
from the plant CSR scheme, in regulating soil carbon cycling
[25]. These theoretical advances provide testable hypotheses
about key traits governing microbial adaptation. Analysis of
community aggregated traits (CATs) through metagenomic
sequencing offers a powerful approach to detecting shifts in
bacterial functional profiles, thereby allowing the application
of life history strategy theories to microbial communities [26].
A recent study revealed consistent adjustments in microbial
life history strategies under acidic conditions in grassland soils,
highlighting their adaptive plasticity. However, critical questions
remain unresolved, particularly regarding how these strategies
shift during land use change in vulnerable ecosystems such as
black soil, where microbial adaptation mechanisms are poorly
documented [27].

A recent global study contrasting global cropland soils with
nearby areas of natural and semi-natural ecosystems revealed
that bacterial communities in agricultural systems are taxonomi-
cally homogenized relative to those in natural environments [14].
However, soil biota encompass diverse organismal groups beyond
bacteria, and taxonomic composition alone may not fully cap-
ture functional aspects of soil communities, such as functional
gene profiles, which are critical for understanding biogeochemical
processes [28]. Our earlier study compared the spatial trends in
turnover of overall KEGG gene functions between natural steppe
soils (NSs) and agricultural soils (ASs), in the chernozem zones of
north-eastern China, hypothesizing that there would be reduced
distance decay amongst the AS soils [13]. Among 27 paired sites,
we in fact found that the AS had greater heterogeneity and
increased spatial turnover in KEGG gene functions. We proposed
that this pattern might be due to disrupted homeostatsis in the
agricultural system resulting from loss of the insulating influence
of the continuous grassland cover of the steppe.

In the present study, we adopted a complimentary approach
to the same dataset, focusing on the overall variation of com-
munities amongst the total set of sites, in terms of taxonomic
composition, total functional gene assemblage, and bacterial eco-
logical strategies based on functional genes. Unlike our previous
analysis, which emphasized the slope of the spatial distance
decay relationships, this study examines the scatter of points that
this trend line passes through, encompassing the total variation

in soil biota composition observed in the dataset of sites [13]. This
approach offers a distinct yet integrative perspective by incorpo-
rating both functional genes and taxonomic composition, aspects
not fully covered in our earlier study. We hypothesized that: (i) AS
would exhibit homogenization of taxa and their functional genes
compared to natural soil; (ii) conversion from NS to AS would
enhance the stability of soil biotic communities; and (iii) the
functional potential genes would shift towards resistance to adapt
to the environmental stress in agricultural ecosystems. This work
aims to deepen our understanding of how land-use conversion
affects soil biota and to inform strategies for sustainable soil
management.

Materials and methods

Soil samples collection, soil physicochemical
property, and soil enzyme activity determination
Mollisols, a soil type prevalent across extensive areas of tem-
perate semi-arid regions, are predominantly distributed in three
provinces of Liaoning, Jilin, and Heilongjiang in northeast China,
covering a total area of ~1.09 x 10° km? [29]. Some mollisol areas
were already being cultivated 200 years ago, but most areas
have been used for agricultural production for ~50-65 years.
We selected the remnants of steppe vegetation that had never
been used for farming, and adjacent agricultural fields which
were used for a maize-corm rotation (http://northeast.geodata.
cn/). Soil sampling site locations and chemical fertilization for the
AS were summarized in Table S1. A total of 270 topsoil samples
(0-15 cm depth) were collected in October 2020 after crop harvest
from 27 sites (comprising 5 replicates x 2 soil types), to exam-
ine the effects of cropland conversion on bacterial community
assembly patterns and life-history strategies (Fig. 1, Table S2). The
fundamental details regarding the selection of soil sites and the
methodology employed for soil sampling have been previously
elucidated in our previous studies [3, 13].

Soil pH, soil total carbon, nitrogen, phosphorus, and potassium
(TC, TN, TP, and TK), soil available nitrogen (NH,*-N and NO3;~-N),
soil salt content (EC), and soil available phosphorus and potas-
sium (AP and AK) were determined according to the methodol-
ogy described in our previous study [13]. Climatic information
was extracted from the WorldClim database (www.worldclim.org/
data/index.html).

The activities of three principal hydrolytic enzymes includ-
ing C-degrading enzyme (B-1,4-glucosidase [BG]), P-degrading
enzyme (acid phosphatase [ACP]), and N-degrading enzymes (L-
leucine aminopeptidase [LAP]), were assessed through standard
fluorometric methods with the highly fluorescent compounds of
4-methylumbelliferone and 7-amino-4-methyl-coumarin (Uplc-
MS Testing Technology Co., Ltd, Shanghai, China). We meticu-
lously maintained a constant temperature of 25°C throughout
the determination process. The concentration of the fluorescent
substrate was set at 200 uM, and the reaction time was established
at 3 h to ensure optimal assay conditions [30]. Fluorescence
intensity was recorded at excitation and emission wavelengths of
365 nm and 450 nm, respectively, using a microplate reader (BMG
LABTECH, Germany). The EEAs were subsequently calculated and
expressed in units of umol d=* g~ soil.

DNA extraction, gPCR, amplicon sequencing, and
metagenome sequencing

Soil total DNA was extracted from 0.5 g fresh soil using the E.Z.N.A
Soil DNA Kit (OMEGA, USA) according to the procedures of the
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Figure 1. Location of sampling sites and concept of the analysis. (A) The 27 sampling sites are marked in the map. (B) Pairwise-sampling of agricultural

(AS) and natural soils (NS). Five soil samples were collected at each land

use type at one site. Differences in homogeneity at family level of the soil

bacterial, fungal, archaeal, and metazoal communities at the inter-site (C) and the intra-site (D) level between AS and NS. The asterisks indicate the
significant difference between those two land use types (*P <.05, **P < .001, ***P < .0001, NS P > .05; Wilcox sum rank test).

manufacturer. The quality of the extracted DNA was examined
by a NanoDrop 2000 spectrophotometer (Thermo Scientific, USA).

The gPCR assays targeting bacterial [31] and archaeal [32],
as well as fungal genes [33] in AS and NS soils, respectively,
were carried out in triplicate with LightCycler 480 (Roche Applied
Science). The amplification reactions were performed according
to the following steps: 6 ul of AceQ SYBR Green Master Mix
(Vazyme, Nanjing, China), 0.2 uM of forward and reverse primers,
1 pl of DNA, and nuclease-free water were added to adjust the
final volume to 16 ul. The PCR conditions were 95°C for 5 min,
followed by 40 cycles of 15 s at 95°C, 30 s at 60°C. A standard
curve was established by constructing standard quality particles
of different concentrations and determining the copy numbers,
which was used to quantify the DNA of 270 soil samples.

The primer pair 515F/907R with unique barcode were used to
amplify the V4-V5 region of the soil bacterial 16S rRNA gene. The
PCR system and amplification conditions were described previ-
ously [34]. The PCR products were further pooled and purified
by an agarose gel DNA purification kit (TaKaRa, Dalian, China).
The purified PCR products were sequenced on an MiSeq System
(llumina) at Majorbio Bio-Pharm Technology Co., Ltd (Shanghai,
China).

Theidentical DNA extractions employed for amplicon sequenc-
ing were concurrently utilized for shotgun metagenomic
sequencing. A standard metagenomic library construction

method was employed directly on extracted DNA from metageno
mes. Paired-end sequencing (2 x 150 bp) was performed using the
Mlumina Inc. (San Diego, CA, USA) platform. The adapters, which
contain the entire sequencing primer of the hybridization sites,
were attached to the blunt-end fragments. Metagenomic library
was performed on the HiSeq System (Illumina) at Majorbio-Pharm
Technology Co., Ltd (Shanghai, China).

Bioinformatic analysis

The raw 16S rRNA gene sequences were processed to generate
amplicon sequence variants (ASV) using Quantitative Insight into
Microbial Ecology 2 (QIIME2) [35]. The barcodes, primers, and
low-quality sequences (read length <50 bp or average quality
scores < 20) were subsequently removed. The forward and
reverse sequences were merged and assigned to each sample
based on barcode. The filtered sequences were denoised using
DADA? algorithm [36]. Taxonomy assignments of each ASV were
conducted using Naive Bayesian Classifier [37] against SILVA
database (Release 138) (https://www.arb-silva.de/). A total of
56491 ASVs were obtained, with each sample being rarefied to the
minimum number (14601 sequences) required for downstream
analyses.

To predict functional genes of bacterial communities, the ada
pter sequences of raw shotgun metagenomic reads were firstly
removed using SeqPrep (https://github.com/jstjohn/SeqPrep).
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Low-quality reads (read length <50 bp or average quality scores
< 20) were then trimmed with Sickle v1.33 (https://github.com/
najoshi/sickle). The clean reads were assembled into contigs using
Megahit v1.1.2 [38], and the open reading frames (ORFs) of contigs
were then predicted using MetaGene [39]. The predicted ORFs with
no less than 100 aa were retained and clustered using CD-HIT v4.7
(http://www.bioinforamatics.org/cd-hit/) with 95% identity and
90% coverage. The number of reads mapping to genes for each
sample was calculated using SOAPaligner 2.21 [40]. Taxonomy
and KEGG annotations were performed by diamond v0.8.35 [41]
against the NR database (ftp://ftp.ncbi.nlm.nih.gov/blast/db) and
KEGG (http://www.genomme.jp/kegg/) database with best-hit,
e-value le™ at “Dlastp” format. Taxonomy annotated to the
bacterial taxa was filtered according to the annotation results
of the NR database.

The microbial life history strategies (based on Y-A-S theory)
were predicted with Hidden Markov Models (HMMs) using
hmmsearch [42]. HMM model was retrieved from the Microtrait
Database [43]. Sequence hits with an e-value cutoff score of
le~> were removed to ensure high confidence in all hits. The
profiles of functional genes of bacterial communities were
calculated as CPM (counts per million-normalized) according to
the methodology described previously [13]. The average genome
size (AGS) of soil microbial communities of each sample was
estimated using MicrobeCensus v1.1.1 with default parameters
(—=n 2000000, —1 100, —1 -5) [24, 44].

Statistical analysis

Alpha diversity was assessed by calculating the richness and
Shannon-Wiener index for both ASVs and KO genes, using esti-
mate_richness function in phyloseq package [45]. The dispersion
of taxonomic and functional gene communities for each group
in AS and NS, as well as the dispersion of soil chemical proper-
ties, were calculated based on Bray-Curtis distance matrix with
betadisper R function to evaluate the homogenization effect in
regional scales [46]. This method also calculated in local scales
which was grouped by site in AS and NS. The distance-decay
relationships (DDRs) were calculated to evaluate the distribu-
tion patterns of bacterial ASVs and functional genes between
the geographic distances (Euclidean distances) and community
similarities (1-dissimilarity of the Bray—Curtis distance metric). A
linear regression was employed to relate the geographic distances
and the Bray—Curtis distances.

A variation-partitioning analysis (VPA) was conducted to dis-
entangle the relative importance of environmental factors and
spatial factors on the variation in bacterial and functional gene
communities [47]. Spatial variables were derived from geographic
distances using Moran’s eigenvector maps, also known as the
principal coordinates of neighbor matrices (PCNM) algorithm,
which was able to deconvolute total spatial variation into a dis-
crete set of explanatory spatial scales [48]. Forward selection
procedures were subsequently employed to select respective sub-
sets of environmental and spatial variables. The forward selec-
tion procedure was terminated if the significance level (P >.05)
was reached or if no improvement in the selection criterion (R?)
was observed upon the additional any variables. Subsequently,
a two-way permutational multivariate analysis of variance (PER-
MANOVA) was performed using the selected variables. The effect
of species sorting is represented by pure environmental variation
without a spatial component, whereas the effect of dispersal
limitation is represented by pure spatial variation without an
environmental component. The fractions of explained variance

are based on adjusted fractions (R2 i adjusted coefficient of mul-
tiple determination), which accounts for the number of variables
and sample sizes.

The Sloan neutral community model (NCM) was employed
to determine the potential importance of stochastic processes
to the community assembly [49]. In the model, the estimated
migration rate is a parameter for evaluating the probability that
a random loss of an individual in a local community would be
replaced by dispersal from the metacommunity. A higher m value
indicates that microbial communities are less dispersal limited
[50]. To reveal the patterns of deterministic ecological processes,
we estimated Levins’ niche breath (B) index [51, 52] using the
spaa R package. In addition, the normalized stochasticity ratio
(NST) was quantified using the R package NST, to identify the
relative contribution of deterministic and stochastic processes in
driving soil bacterial and their functional gene assembly. NST is
anindex developed with 50% as the boundary point between more
deterministic (<50%) and more stochastic (>50%) assembly [53].

To reveal the intricate interaction patterns, a co-occurrence
network was constructed based on Pearson correlation with
netET R package (https://github.com/Hy4m/netET). The analysis
included bacterial ASVs with a relative abundance exceeded
0.01% that were present in at least 25% of samples within the
specific habitat. The node and network properties were calculated
by igraph R package [54]. The topological role of each node
was determined by calculating within-module connectivity (Zi)
and among-module connectivity (Pi). Nodes were categorized as
follows: module hubs were defined as those with Zi>2.5 and
Pi<0.62; connectors as those with Zi<2.5 and Pi>0.62; and
peripherals as those with Zi<2.5 and Pi<0.62 [55]. Additionally,
nodes were ranked according to the standardized z-scores of node
degree and betweenness centrality, and the top 5% were classified
as network hubs [56]. Nodes identified as either module hubs or
network hubs were collectively designated as hub nodes. The
networks were visualized using ggraph R package (https://github.
com/thomasp85/ggraph).

Results

Changes in soil microbial abundance and
enzyme activity under different land use types

Microbial abundances in 27 paired NS and AS were determined
via real-time PCR, and C-, N-, and P-degrading enzyme activities
(BGC, LAP, and ACP) were measured using standard fluorometric
methods. Bacterial abundance in AS ranged from 2.01 x 10'° to
1.10 x 10** copy g~ dry soil, and from 9.77 x 10° to 1.01 x 10! copy
g~! dry soil in NS. Fungal abundance was 5.05 x 10° to 1.66 x 102
copy g~'in AS,and 1.32 x 107 t0 3.16 x 108 copy g~' in NS. Archaeal
abundance was 2.09 x 10° to 1.18 x 107 copy g* dry soil in AS, and
4.83 x 10° t0 9.24 x 10° copy g~! in NS. The bacterial and archaeal
abundance was significantly higher in AS than that in NS, while
the fungal abundance showed a different pattern (Figs S1A-C).

Activities of the C-, N-, and P-degrading enzymes (BGC, LAP,
and ACP) were significantly lower in AS than in NS (Figs S1D-F).
Correspondingly, strong correlations (P<.05) were observed
between the abundances of genes involved in carbon-, nitrogen-,
and phosphorus-degradation pathways and the activities of their
respective enzymes in both AS and NS (Fig. S2).

Bacterial and functional gene communities and
environmental drivers

Bacterial communities differed significantly between AS and NS.
Approximately 50% of core ASVs showed significant abundance
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shifts between these ecosystems. Specifically, 473 and 401 core
ASVs were identified in AS and NS, respectively, with 353 ASVs
being shared (Fig. S3A). Most core ASVs were affiliated with the
phyla Pseudomonadota, Acidobacteriota, Actinomycetota, and
Bacteroidota, and their relative abundances varied distinctly with
latitude (Fig. S3B). A subset of 25 bacterial genera (including
taxa from Acidobacteriota, Actinomycetota, Myxococcota, and
Pseudomonadota) exhibited higher abundance in AS adjacent
to NS, suggesting a taxon-specific and adaptive response to
agricultural practices (Fig. S3C).

RDA showed soil pH and TC as the key drivers of bacterial ASVs
in both AS and NS (Fig. S4A), a result corroborated by RF analysis
(Fig. S4B). Correlation analysis revealed specific ASVs associated
with these parameters (Table S3). In AS, 368 ASVs were positively
and 179 were negatively correlated with TC, and 169 favored high-
pH and 230 favored low-pH conditions. In NS, 163 ASVs were
positively and 322 were negatively correlated with TC, and 163
and 196 ASVs favored high- and low-pH conditions, respectively
(Fig. S4C). Building on a previous study of land use effects on core
genes [13], we analyzed the drivers of the overall functional gene
profile (Table S4). RDA demonstrated soil pH and TC were also
the key drivers shaping the overall functional gene assembly in
AS and NS, respectively (Fig. SSA), which was confirmed by RF
analysis (Figs. S5B). Correlation analysis showed that, in AS, 284
genes were positively and 307 were negatively correlated with TC,
and 544 and 732 genes preferred high- and low-pH conditions. In
NS, 356 genes correlated positively and 584 negatively with TC,
and 327 and 423 genes were associated with high- and low-pH
conditions, respectively (Figs. S5C).

Impact of land use on the taxonomic and
functional gene assemblages

Metagenomic analysis revealed a higher degree of homog-
enization in soil biota in AS across multiple dimensions,
compared to NS (Fig. 1C and D). Specially, bacterial and metazoal
communities exhibited homogenization primarily at local scales
(for both bacteria and metazoa: P <.0001). However, no significant
effects were observed at regional scales in AS (bacteria: P=.91;
metazoa: P=.087). In contrast, fungal and archaeal communities
showed homogenization at both local (fungi: P <.0001; archaea:
P=.019) and regional scales (fungi: P<.001; archaea: P=.040)
(Fig. 1C and D). Furthermore, total KEGG functional genes
(Table S5) across the major kingdoms of life revealed that
bacteria, fungi, archaea, and metazoa exhibited homogenization
patterns at both local (Figs S6E-H; bacteria: P <.0001; fungi:
P <.0001; archaea: P < .0001; metazoa: P=.014) and regional scales
(Figs S6A-D; bacteria: P=.042; fungi: P=.017; archaea: P=.020;
metazoa: P=.043) in AS. Consistent with these findings, amplicon
sequencing of bacterial 16S rRNA gene also demonstrated
community homogenization in AS, evident both within and
between sites (Fig. S7; within sites: P<.0001; between sites:
P <.001).

Soil chemistry in AS was also found to be homogenized at a
local scale (Fig. S8B), with no significant homogenization observed
at a regional level (Fig. S8A). Specifically, total nitrogen, ammo-
nia nitrogen, electrical conductivity (EC), total potassium, and
available potassium exhibited significantly greater homogeneity
between AS sites (Fig. S9). Conversely, nitrate nitrogen and avail-
able phosphorus showed contradictory trends. Within individual
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AS sites, total carbon, total nitrogen, total potassium, and avail-
able potassium were found to be significantly more homogenous,
with the exception of nitrate nitrogen (Fig. S10).

Structuring, assembly processes and ecosystem
networks

Principal coordinate analysis (PCoA) based on Bray-Curtis dis-
similarity revealed a clear distinction of bacterial communities
(PERMANOVA; R?=0.06, P <.001), and soil functional gene com-
munities (PERMANOVA; R?=0.13, P <.001) between AS and NS
(Fig. 2A and D). The community structure of bacterial taxa and
functional genes exhibited greater similarity across the 27 sites
distributed in AS than in NS, regardless of spatial variations
(P <.001, Fig. 2B and E). The distinct pattern of DDRs was evident
in both AS and NS (P <.001, Fig. 2C and F), and the steeper DDR
slopes for the similarity of both bacterial taxa and functional
genes in AS than in NS indicated a stronger influence of spatial
proximity on community composition in AS.

A series of theoretical models were constructed to assess the
impact of assembly processes on bacterial and functional eco-
logical communities (Fig. 3). The R? values of the NCMs were 0.88
and 0.89 for bacterial communities (Fig. 3A and B), and 0.68 and
0.72 for functional gene communities in AS and NS, respectively
(Fig. 3E and F), showing that the assemblage of both bacterial and
functional gene communities in each habitat was well explained
by the neutral theory.

Community-level habitat niche breadths (Bcom) revealed that
bacterial communities exhibited a 19.2% greater niche breadth
in AS compared to NS, while the functional gene community in
AS had a 1.2% lower niche breadth than in NS (Fig. 3C and G).
The normalized stochasticity ratio based on Bray-Curtis distance
(NSTpray) index showed that the bacterial and functional gene
communities in both AS and NS were predominantly governed by
stochastic processes (NSTyray > 50%). In particular, the bacterial

communities in AS (NSTyay =0.63) appeared to be more stochastic
than in NS (NSTyyay = 0.55), while the functional gene communities
in AS (NSTyyay =0.82) were similar to those in NS (NSTpay =0.84,
Fig. 3D and H).

Co-occurrence networks were constructed to elucidate the pat-
terns of correlations of bacterial taxa in AS and NS. The networks
showed that AS had a greater number of nodes and linkages
compared to NS for bacterial taxa (Fig. 4A and B, Table S6). The
variation in stability and the resistance of bacterial networks
by removing the hubs indicated that agricultural intensification
enhanced the robustness of the ecosystem network but reduced
its vulnerability (Figs 4C-E). The topological properties of the
network structures in bacterial communities showed a higher
number of key nodes in AS (Table S7) compared to NS (Table S8),
indicating a greater ecosystem stability in soil bacterial commu-
nities in AS than in NS.

AS showed greater local homogeneity of Y-A-S
gene community structures

In order to gain a deeper understanding of the impact of land use
change on the ecological adaptations of soil bacteria, we employed
the Y-A-S theoretical framework to estimate the history strategies
of soil bacterial communities (Fig. 5). The relative abundance of
functional genes associated with high growth yield (Y) and stress
tolerance (S) was significantly increased by agricultural practice,
whereas the relative abundance of genes associated with resource
acquisition (A) was decreased. Furthermore, it was observed that
the AGS of soil bacteria decreased in AS (Fig. 5B).

A and S strategy exhibited significant homogenization in AS at
the local scale (Figs S11D-F; A: P <.0001; Y: P=.080; S: P=.0004).
There was no significant homogenization at the regional scale
(Figs S11A-C; A: P=.183; Y: P=.055; S: P=.336). The AGS of soil
bacteria increased as soil pH shifted from acidic to neutral in
AS (Fig. S12A). This was also significantly associated with MAP
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(Fig. S12B) and MAT (Fig. S12C). AGS in AS was influenced by a
broader spectrum of soil chemical properties than in NS. Specif-
ically, it correlated positively with total carbon, total nitrogen,
the C/N ratio, and total phosphorus, but negatively with nitrate

nitrogen and available phosphorus. In contrast, AGS in NS
remained largely independent of these chemical properties as
well as MAT and MAP (Fig. S13). Furthermore, AGS of soil bacteria
was found to be positively correlated with resources acquisition
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(Fig. S14A; AS: R?=0.21, P<.001; NS: R?=0.08, P=.009), but
negatively correlated with growth yield in AS (Fig. S14B; AS: R?=0.
28, P <.001; NS: R>=0.06, P=.027).

Discussion

Shifts in homogeneity of soil biota resulting from
land use conversion

This study demonstrated a clear trend towards homogenization
under agriculture (AS) in both community taxonomic composition
and in functional gene composition, for major categories of soil
life (Fig. 1). For bacteria, archaea, fungi, and metazoans, family
level taxonomic community composition was homogenized at the
inter-site and the intra-site level (Fig. 1C and D), whereas for bac-
terial amplicon data showed homogenization under AS down to
the level of ASVs (Fig. S7). Through reducing taxonomic turnover,
AS also results in overall reduced taxonomic beta diversity of
the major kingdoms of life at the taxonomic family level and
at the ASV level for bacteria. This is against a background in
which taxonomic alpha diversity of each group is lower under AS
compared to NS.

This general pattern also held true in terms of KEGG functional
gene homogeneity at intra-site and inter-site scales, for each
of these groups (Fig. S6). Based on ecological interpretation of
KEGG gene assemblages, the Y-A-S strategy position of bacterial
communities is likewise homogenized at the intra-site level but
not the inter-site level (Fig. S11). These findings align on a regional
scale with a global-scale study by the previous study, where
soil bacterial communities were compared at 44 paired natural
vegetation and agricultural sites [14]. In this study, however, the
comparison extends to multiple kingdoms of life in terms of the
taxonomic perspective, an adds the functional gene perspective
from using KEGG functions in the metagenome, together with Y-
A-S ecological strategies in the case of bacterial KEGG functions.
As such, it emphasizes how pervasive the effects of land use
conversion to agriculture on soil biota homogeneity actually are.
This agrees with the major trend towards taxonomic homogeniza-
tion seen globally in bacterial communities with conversion from
natural habitat to agriculture [57], as well as that seen for other
groups such as plants [58], birds [59], and small mammals [60].

Spatial homogeneity in community composition
and function is greater in AS than in NS

The observed of homogenization of variation in biota, gene assem-
blages, and ecological strategies in AS contrasts with findings
from our earlier study [13], which found that the slope of distance
decay of soil biota similarity was in fact increased in AS relative to
NS, contrary to our original hypothesis that the slope of AS would
be shallower. This increased distance decay was suggested as
possibly due to reduced homeostasis in the soil community under
AS in relation to background variation in climate [2]. However,
on further reflection our earlier study was incomplete in the
sense that it concentrated only on the regression line of distance
decay in soil biota similarity, and ignored the total scatter of
soil communities amongst the individual sites along that line.
Furthermore, our earlier study did not consider variation between
replicate cores within each site, which would offer an additional
local-scale perspective. As such, by encompassing the full range
of variation in soil biota amongst sites, rather than only the
distance trend, the present study offers a complimentary and
possibly more meaningful perspective on the effects of land use
conversion on heterogeneity in soil biota. By systematically quan-
tifying B-diversity across taxonomic, functional, and strategic

dimensions, the present study resolves this apparent contradic-
tion, demonstrating that agricultural conversion simultaneously
increases spatial turnover rates (steeper distance-decay slopes),
while reducing total compositional heterogeneity (lower overall
B-diversity), a duality explained by the amplification of localized
environmental filtering under cultivation.

We suggest that the conversion of steppe to cropland may
induce a change in trait-based filtering, leading to the displace-
ment of certain bacterial taxa and a consequent reduction in
overall diversity, and favoring those microorganisms that are more
adept at thriving in agricultural environments [61]. The greater
stochasticity observed in AS results from frequent temporal dis-
turbances. These arise partly from routine farming practices, such
as plowing, planting, pesticide application and fertilization, as
well as from amplified fluctuations in temperature and moisture
[8]. The latter occurs because the soil is directly exposed to
weather and sunlight, lacking the continuous insulating cover
of steppe vegetation and plant litter. This will lead to unpre-
dictable recolonization and priority effects in the soil community,
as the most favored niches constantly change. This will lead
to unpredictable recolonization and priority effects in the soil
community as the most favoured niches constantly change—
the system is in a constant state of disruption and adjustment,
which leads to random priority effects of species populations
newly favoured by a shift in conditions [62]. Thus, although the
agricultural landscape is spatially homogenized, recurring fine-
scale temporal disturbances amplify stochasticity at the commu-
nity level [63]. Overall, this spatially consistent but fluctuating
selective pressure may result in a more homogenized community
i.e. adapted to withstand the perturbations of human activities
[64]. The homogeneity of soil bacterial communities in AS, coupled
with a wider niche breadth (Fig. 3), may enhance the robustness of
bacterial communities in the face of anthropogenic disturbances
(Fig. 4). The broader niche breadth of bacteria, indicative of greater
metabolic plasticity, is underpinned by a diverse array of func-
tional genes. This suggests that, despite being functionally more
constrained by the environment, AS harbor a rich tapestry of
capabilities that enable them to adapt to the challenges posed by
human intervention [65].

Possible mechanisms behind homogenization in
the agricultural system

It is plausible that conversion to agriculture homogenizes soil
biota by spatially homogenizing various soil characteristics [66].
Conversion of natural land to agriculture tends to involve lev-
elling the land surface (destroying within-site microtopography
and between-site differences in slope angle and aspect), adding
drainage when water content is high while irrigating when water
is deficient, adding chemical fertilizers and pesticides in large and
fairly uniform quantities, and adding lime where necessary to
help achieve a certain desirable pH for crop productivity [67, 68].
Comparing the range of site-to-site and within-site variability in
soil characteristics with this dataset shows that indeed there is
greater uniformity in at least some soil factors at the site-to-site
and within-site level (Fig. S9 and S10). Under agriculture, this may
select for a more consistent assemblage of species whose niche
requirements overlap with the more consistent environmental
conditions, or likewise for individual genes whose functions are
confined to a particular environmental range (Fig. 3).

Adding to this homogeneity in abiotic environment is likely
the homogeneity in terms of plant cover. Instead of the diverse
and heterogenous plant cover of steppe, agricultural fields have
a far more limited and more consistent range of plant species.
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This will give a narrower range of different potential interac-
tions which may support or exclude microbial species, genes,
and strategies [69]. Our study did not directly measure aspects
of the soil functionality or resilience under AS compared to NS.
Conversion to AS in itself is likely to result in large changes
in soil functionality as a result of changes in nutrient regime,
cultivation and plant cover, compared to NS [70]. Network analysis
of bacterial community shows that by several different measures,
the AS is in fact predicted to have greater stability on average
than NS (Fig. 4). This may be seen as product of the taxonomic
simplification of soil community under a regime of high fertilizer
and pesticide inputs, and frequent cultivation, in AS [68].

Biotic homogenization in AS may critically constrain the
ecosystem'’s reserve capacity to buffer against environmental
stressors such as climate change and pollution. A potential mech-
anism underlying this reduced resilience involves evolutionary
trade-offs in microbial genome architecture, as conceptualized
by the Black Queen hypothesis [71]. This framework helps explain
our observation of decreased average bacterial genome sizes
in AS under acidic conditions (Fig.5, compared to neutral-
PH natural soils, NS). Larger genomes, while encoding greater
functional diversity, impose higher metabolic costs for gene
maintenance and expression with a liability under environmental
stress [72]. Agricultural intensification appears to amplify this
selection pressure, driving genome streamlining as observed in
acid-adapted ecosystems [73, 74]. We further identified climate-
mediated selection on genome size, with mean annual tempera-
ture (MAT) and precipitation (MAP) showing stronger correlations
with bacterial genome metrics in AS than NS (Fig. S12B and C).
In contrast, NS exhibits higher ecological stability, with no
significant correlations observed between genome size and pH,
as well as MAT and MAP, suggesting that buffered microbial
communities experience weaker environmental filtering. This
finding heightened sensitivity may reflect the breakdown of soil
aggregate structures under tillage, and of the insulating “blanket”
of steppe vegetation above ground, exposing microorganisms to
intensified climatic fluctuations (e.g. thermal extremes, moisture
variability). Such exposure aligns with evidence that warmer
conditions disproportionately select against large genomes due
to elevated metabolic demands [75, 76]. In terms of the Y-A-S
theory, a reduction in genome size enables bacteria to enhance
their potential functions related to growth and yield to adapt
to disturbed environments. However, this comes at the cost of
reduced resource acquisition.

Conclusion

The larger overall spatial variability of taxa, KEGG gene types, and
Y-A-S ecological strategies seen in the NS samples may preserve
a greater range of potential responses and interactions, which
could be recruited under future, changed conditions including
future climates or modified cropping systems. Fragments of the
original natural habitat, such as those sampled in this study, may
thus serve as reservoirs of soil biodiversity, potentially supplying
adjacent agricultural lands with taxa and gene functions under
changing conditions. The clear homogenization under agriculture
contrasts with our previous conclusion based on DDR slopes,
which indicated steeper spatial turnover in AS and suggested
functional diversification at the gene functions [13]. We regard
a focus on the total “cloud” of variation, rather than the linear
distance trend, as a better measure of the pool of variability
in microbial biota. The current study also incorporated taxo-
nomic composition, which was absent in our earlier functional

gene-based analysis, and revealed a consistent homogenization
trend under AS. Although this work is based on biotic and fun-
damental soil chemical attributes, future studies could extend
these findings by directly assessing spatial heterogeneity in soil
processes, such as respiration and nutrient processing, as well as
in measures of system resilience in mesocosm experiments.
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