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Abstract 

The intensification of agricultural land use (A-LUI) is a central driver of global environ-
mental change, affecting soil health, water quality, biodiversity, and greenhouse gas bal-
ances. Monitoring A-LUI remains challenging because it is shaped by multiple manage-
ment practices, ecological processes, and spatio-temporal dynamics. This review provides 
a comprehensive synthesis of existing definitions and standards of A-LUI at national and 
international levels (FAO, OECD, World Bank, EUROSTAT) and evaluates in situ meth-
ods alongside the rapidly expanding potential of remote sensing (RS). We introduce a 
novel RS-based taxonomy of A-LUI indicators, structured into five complementary cate-
gories: trait, genesis, structural, taxonomic, and functional indicators. Numerous exam-
ples illustrate how traits and management practices can be translated into RS proxies and 
linked to intensity signals, while highlighting key challenges such as sensor limitations, 
cultivar variability, and confounding environmental factors. We further propose an inte-
grative framework that connects management practices, plant and soil traits, RS observa-
bles, validation needs, and policy relevance. Emerging technologies—such as hyperspec-
tral imaging, solar-induced fluorescence, radar, artificial intelligence, and semantic data 
integration—are discussed as promising pathways to advance the monitoring of A-LUI 
across scales. By compiling and structuring RS-derived indicators, this review establishes 
a conceptual and methodological foundation for transparent, standardised, and globally 
comparable assessments of agricultural land use intensity, thereby supporting both sci-
entific progress and evidence-based agricultural policy. 

Academic Editors: Francesco  

Marinello and Tarendra Lakhankar 

Received: 22 July 2025 

Revised: 22 September 2025 

Accepted: 20 October 2025 

Published: 26 October 2025 

Citation: Lausch, A.; Bumberger, J.; 

Jung, A.; Pause, M.; Selsam, P.; 

Zhou, T.; Herzog, F. Monitoring  

Agricultural Land Use Intensity with 

Remote Sensing and Traits.  

Agriculture 2025, 15, 2233. 

https://doi.org/10.3390/agricul-

ture15212233 

Copyright: © 2025 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Agriculture 2025, 15, 2233 2 of 84 
 

 

Keywords: land-use intensity; agricultural land-use intensity; agricultural intensification; 
remote sensing; earth observation; traits; in situ; monitoring; indicators; policy relevance 
 

1. Introduction 
Agricultural intensification represents a major economic development in recent dec-

ades on a global scale. However, this phenomenon is concomitant with significant envi-
ronmental and economic changes, disruptions, and challenges. Agricultural intensifica-
tion, otherwise termed land use intensity (A-LUI), is defined here as the augmentation in 
production output per unit of land through increased management intensity (utilisation 
of high yielding crops and livestock, inputs such as fertilisers, pesticides, drainage or irri-
gation, mechanisation) and/or the adaptation of landscape structure (increased field size 
through, e.g., land consolidation, removal of structural elements) [1]. While increasing A-
LUI has facilitated the procurement of sustenance for an expanding global population, it 
goes along with substantial ecological concerns, including soil degradation, alterations in 
water quality and resources, biodiversity loss, and augmented greenhouse gas emissions, 
in addition to health hazards. For instance, the ongoing utilisation of synthetic fertilisers 
has resulted in soil acidification, thereby impacting the availability of nutrients to plants 
and the health of soil microbiota [2]. Furthermore, the excessive application of fertilisers 
can lead to significant nitrogen leaching and runoff of phosphorus, impacting water re-
sources and soil fertility [3]. 

Use of heavy agricultural machinery leads to soil compaction, resulting in a reduction 
in both water and air permeability. This, in turn, has the potential to precipitate the occur-
rence of erosion and desertification over time [4]. The intensive use of water resources, 
which accounts for approximately 70% of total water consumption in agriculture world-
wide [5], increases pressure on surface and groundwater, especially in regions where wa-
ter is scarce. The quality of water is diminished by the mobilisation of salts due to low 
water tables and the introduction of fertilisers and pesticides into the underlying aquifers, 
which can threaten drinking water supplies [6,7]. Another pertinent issue is the escalating 
eutrophication of water bodies due to excessive nutrient inputs, which culminates in ox-
ygen depletion and the demise of aquatic organisms [8]. Land use intensification exerts a 
profound influence on biodiversity [9–12]. The phenomenon of biodiversity loss [13] and 
the alteration in networks between biodiversity and ecosystem functions and services [14] 
are also impacted by land use intensification. The establishment of monocultures has re-
sulted in the displacement of species-rich ecosystems, which in turn has been shown to 
lead to a decline in biodiversity, genetic impoverishment, and reduced resilience. Further-
more, the process of intensification has been shown to result in a multi-trophic homoge-
nisation of grassland communities [15]. These developments have consequences for the 
resilience of ecosystems, resulting in the loss of essential ecosystem services such as polli-
nation, pest control, and soil formation [16–18]. The expansion of agricultural land, fre-
quently at the expense of forests, wetlands, and other semi-natural ecosystems, contrib-
utes to habitat fragmentation and destruction, biodiversity loss, and the release of green-
house gases, which in turn further exacerbates climate change [13,19–22]. Consequently, 
the agricultural sector is a substantial contributor to global warming. In addition to the 
ecological consequences, the intensification of land use poses a significant health risk. The 
presence of persistent pollutants from herbicides in food can result in health complica-
tions, including cancer and neurological disorders [23]. The overuse of antibiotics in in-
tensive livestock production has been demonstrated to promote the development of anti-
biotic resistance, which poses a significant threat to public health [24,25].  
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As scientific debate has long emphasised, accurate recording and quantification of A-
LUI [26] is essential for the assessment of the impact of intensification on agroecological 
systems and for the development of sustainable management strategies. In situ measure-
ments are of central importance, as they provide detailed information directly in the field 
(e.g., [27–29]). The merits of in situ measurements are twofold. Firstly, they enable direct 
observation of complex ecological and agronomic processes. Secondly, they facilitate the 
capture of locally specific variability that is often not considered in large-scale modelling. 
This is particularly true in heterogeneous landscapes, where minor variations in soil qual-
ity or microclimate or management practices can have substantial consequences for A-
LUI. Consequently, such measurements are imperative. However, in situ measurements 
are often time-consuming, costly, and have limited spatial coverage, making their large-
scale application and continuous monitoring difficult. Moreover, the comparability of re-
sults between different regions and studies is problematic due to a lack of standardisation. 

RS has emerged as a key approach to quantify and assess A-LUI indicators on a large 
scale, in a timely and standardised manner, and over long periods of time [30,31]. As 
demonstrated in the works of [32–38], RS technologies facilitate spectral, spatial, and tem-
poral analyses, providing detailed information on vegetation structure, soil condition, and 
other key land cover parameters. Furthermore, RS-based indicators of A-LUI, including 
yield estimates, vegetation indices (e.g., NDVI), and soil moisture parameters, which are 
crucial for the assessment of agroecological processes, have been derived for some time, 
including the advent of unmanned aerial vehicles (UAVs) and autonomous robotic plat-
forms, in conjunction with the freely available space-based RS data (Landsat mission 
[39,40], the Copernicus mission Sentinel [41], and the hyperspectral mission (EnMAP) 
[42]). As demonstrated in the 2015 Copernicus Hyperspectral Imaging Mission (CHIME) 
[43], the LiDAR mission (GEDI) [44], and in the planned future missions such as the Hy-
perspectral Infrared Imager Mission (HyspIRI) [45] and the Fluorescence Explorer (FLEX) 
sensor [46], the derivation of standardised and improved A-LUI indicators will be signif-
icantly improved. The substantial body of literature on the derivation of A-LUI indicators 
using RS is indicative of this phenomenon [47–50]. As demonstrated in the works of 
Segarra et al. [51–56] and Hank et al. [38], the subject has been extensively researched. 

A promising approach to capture and quantify A-LUI is to understand traits and trait 
variation in land cover, vegetation, and geodiversity [57]. Traits manifest at all spatial and 
temporal scales, making them ideal for standardised monitoring and the derivation of A-
LUI indicators from local to global levels. All RS technologies record traits and trait vari-
ation in vegetation (example [58,59]), soil (example [60]), terrain and geomorphology (ex-
ample [61,62]), and water (example [63]). RS allows the monitoring of traits and their sta-
tus, related processes, disturbances or resource limitations in both terrestrial and aquatic 
ecosystems, and their interactions in a timely and standardised manner. Furthermore, RS 
data that capture traits have the capacity to establish a correlation between the sensitivity 
of the analysed environmental unit and various globally relevant pressures, including cli-
mate change and LUI with its socio-ecological consequences [64]. In addition, novel indi-
cators for quantifying urban LUI have already been developed using RS and the trait ap-
proach [65,66]. Yet, to ensure the comparability of data and derived A-LUI indicators at 
both local and global scales, it is crucial to develop standardised methods for data collec-
tion and analysis. In recent years, there has been an increasing focus at the international 
level on the establishment of measurement standards. International organisations such as 
the Food and Agriculture Organisation of the United Nations (FAO) and the Intergovern-
mental Panel on Climate Change (IPCC) promote the establishment of international stand-
ards for the measurement and assessment of agricultural intensification across local and 
global scales. These organisations are increasingly recognising the value of RS and incor-
porating RS-based indicators into their standards and guidelines. 
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Nevertheless, the full potential of RS for the development of A-LUI indicators re-
mains to be unlocked. In order to understand RS-based A-LUI indicators, derive new ones, 
and assess the suitability of different RS techniques for developing and categorising new 
indicators, we first need to define and structure these indicators and discuss them in con-
text. We still lack a compendium offering a comprehensive overview of A-LUI indicators 
that can be derived using RS, so the objectives of this paper are as follows: (I) to define 
and compile standardised indicators for monitoring A-LUI at national, European, and 
global levels (FAO, OECD, World Bank, EUROSTAT); (II) to review and synthesise in situ 
methods for assessing A-LUI; (III) to introduce an RS-based definition of A-LUI by struc-
turing them into five indicator categories: trait, genesis, structural, taxonomic, and func-
tional A-LUI indicators; (IV) to illustrate the operationalisation of this taxonomy through 
numerous RS-based examples; (V) to link management practices, traits, and RS proxies to 
A-LUI indicators, validation strategies, and policy relevance; and (VI) finally to present 
innovative approaches for quantifying and evaluating A-LUI using RS. 

2. Definition, Standards, and Programmes for Monitoring the A-LUI 
2.1. Definition of A-LUI 

Despite the significance of quantifying the A-LUI, the definition remains elusive, as 
the monitoring of anthropogenic changes and pressures/impacts on agricultural ecosys-
tems/landscapes is a complex and multidimensional phenomenon [67] that is challenging 
to quantify [33,68]. As Diogo et al. [69] emphasise, the direction of change (positive or 
negative) of the A-LUI is also difficult to assess, as it depends on highly context- and scale-
dependent processes that vary regionally, which have direct and indirect effects on the 
whole system and can mutually influence each other (increase or decrease). Conversely, 
the utilisation of inadequate (one-dimensional) indicators to quantify the A-LUI has been 
observed [70]. This is primarily due to the restricted availability of readily available local 
in situ data, such as pesticide, fertiliser, or machinery use, often due to data protection 
constraints and being frequently available only in aggregated form within reports. (1) The 
FAO reference does not define “intensity” (the term is not even used). It describes datasets 
but is not about their interpretation. (2) Limiting A-LUI to only the use of inputs is too 
narrow, particularly in the context of RS. Landscape simplification is another aspect of 
intensification, and it can actually be well captured by RS. Therefore, we refer to Diogo et 
al. [69] for an important indicator of A-LUI, which includes the main indicators of man-
agement intensity, landscape structure, and agricultural productivity. 

2.2. Programmes for Monitoring A-LUI at National, European and Global Scale 

One of the main challenges in monitoring A-LUI is the need to standardise measure-
ment methods and indicators. In order to achieve national and international comparability 
in the monitoring of A-LUI, standardised programmes and indicators for the monitoring 
of A-LUI have been introduced at the national (Germany), European, and global level. 
The most important programmes and responsibilities for the monitoring of agricultural 
LCI for Germany, Europe, and the world are listed below. 

National scale  

Land Register: The land register records the types of land and their use in Germany. It is 
maintained by the state surveying and land registry offices. Most countries have detailed 
land register records of land type and ownership, maintained by the state surveying and 
land registry offices. 
Agricultural Structure Survey: Regular surveys of agricultural land use, yields, livestock, 
etc., by National Statistical Offices. 
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IACS (Integrated Administration and Control System for Management Aid): In agricul-
ture, the IACS system plays a central role in monitoring and managing data such as infor-
mation on the use of plant protection products, fertiliser data, soil and water data, and 
yield and production data, as well as environmental and health data. The monitoring and 
control of IACS data in agriculture is carried out by different institutions and authorities, 
mainly at regional, national, and European level.  

Europe 

Corine: The European Environment Agency (EEA) coordinates various land use monitor-
ing projects, including the production of Corine Land Cover maps. 
LUCAS (Land Use/Cover Area Frame Survey): This is a regular statistical survey of land 
use and land cover in the EU.  
Copernicus data: Copernicus is the European Earth Observation Programme (ESA) and 
provides extensive data on land use from satellite data (Sentinel-1-3). 
Farm structure survey datasets (https://ec.europa.eu/eurostat/statistics-explained/in-
dex.php?title=Glossary:Farm_structure_survey_(FSS) accessed on 19 October 2025) 
Agricultural census data (e.g., production, environmental indicators) at national levels 
and at sub-national levels (NUTS 1, NUTS 2, NUTS3). https://ec.europa.eu/euro-
stat/web/agriculture/information-data#Agricultural%20production accessed on 19 Octo-
ber 2025. 

World 

Global Land Cover (GLC): Several international initiatives produce global land cover 
maps, including projects supported by FAO and the United Nations Environment Pro-
gramme (UNEP). 
MODIS (Moderate Resolution Imaging Spectroradiometer): An instrument on NASA’s 
Terra and Aqua satellites that provides global data on land cover and land use change. 
Global Land Analysis and Discovery (GLAD): A University of Maryland project to moni-
tor global land use using high-resolution satellite imagery. 
FAO (Food and Agriculture Organisation of the United Nations), OECD (Organisation for 
Economic Co-operation and Development), and World Bank (World Bank) use indicators 
to monitor A-LUI worldwide. 

Table A1 provides an overview of the main agricultural land use intensity (A-LUI) 
indicators reported by major international organisations (FAO, OECD, World Bank, EU-
ROSTAT). The indicators span input dimensions (e.g., fertiliser and pesticide use), output 
dimensions (e.g., crop yields), and structural aspects (e.g., land use statistics). 

3. Approaches to Monitoring A-LUI 
The monitoring of indicators to measure and assess A-LUI relies on both methods: in 

situ approaches provide detailed local information, while RS approaches, as physically 
based systems, capture status and change over large areas, though the underlying causes 
of change may differ. Therefore, coupling both approaches is essential. Traits represent 
the crucial connecting element between in situ and RS methods, as they can be directly 
measured in the field or indirectly derived from RS data. However, RS systems capture 
only a subset of traits—those with spectrally observable properties—which are, therefore, 
referred to as “spectral traits.” Figure 1 illustrates how the trait approach helps to bridge 
the two methodologies and underlines the complementary role of in situ and RS data for 
a comprehensive assessment of A-LUI. 
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Figure 1. In situ and RS approaches and the five characteristics of A-LUI (trait indicators of A-LUI, 
genesis indicators of A-LUI, functional indicators of A-LUI, structural indicators of A-LUI, taxo-
nomic indicators of A-LUI). Trait indicators of A-LUI are the most important link between in situ 
and RS monitoring approaches (modified after Lausch et al. [62]). 

3.1. In Situ Approaches 

The measurement and monitoring of land use intensity represent a pivotal facet of 
land use research, particularly in the context of sustainable resource utilisation and eco-
system conservation. In situ methods have been shown to be a valuable tool for the col-
lection of detailed data and analysis of land use in different geographical and agricultural 
contexts. 

The following observations were made during the course of field studies. One of the 
fundamental approaches to measuring land use intensity is through direct observation 
and measurement in situ. These methodological approaches provide direct insights into 
the environmental and agricultural conditions on the ground. (I) Direct field measure-
ments entail detailed investigations at specific sites where scientists record land use pat-
terns, plant species, soil conditions, and other relevant parameters. The methodology en-
compasses the measurement of plots, the collection of soil and plant samples, and the ob-
servation of agricultural practices. Direct measurements are imperative in order to gener-
ate accurate data on A-LUI and to understand the interactions between land use and en-
vironmental conditions. (II) Field mapping constitutes a complementary method in which 
researchers are tasked with the production of maps delineating land use types by travers-
ing the study area on foot or by vehicle. The cartographic representations under consid-
eration here were originally produced on paper or using early graphical systems. They 
provide a visual representation of the spatial distribution of land use. These data are of 
pivotal significance for subsequent analysis and interpretation of land use intensity. 

Surveys and interviews: In addition to direct field measurements, surveys and inter-
views represent an integral component of the collection of land use intensity data, as they 
encompass the human and social aspects of land use. They also record information that 
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only the farmer will know, such as the type and quantity of pesticides and fertilisers used, 
etc. Structured interviews and surveys with landowners, farmers, and other land users 
can be used to collect information on land use practices, crop cycles, and irrigation meth-
ods. The collection of qualitative data facilitates the development of a more profound com-
prehension of the decision-making processes employed by land users, which are fre-
quently influenced by economic, cultural, and political factors. Cultural and historical 
studies: The utilisation of cultural and historical studies is instrumental in facilitating a 
more profound comprehension of the historical evolution of land use patterns. The anal-
ysis of historical maps, archival records, and government reports provides valuable infor-
mation on the long-term use and change in land areas and helps in understanding trends 
and shifts in land use. 

The disciplines of analogue and digital cartography, as well as Geographic Infor-
mation Systems (GIS), are discussed herein. The utilisation of mapping technologies and 
Geographic Information Systems (GIS) is of pivotal significance in the processes of record-
ing and analysing land use intensity. These methodologies provide a comprehensive vis-
ual representation of the physical and agricultural traits of an area. Topographic maps: 
Topographic maps, produced by surveying, provide a basic representation of physical 
features such as contour lines, land cover, and infrastructure. These maps constitute a val-
uable source of data for the spatial analysis of land use. Aerial mapping: Prior to the ad-
vent of contemporary satellite technologies, aerial photographs were captured from air-
craft and utilised to generate detailed cartographic representations. The interpretation of 
these images, frequently facilitated by the use of stereoscopes for three-dimensional view-
ing, enable a precise analysis of land use patterns and changes. The third point of the 
categorisation is Geographical Information Systems (GIS) and vector data. Geographic In-
formation Systems (GIS) utilise vector data to display and analyse geo-referenced infor-
mation on land use types and distributions. These systems facilitate sophisticated spatial 
analysis and monitoring of A-LUI indicators at local, national, and global levels. 

The collection and analysis of agricultural yield data, as well as the maintenance of 
administrative records: The analysis of land use intensity is facilitated by quantitative and 
administrative information, which is provided by agricultural yield data and legal docu-
ments. Yield measurements: Yield data, frequently supplied by local or national agricul-
tural authorities, offer insights into the productivity and utilisation of agricultural land. 
This information is indispensable for drawing conclusions on the intensity and efficiency 
of land use. Cadastral data: Cadastral data, encompassing land registry records and asso-
ciated legal documentation, contains information pertaining to land ownership, deline-
ated parcel boundaries and land use rights. These data are of crucial importance for the 
comprehension of formal land use patterns and their legal framework. IACS data: The 
IACS system occupies a pivotal position in the aggregation and administration of agricul-
tural data within the European Union. The database under consideration encompasses a 
wide range of data, including, but not limited to, information pertaining to plant protec-
tion products; fertilisers; soil and water data; yield data; and production data. The sys-
tematised nature of these data facilitates the monitoring and evaluation of A-LUI. 

Phenotyping laboratories: Contemporary phenotyping laboratories (e.g., Danforth 
Plant Science Centre, USA; IPK Gatersleben, Germany; JPPC, Germany; International 
Plant Phenotyping Network) utilise technologies such as automated imaging, sensors, 
drones, and robots to collect substantial data on plant growth, developmental disorders, 
soil, climate, and their interactions under laboratory conditions. This high-throughput 
phenotyping approach enables researchers to analyse numerous plants expeditiously and 
efficiently. Phenotyping laboratories are of significant importance in the context of A-LUI 
monitoring, as they facilitate the analysis and comprehension of the repercussions that 
intensive agricultural practices have on both plants and soils. This analysis encompasses 
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the assessment of the impact on plants, including the enhancement of yield and the culti-
vation of stress resistance, as well as the investigation of the sustainability of land use, 
encompassing issues such as soil degradation. The following aspects should be moni-
tored: erosion and nutrient depletion; resource efficiency (reduced fertiliser use, water-
saving irrigation techniques); biodiversity and ecosystem services (monitoring the genetic 
diversity of crops and analysing their interaction with the environment (changes in geno-
type, phenotype, epigenetics)). Phenotyping laboratories are particularly well-suited to 
the testing and development of new sensor systems in a range of realistic and controlled 
cultivation scenarios (e.g., the FLuorescence EXplorer (FLEX) [71]. The testing of sensor 
prototypes on different plant species under controlled conditions, such as varying light 
conditions, temperature, and humidity, is a further method of evaluation. For instance, 
the RS-based indicator of solar-induced chlorophyll fluorescence (SIF) has been the subject 
of study in phenotyping laboratories, with a focus on monitoring plant stress [72]. More-
over, these data are imperative for the validation of novel sensors and the assessment of 
their measurement accuracy and efficiency. 

The implementation of in situ A-LUI monitoring techniques frequently necessitates 
a considerable investment of labour, often resulting in protracted monitoring processes. 
These methodologies are further constrained to specific geographical areas and temporal 
frames. Nevertheless, they furnish significant insights into land use and A-LUI, derived 
from highly accurate local information. These methodologies form the foundation for con-
temporary, technologically advanced RS technology and data analysis techniques. It is, 
therefore, evident that the combination of in situ and RS approaches is imperative for ef-
fective A-LUI monitoring. 

3.2. RS Approach 

3.2.1. Principles of Monitoring A-LUI Using RS 

All RS technologies are non-contact and detect traits and trait variations in land cover 
from a few millimetres (close range) to thousands (air-spaceborne) of kilometres (see Fig-
ure 2) away. RS sensors are integrated on various RS platforms such as wireless sensor 
networks (WSN), laboratory and field platforms, lysimeters (soil), phenocameras, masts, 
drones, balloons, as well as air- and spaceborne platforms. Different RS technologies 
(RGB/photographic, multispectral, hyperspectral, TIR, laser, radio/RADAR, and LiDAR) 
are often used in combination on many platforms. As traits and trait variations exist lo-
cally and globally, RS allows objective and continuous monitoring and derivation of 
standardised A-LUI indicators from a local to global scale. 

The collection of indicators that quantify A-LUI is a crucial RS application that began 
with the availability of spaceborne RS data in the 1970s [73]. The focus here was on land 
cover monitoring, LULC and crop classifications, land use change [73,74], and the deter-
mination of basic functional vegetation traits using indicators such as NDVI [75]. The free 
availability and opening up of RS missions (such as Landsat [76], the Copernicus missions 
[77], or the hyperspectral mission (EnMAP [42])) accelerated the use and development of 
further RS-based A-LUI indicators. RS approaches are certainly ideal for deriving A-LUI 
indicators, as RS is based on the following basic principle: RS captures traits and trait var-
iations directly or indirectly in plants, vegetation diversity, geodiversity, geomorphology, 
terrain, and water diversity. The spectral reflectance and absorption of pixels are, thus, 
the result of interactions between light (the atmosphere), phylogenetic/genetic, biophysi-
cal, biochemical, physical, morphological, physiological, phenotypic, structural, taxo-
nomic, and functional characteristics of the recorded traits of vegetation diversity, geodi-
versity [12,78], and anthropogenic changes and disturbances by A-LUI. RS-based moni-
toring can, thus, capture indicators of A-LUI, as A-LUI is subject to complex and multidi-
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mensional influences, which are characterised by the interaction of abiotic–biotic compart-
ments and anthropogenic factors (e.g., pesticide use, fertilisation, management) and their 
interactions. 

 

Figure 2. Different RS platforms; wireless sensor networks (WSN); WSN over lysimeters, phenotyp-
ing laboratories, global change experimental facility (GCEF), drones, towers, balloons, airborne- and 
spaceborne RS platforms with different RS technologies (RGB/photography, multispectral, hyper-
spectral, thermal, laser, RADAR, acoustic, and LiDAR) to monitor indicators of land use intensity 
on different spatial and temporal scales (modified from Lausch et al. [63]). 

3.2.2. Challenges of Monitoring A-LUI Using RS 

The recording of A-LUI through RS brings numerous advantages but also specific 
challenges associated with the particularities of agricultural practices and sensor charac-
teristics (spectral, spatial, temporal). For example, Maudet et al. [79] clearly emphasised 
in a comparative study that there are significant differences between in situ indicators and 
land use data derived from RS. They demonstrated that land cover maps based on RS are 
not a reliable indicator of management intensity at the field level, as the classifications of 
these maps do not adequately capture the A-LUI caused by agricultural practices. In ad-
dition, the landscape structure described by the area diversity varies significantly depend-
ing on the classification systems used. These differences strongly depend on the number 
of intensity classes considered, which we analysed with regard to the sensitivity of a target 
variable [79]. The following challenges exist when deriving A-LUI from RS data: 

(1) Limited coverage of agricultural practices 
RS can identify different agricultural crops, but differentiating between intensive and 

extensive cultivation (e.g., conventional vs. organic farming, monocultures vs. crop rota-
tion) is still a challenge. Spectral indices such as the NDVI only provide information on 
vegetation density and health but not direct information on the intensity of use, such as 
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the use of fertilisers, pesticides, or irrigation systems. In order to record the use of fertilis-
ers, pesticides, or irrigation systems using RS, which is often performed using indirect 
indicators or a set of indicators 

Recording management practices: The way agricultural land is managed, such as the 
frequency of ploughing, crop rotation, or the use of agrochemicals, is crucial for A-LUI. 
These management practices can only be derived from RS data with a high geometric res-
olution (<1 m). 

(2) Seasonal dynamics 
Agricultural areas go through different phases within a year (sowing, growth, har-

vest, fallow), which lead to significant changes in the vegetation. These seasonal variations 
can lead to misjudgements of the A-LUI if sufficient high-resolution, temporally dense 
data is not available. The challenge is to distinguish between natural seasonal variations 
and actual intensity changes. Multiple harvests: In regions with several harvests per year 
(e.g., in tropical areas), repeated RS images are required to correctly record the number 
and intensity of harvests. However, the temporal coverage of satellite images is often in-
sufficient to fully document such multiple harvests. The use of RADAR data (Sentinel-1) 
in combination with optical RS data is expedient here, as they are recorded independently 
of cloud cover and at a high temporal density. 

(3) Irrigation and water management 
Irrigation is a central factor of A-LUI, but the detection of irrigation systems is only 

indirectly possible through RS, e.g., by quantifying soil moisture or vegetation health. Es-
pecially in regions with periodic rainfall, it is difficult to distinguish between naturally 
occurring moisture changes and human-induced irrigation. Recognising water stress: RS 
can indicate the condition of vegetation, but it is often difficult to distinguish between 
natural causes (e.g., drought, inadequate soil properties) and the effect of intensive irriga-
tion practices or water stress. 

(4) Fertiliser and pesticide use 
The use of fertilisers and pesticides is a key factor in the intensity of agricultural pro-

duction, but these inputs are virtually invisible to RS. While it is possible to infer the im-
pact of these inputs on vegetation health (e.g., via spectral indices), there is no direct evi-
dence of the amount or type of chemicals used. 

Long-term soil degradation: Intensive use of fertilisers can have long-term effects on 
the soil, such as salinisation or nutrient depletion, but these are difficult to detect by RS. 
These effects are not directly reflected in the vegetation indices. 

(5) Small-scale agricultural structures 
In many parts of the world, particularly in developing countries, agriculture is small-

scale and heterogeneous. Small farmers often cultivate very small plots of land with dif-
ferent utilisation intensities. As a result, there are numerous problems with the demarca-
tion of field boundaries using RS. For example, different plant species or land use types 
can have similar spectral signatures, which makes differentiation difficult. Furthermore, 
natural field boundaries are often not sharp, e.g., due to transition zones or hedges, which 
makes precise demarcation difficult. The spatial resolution of many RS data is often not 
sufficient to reliably capture these small-scale differences. High-resolution RS data (<1 m) 
is required here, but this is often expensive or not regularly available. For example, Land-
sat or Sentinel-2 data cannot be used to determine roads, field paths, or small structures 
[80], which is crucial for deriving field structures. Furthermore, Figure 3 shows the prob-
lems of the spatial resolution of RS data in the detection of crop vegetation using the ex-
ample of an oilseed rape plant, which was recorded at different flight altitudes (1–80 m). 
There are currently only a few RS-based sensors that are freely available and can quantify 
high-resolution landscape structures and patterns (e.g., detection of agricultural utilisa-
tion boundaries, small structures) with sufficient spatial accuracy (see Table A2). In order 
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to record the small-scale nature and utilisation structure, aerial image data (spatial reso-
lution of 20 cm) is, therefore, repeatedly used, which is subsequently recorded vectorially 
and/or manually [81–84]. 

(6) Agroforestry and mixed cropping:  
In agroforestry systems or mixed cropping, it is difficult to derive the intensity of 

agricultural use from RS, as the different plant species are intertwined and are often 
grown under trees. Tree canopies can obscure the underplanting, so that important infor-
mation about the agricultural intensity is lost. 

(7) Limited spectral information of RS data 
While standard satellite sensors such as Landsat or Sentinel provide useful spectral 

information, these are often insufficient to capture subtle differences in the type and in-
tensity of agricultural use. Hyperspectral RS sensors (e.g., EnMAP, DESIS) could provide 
more detailed information, but in many cases they are not widely available and their spa-
tial resolution is limited to at least 30 × 30 m. Vegetation indices are often insufficient: 
spectral indices such as the NDVI can capture general biomass and vegetation health, but 
they do not provide detailed information on the intensity of agricultural activities (e.g., 
distinction between intensive and extensive cultivation). 

(8) Climatic and topographical influences 
Weather events such as drought or flooding influence vegetation development and 

can make it difficult to separate differences in A-LUI from natural or climate-related in-
fluences. Topography and land cover: In hilly or mountainous regions and in areas with 
widely varying land cover (e.g., grassland and arable land next to each other), RS data 
may have difficulty providing accurate A-LUI data, as topography or shading may affect 
the quality of the data. 

 

Figure 3. Problems of spatial resolution of RS data in the detection of crop vegetation. (a) Image of 
a rapeseed plant at a flight altitude of 1 m with a ground resolution of 0.6 mm per pixel. (b) Image 
of a rapeseed plant at a flight altitude of 5 m with a ground resolution of 1.5 mm per pixel. (c) Image 
of a rapeseed plant at a flight altitude of 10 m with a ground resolution of 2.5 mm per pixel. (d) 
Image of a rapeseed plant at a flight altitude of 20 m with a ground resolution of 5 mm per pixel. (e) 
Image of a rapeseed plant at a flight altitude of 40 m with a ground resolution of 10 mm per pixel. 
(f) Image of a rapeseed plant at a flight altitude of 80 m with a ground resolution of 20 mm per pixel 
(from Grenzdörffer [85]). 
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Table A3 provides a bridging overview that assigns each major challenge to one or 
more A-LUI definitions (trait, genesis, structural, taxonomic, functional) and lists 
potential RS- and AI-based solutions. This connection illustrates how the proposed 
framework can serve as a structured response to the practical difficulties of monitoring A-
LUI with RS.  

3.2.3. Separating A-LUI Indicators from Productivity and Spectral Signals 

A key conceptual challenge in monitoring A-LUI with RS is the risk of conflating 
management intensity with signals of productivity potential or land cover change. High 
crop yields, for example, may result from intensive management (e.g., irrigation, fertilisa-
tion), but they may also reflect favourable soil and climate conditions. Similarly, RS-based 
indicators can inadvertently capture land cover conversion (e.g., expansion or abandon-
ment) rather than intensity per se. To address this, we distinguish three components (Fig-
ure 4): 

1. Management intensity signals—captured by traits and functional indicators (e.g., leaf 
nitrogen content, irrigation proxies, yield per unit input). 

2. Biophysical potential signals—separated through normalisation with soil and cli-
mate data (e.g., adjusting NDVI or yield proxies for rainfall and soil fertility), or 
through modelling and domain adaptation approaches. 

3. Land cover change dynamics—treated as a separate dimension under genesis indi-
cators, where RS time series are used to track expansion, abandonment, or rotations. 

Explicitly separating these dimensions can help avoid misinterpretations and ensure 
conceptual clarity and operational robustness. 

 

Figure 4. RS indicators capture management intensity (e.g., fertilisation, irrigation), while biophys-
ical potential (climate, soil) is accounted for through normalisation and modelling. Land cover 
change dynamics are treated separately via RS time series to avoid conflating intensity with produc-
tivity or conversion signals. 

4. Definition of A-LUI Using RS 
In order to understand RS-based A-LUI indicators, to derive new ones and to under-

stand the suitability of different RS technologies with regard to the development and cat-
egorisation of new indicators, a definition of A-LUI using RS data is required. A-LUI can 
be defined through RS as the combined expression of five complementary dimensions: 
trait, genesis, structural, taxonomic, and functional indicators (see Figures 5 and A1). 

(I) Trait Indicators of A-LUI: “Trait indicators describe measurable biophysical and bio-
chemical properties of plants, soils, or water that respond directly to management 
intensity”. Examples using RS include leaf chlorophyll or nitrogen content derived 
from hyperspectral sensors (e.g., EnMAP, Sentinel-2 red-edge indices), leaf area index 
(LAI), or biomass estimated from multispectral vegetation indices such as NDVI or 
EVI, water stress, or photosynthetic activity monitored through solar-induced chlo-
rophyll fluorescence (SIF) from the FLEX mission. 

(II) Genesis Indicators of A-LUI: “Genesis indicators capture the temporal development and 
history of agricultural management practices, i.e., how intensity evolves over time”. 
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Examples using RS include detect crop rotations, tillage events, or multiple harvests 
(Sentinel-1/2 time series); long-term Landsat archives documenting intensification 
trends such as the expansion of irrigated areas or the transition to monocultures. 

(III) Structural Indicators of A-LUI: “Structural indicators describe the spatial configuration 
and arrangement of agricultural land, including field geometry and landscape ele-
ments”. Examples using RS include field size and shape derived from high-resolution 
optical imagery (e.g., PlanetScope); hedgerows and boundary elements identified 
through LiDAR or UAV mapping; landscape diversity indices (e.g., number of crop 
types per hectare) based on classified RS data. 

(IV) Taxonomic Indicators of A-LUI: “Taxonomic indicators refer to the diversity and com-
position of crop species or land use types within an agricultural landscape”. Examples 
using RS include crop type classification using spectral signatures (e.g., distinguish-
ing wheat vs. maize with Sentinel-2); detection of mixed cropping or agroforestry sys-
tems with hyperspectral UAV imagery; regional crop mapping from multi-temporal 
Sentinel-2 and Landsat data. 

(V) Functional Indicators of A-LUI: “Functional indicators represent the ecological pro-
cesses and services affected by agricultural intensity”. Examples using RS include 
crop productivity (e.g., yield estimates per hectare) derived from vegetation indices 
and biomass models; soil moisture inferred from radar backscatter (Sentinel-1) as a 
proxy for irrigation intensity; carbon sequestration potential or emission estimates 
based on biomass and soil models combined with RS observations. 

To provide a detailed understanding of these five key dimensions of A-LUI indica-
tors, Sections 4.1–4.5 elaborate on each category individually, namely trait, genesis, struc-
tural, taxonomic, and functional indicators, illustrating their derivation and application 
using RS approaches. 

 

Figure 5. RS monitoring of the five characteristics of A-LUI: (I) the trait indicators of A-LUI, (II) the 
genesis indicators of A-LUI, (III) the structural indicators of A-LUI, (IV) the taxonomic indicators of 
A-LUI, and (V) the functional indicators of A-LUI. (a) Chlorophyll value; (b) phosphorus value 
(from Picado and Romero [86]); (c) terrace detection (from Yu et al. [87]); (d) perimeter boundaries 
of farmland blocks (from Wang et al. [88]); (e) shape, size, and small-scale nature of the border 
between Saxony-Anhalt and Lower Saxony; (f) hedgerow map classifications from an aerial 
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photography and (g) TerraSAR-X image (from Betbeder et al. [89]); (h) wall-to-wall crop type 
mapping using the benchmark 10-day interval composite of Landsat and Sentinel-2 time series 
(from Griffiths et al. [90]), types of grassland management intensity: (i) extensive, (j) intensive (from 
Bartold et al. [91]); (k) disease severity prediction in sugar beet using UAV multispectral data (from 
Günder et al. [92]); (l) mean SOC content and (m) C:N ratio maps predicted with Sentinel-1, Sentinel-
2 and Landsat-8 data (from Zhou et al. [93]), (n) the spectral fingerprint of A-LUI can be determined 
using spectral RS data. 

4.1. Monitoring the Trait Indicators of A-LUI Using RS 

The recording and monitoring of traits form the basis for monitoring the genetic, tax-
onomic, structural, and functional A-LUI indicators using RS [94,95]. The monitoring of 
traits and trait variations (vegetation, soil, geomorphology, water) is, therefore, an essen-
tial basis for the assessment and management of A-LUI using RS. Traits are plant, soil, 
and hydrological properties that represent indicators of agricultural processes and their 
intensity. The targeted monitoring of such traits makes it possible to use resource inputs 
such as fertilisers, water, and pesticides more efficiently and, thus, make agricultural pro-
duction more sustainable. The A-LUI traits refer directly to the extent of technological 
progress, the precision of the control of the resources used, and increases in efficiency in 
agriculture. The more precisely plant- and soil-related traits such as growth, yield, re-
sistance to stress factors, or nutrient uptake can be monitored, the more effectively land 
use intensity can be controlled and optimised. Table A4 contains numerous examples, 
sensors, and references. 

4.1.1. Trait Indicators of A-LUI—Spectranometric Approach 

A particularly suitable approach for recording A-LUI is the spectranometric ap-
proach according to Greg Asner [95]. This method utilises, e.g., hyperspectral and multi-
spectral RS data, which enables a detailed and direct recording of biochemical and struc-
tural characteristics of the vegetation (see Figure 6). The approach is characterised by sev-
eral specific strengths: The method allows a detailed biochemical, structural, and func-
tional characterisation of vegetation traits. Chemical characteristics such as nitrogen and 
chlorophyll content as well as concentrations of lignin, cellulose, and water content are 
precisely quantified using RS. As intensive agricultural use is typically associated with 
increased use of nitrogen fertilisers and pesticides, the resulting biochemical changes in 
the vegetation can be precisely recorded and spatially mapped. The hyperspectral ap-
proach allows precise quantification of plant structural characteristics such as leaf area 
index (LAI), leaf angle distribution, plant height, and biomass. These parameters are di-
rectly dependent on the type and intensity of cultivation, so that direct conclusions can be 
drawn about the intensity of land use. This method monitors the early detection of func-
tional characteristics such as plant stress, for example, caused by water scarcity, over-fer-
tilisation, or pest infestation. The detailed spectral signatures make stress symptoms visi-
ble at an early stage so that management decisions can be adapted and optimised in good 
time. By using hyperspectral RS technologies, which capture hundreds of narrow spectral 
bands, changes in plant physiology and soil can be measured and quantified in a differ-
entiated manner. This allows a precise characterisation of the intensity of use at both field 
and landscape level. Finally, the spectranometric approach integrates hyperspectral data 
with ecological and agronomic models as well as satellite data from missions such as FLEX 
or Sentinel-3, enabling validated, precise, and in-depth statements about vegetation pro-
cesses and the intensity of land use. The scientific significance of Greg Asner’s approach 
lies particularly in making complex ecological relationships such as biodiversity, carbon 
storage, and the effects of human activities on ecosystems comprehensible in detail. In the 
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agricultural context, this enables a better understanding of sustainability and the ecologi-
cal effects of different land use strategies. To summarise, the spectranometric approach 
offers a comprehensive, high-resolution, and differentiated method for the precise record-
ing of A-LUI and, thus, represents an important basis for sustainable agricultural prac-
tices. Specific examples of monitoring the trait A-LUI indicators are as follows. 

 

Figure 6. Mapping spatial nutritional variability of (a) sugarcane, (b) foliar chlorophyll, (c) foliar 
nitrogen, (d) phosphorus, (e) potassium concentrations using a MicaSense RedEdge-P camera at-
tached to a drone and LiDAR data (from Picado and Romero [86]). 

4.1.2. Trait Indicators of A-LUI—Chlorophyll Content 

The measurement of chlorophyll content (Cab) using RS technology is of central im-
portance, as this parameter is closely correlated with photosynthetic performance and, 
thus, plant vitality and productivity [96]. Chlorophyll serves as an effective indicator of 
A-LUI, as it reflects the influence of agricultural practices, fertiliser use, and plant health. 
Higher anthropogenic interventions, for example, through intensive fertilisation or the 
use of pesticides and precision agriculture, are directly reflected in changes in chlorophyll 
levels. An increased chlorophyll content often signals improved plant vitality, while stress 
factors such as drought, disease or nutrient deficiency can lead to a reduction in chloro-
phyll content. However, intensive management methods, including targeted plant pro-
tection measures, can partially compensate for such stress factors, which in turn results in 
more stable chlorophyll levels [96]. The importance of chlorophyll content arises from its 
role as an essential ecophysiological variable, which is closely linked to photosynthetic 
activity and, thus, to the vitality and productivity of plants [97]. In particular, the chloro-
phyll content provides information about nitrogen uptake and the general nutritional sta-
tus of the vegetation. Plants in intensive farming show higher chlorophyll levels due to a 
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higher nitrogen supply, whereas extensive or less intensively farmed systems typically 
have lower chlorophyll concentrations [98]. 

Hyperspectral RS techniques, which are characterised by their high spectral resolu-
tion and sensitivity to biophysical parameters, are primarily used for RS of chlorophyll 
content [97] (see Figure 7). Current and future hyperspectral missions such as PRISMA 
[99], HISUI [100], SHALOM [101], CHIME [43], or EnMAP [42] and others enable the ac-
quisition of detailed spectral signatures, which form the basis for a precise estimation of 
the chlorophyll content. The Copernicus Hyperspectral Imaging Mission (CHIME) of the 
European Space Agency (ESA) in particular, with a spatial resolution of 20 to 30 m and a 
temporal repetition cycle of around 10–12 days, opens up new perspectives for monitoring 
chlorophyll content in agricultural contexts [43,96]. There are two main traditional ap-
proaches to determine chlorophyll content by RS: empirical regression techniques and 
physically based modelling approaches. Empirical techniques usually use spectral indices 
calibrated to field measurements but often show site-specific and vegetation-dependent 
limited transferability [102]. Physically based models, on the other hand, which are based 
on radiative transfer models (RTMs), are more robust and transferable, but require com-
plex calibration and are computationally intensive [98,103]. More recently, the hybrid ap-
proach has become established, which combines physical models with machine learning 
and, thus, unites the advantages of both methods: the robustness of physical models and 
the efficiency of machine learning methods. Especially in combination with active learn-
ing techniques, this approach shows promising results in chlorophyll estimation and 
other vegetation parameters [96,97]. Despite the progress, challenges remain, such as spec-
tral saturation effects at high chlorophyll levels or interference from ground reflections in 
open vegetation stands. In addition, the relationship between chlorophyll and nitrogen 
content can vary from species to species, which makes it difficult to apply universal mod-
els [104]. Therefore, hybrid approaches combining physical and data-driven methods are 
currently the most promising way to improve chlorophyll estimation by RS and ensure 
more precise monitoring of plant condition and nitrogen uptake in agriculture. 

 

Figure 7. Spatial distribution of chlorophyll content over the maize field for vegetative stages based 
on UAV-MS data: (a) early vegetation, (b) mid vegetation, (c) late vegetation, (d) early reproductive, 
(e) mid reproductive, (f) late reproductive (from Brewer et al. [105]). 
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4.1.3. Trait Indicators of A-LUI—Chlorophyll Fluorescence 

The Fluorescence Explorer (FLEX) sensor of the European Space Agency (ESA) [106] 
offers outstanding potential for the precise measurement of A-LUI (see Figure 8). By di-
rectly measuring solar-induced chlorophyll fluorescence (SIF), FLEX provides profound 
insights into the photosynthetic activity, vegetation health, and productivity of agricul-
tural land [72,107]. The methodological suitability of FLEX for the assessment of A-LUI is 
based on several crucial factors: Firstly, FLEX directly measures photosynthetic activity, 
as SIF directly correlates with the photosynthetic rate of vegetation. Intensively used ag-
ricultural areas, characterised by increased use of fertilisers, irrigation, and pesticides, typ-
ically have higher fluorescence values, making FLEX a reliable tool for assessing A-LUI 
[72]. Secondly, the FLEX sensor allows early detection of plant stress, for example, caused 
by drought, nutrient deficiency, or over-fertilisation [108]. This early detection makes it 
possible to initiate targeted management measures before visible damage or significant 
yield losses occur [72]. Thirdly, with the FLORIS instrument (Fluorescence Imaging Spec-
trometer), FLEX has a high spectral and spatial resolution, which means that subtle dif-
ferences in photosynthetic performance between intensively farmed areas can be precisely 
recorded. The spatial resolution of around 300 m allows detailed analyses and differenti-
ated interpretations of land use intensity at a regional level [106]. Another methodological 
advantage is the integration of FLEX with Sentinel-3 satellite data. The synergetic use of 
optical and thermal sensors significantly improves the accuracy of deriving vegetation-
relevant parameters such as leaf area index (LAI) and chlorophyll content. These param-
eters are essential for the comprehensive assessment of vegetation health and enable a 
differentiated assessment of agricultural utilisation intensity [107]. In addition, FLEX con-
tributes significantly to the quantification of plant carbon sequestration, as SIF is closely 
linked to carbon uptake and, thus, to the global carbon cycle. This information is not only 
relevant for agricultural issues but also provides important insights for global climate 
modelling and sustainable development concepts [109]. 

 

Figure 8. (a) Reflectance and (b) canopy SIF maps obtained with the HyPlant airborne sensor over 
an agricultural research site in Klein Altendorf, Germany. Lower SIF is evident in forests (left in 
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lower panel) and higher SIF in dense agricultural fields (middle and right in lower panel). Fluores-
cence emission reveals information on vegetation status which is not visible in the reflectance do-
main. For example, the two fields denoted as a and b display almost identical reflectance (b), 
whereas their fluorescence emission is very different (a,b) (from Mohammed et al. [72]). 

4.1.4. Trait Indicators of A-LUI—Leaf Nitrogen Content 

The monitoring of leaf nitrogen (leaf nitrogen, LN; leaf nitrogen content, LNC) as an 
indicator of A-LUI, provides important insights into the relationship between agricultural 
practices and plant physiology. Leaf nitrogen is an essential component of plant protein 
metabolism and plays a central role in photosynthesis. Intensively farmed agricultural 
areas, which are often characterised by increased use of fertilisers, generally have higher 
leaf nitrogen concentrations. This increased nitrogen availability promotes plant growth 
and increases productivity. A study by Dong et al. [110] emphasises that the allocation of 
nitrogen in leaf structures, especially in cell walls, increases with leaf mass per area 
(LMA), which indicates the importance of structural and metabolic components of leaf 
nitrogen. The intensity of land use influences not only the leaf nitrogen content but also 
the biodiversity of agroecosystems.  

RS technologies have proven to be effective tools to measure LNC non-invasively and 
over large areas. There are a number of review studies on the detection of leaf nitrogen 
using RS technologies on different platforms [111–117]. Hyperspectral RS captures reflec-
tance spectra of vegetation over a broad wavelength spectrum, which enables detailed 
analysis of leaf biochemistry. A study by Berger et al. [98] developed a hybrid method for 
estimating the aboveground nitrogen content of plants that combines physically based 
models with machine learning. This method identified specific wavelengths in the 
shortwave infrared (SWIR) range that are particularly relevant for nitrogen detection [98]. 
The use of hyperspectral RS technology opens up enormous potential for detecting the 
biochemical constitution of plant traits like the leaf nutrient content. For example, studies 
use hyperspectral technologies (such as EnMap [118] or Prisma [119]) to record the leaf 
nitrogen content. The use of UAVs RS technologies [120] in combination with advanced 
machine learning algorithms has increased the precision of LNC estimation. Zhang et al. 
[121] developed a self-supervised spectral–spatial transformer network using UAV im-
agery to accurately predict the nitrogen status of wheat fields. This model achieved high 
accuracy (0.96) and showed good generalisability for nitrogen status estimation [121]. 
Vegetation indices, such as the Normalised Difference Vegetation Index (NDVI), have tra-
ditionally been used to estimate LNC. However, more recent studies have developed 
more specific indices that are more sensitive to nitrogen variation. A study on estimating 
leaf nitrogen content in rice using vegetation indices emphasised the role of UAV-based 
RS in accurately determining nitrogen status at the field level [122]. The combination of 
different RS platforms, such as satellite imagery and UAVs, enables scalable and flexible 
monitoring of LNC. A comprehensive analysis of RS monitoring of nitrogen levels in rice 
and wheat crops over the last 20 years highlighted the importance of integrating different 
platforms to improve the accuracy and efficiency of nitrogen monitoring [111]. Traditional 
RS methods to determine leaf nitrogen (leaf N) content are usually based on indirect indi-
cators, such as vegetation indices or chlorophyll-a+-b (Cab) content. However, these ap-
proaches reach their limits as the relationship between Cab and leaf N saturates at higher 
values and they are not very sensitive to early nutrient deficiency. A study by Y. Wang et 
al. [120] used Sentinel-2 satellite images to estimate various plant biochemical traits in 
large almond orchards in a two-year study. The traits, including leaf dry mass, leaf water 
content, and leaf Cab, were derived using a radiative transfer model and were used to 
explain the observed variability in leaf N. The resulting Sentinel-2 model for leaf N pre-
diction showed high accuracy with an r2 of 0.82 and an nRMSE of 13%. Both the model 
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performance and the contributing traits proved to be stable over the entire two-year pe-
riod. The integration of these plant biochemical traits, thus, provides a more reliable and 
stable basis for leaf N prediction than conventional approaches, opening up promising 
prospects for application in precision agriculture (see Figure 9). 

 

Figure 9. (a) Estimated leaf N maps from airborne hyperspectral data (0.4m spatial resolution) for 
the 2021, and (b) estimation leaf N from Sentinel-2 data (10m spatial resolution) (from Wang et al. 
[120]). 

Table A4 presents a structured overview of trait-based A-LUI indicators, including 
concrete examples, the corresponding RS sensors, and the representative literature refer-
ences. 

4.2. Monitoring the Genesis Indicators of A-LUI with RS 

Genesis indicators capture the temporal dynamics and historical development of A-
LUI. They describe how management practices such as crop rotations, multiple harvests, 
tillage events, or land conversions evolve over time. RS is particularly suited to monitor 
these processes through dense time series, enabling the detection of management cycles 
and long-term trajectories of intensification. 

4.2.1. Genesis Indicators of A-LUI—Subsurface Drainage 

Subsurface drainage (DS) systems play an essential role in modern agriculture by 
efficiently draining excess water, thereby improving soil quality and agricultural produc-
tivity. Accurately locating and analysing these systems is crucial for sustainable land man-
agement, as unmapped drainage systems can lead to water quality degradation and in-
creased nutrient inputs into water bodies [123]. Over the centuries, various civilisations 
such as the Egyptians, Chinese, and Indians developed their own drainage systems. In 
Europe, the drainage of agricultural land was established in the 17th century [124]. With 
the advent of motorised machinery in the 20th century, underground drainage systems 
spread rapidly, expanding agricultural land and making previously wet areas suitable for 
arable farming [125]. It is estimated that between 54% and 87% of the world’s wetlands 
have been lost since 1700 AD [126]. In addition to their positive effects on agricultural 
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production, drainage systems also have undesirable side effects. They can accelerate the 
release of nutrients, especially nitrogen and phosphorus, into water bodies and, thus in-
crease the risk of eutrophication [123]. In addition, draining carbon-rich wetlands can lead 
to increased CO2 emissions [127]. 

RS offers an efficient alternative to time-consuming manual investigations using 
ground penetrating RADAR and electromagnetic induction and enable large-area detec-
tion of drainage systems [128,129] (see Figure 10). The first attempts to record under-
ground drainage systems using airborne thermal infrared images were made as early as 
the 1970s [130]. Multispectral and hyperspectral imaging utilises near-infrared (NIR) and 
shortwave infrared radiation (SWIR) to detect soil moisture. Vegetation indices such as 
NDVI and NDWI help to identify wet areas where drainage systems may not be working 
effectively [131]. RADAR RS such as Sentinel-1 enable the detection of soil moisture dif-
ferences and help to recognise drainage patterns, even under cloudy skies or at night [132]. 
High-resolution digital terrain models (DTM/DEM) based on LiDAR RS data help to an-
alyse natural and artificial drainage paths. LIDAR can also detect microtopographies that 
indicate inadequate drainage [133]. Moist or water-saturated soils have different temper-
atures than dry soils. Thermal infrared images (TIR), for example from Landsat 8, can be 
used to recognise drainage, especially after precipitation or at night [134,135]. Studies 
have shown that the combination of optical and thermal images can significantly increase 
detection accuracy [136]. 

 

Figure 10. (a) Location of the study site within the Oak Openings regions in Ohio, USA. (b,c) section 
of visible image with dull colour linear feature interpreted as drainage tile with a parallel network, 
(d) the UAV used to acquire image, (e,f) a section of thermal infrared images of the study site with 
drainage tile (from Becker et al. [136]). 
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4.2.2. Genesis Indicators of A-LUI—Terrace Mapping 

Terrace fields are an important indicator for the genesis of A-LUI because they reflect 
the long-term adaptation and transformation of the landscape by humans. Here are some 
key reasons. Terraces were built to intensify the cultivation of slopes and to minimise soil 
erosion. These cultivation terraces are often found in steep, mountainous regions. 

In the study by Liu et al. [137], RS data (Sentinel-1/2) was used as an efficient alterna-
tive for recording terrace structures, as it enables large-scale monitoring. However, optical 
satellite images, especially in mountainous regions, are affected by high cloud cover and 
varying vegetation cover, which makes precise detection of terrace fields difficult. Previ-
ous studies on automated terrace mapping using high-resolution satellite imagery, such 
as the GF-2 satellite mission or WorldView-1/3, have focussed primarily on the Loess Plat-
eau in China, a region with comparatively less topographical challenges [87,138,139] (see 
Figure 11). This work mainly utilised optical RS data and applied object-oriented or deep 
learning methods for classification [140]. The use of high-resolution satellite images and 
digital terrain models (DEM) with an accuracy of 1–2 m significantly improves the recog-
nition accuracy of terrace structures. However, these methods are limited for large-scale 
analyses due to high costs and a considerable volume of data [137]. Especially in moun-
tainous regions, such as the analysed landscape in Southwest China, there are still signif-
icant challenges in the RS of terraces. Complex planting patterns, including crop rotation 
and mixed cropping, make it difficult to clearly identify terraces due to spectral similari-
ties between different land cover classes [141]. In addition, low- to medium-resolution 
satellite images have a limited ability to detect small-scale terrace structures, as these often 
only appear as mixed pixels in heterogeneous landscapes [142]. LiDAR (Light Detection 
and Ranging) and RADAR (Radio Detection and Ranging) are key RS technologies for the 
detailed detection of terrace structures. They provide precise topographical information 
that is essential for analysing and managing such landscapes. LiDAR, in particular, ena-
bles the creation of high-resolution, three-dimensional terrain models, which allow relia-
ble mapping of terrace structures even in densely forested areas [143]. 

 

Figure 11. GF-2 RS data of fused images and their corresponding labels for detection of terrace. The 
top row shows the GF-2 RS dataset of fused images. The bottom row represents the true labels cor-
responding to the GF-2 sample set of fused images (from Yu et al. [87]). 

An example of the application of this technology is provided by the study by Le Vot 
et al. [144], which aimed to reconstruct the historical development of land use on terraces. 
The aim of this study was to test the hypothesis of the resilience of these landscapes in the 
period from the 17th to the 21st century. For this purpose, current and archived geodata 
sets as well as LiDAR-based digital terrain models with a resolution of 1 m were used. 
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The analysis was carried out in an area that was recently affected by an extreme event and 
whose reconstruction was considered a challenge. The results showed that the optimal 
utilisation of the terraces corresponded to the demographic optimum in the mid-19th cen-
tury. After the Second World War, there was a gradual abandonment of the terraces, with 
significant differences between mountain regions. Nevertheless, the terraces remained in-
tact despite these developments and survived the extreme event under investigation. This 
confirms the hypothesis of resilience and provides important insights for future strategies 
to revitalise these landscapes in the context of climate change 

In the study by Garzón-Oechsle et al. [145], a mobile LiDAR-based mapping system 
(MMS) without the use of UAVs was used to map the terrain around the documented 
stone architecture of the Manteños (ca. 650–1700 AD). The study area covered 1.2 km2 in 
the cloud forests of Bola de Oro, Manabí, Ecuador. The resulting digital terrain models 
(DTMs), when combined with soil surveys and archaeological excavations, revealed a 
Manteño landscape that had been significantly altered by the construction of agricultural 
terraces, drainage channels, and water retention basins. These structures were designed 
to store and distribute water from seasonal rainfall and marine layers at higher altitudes. 
The extensive investment in this sophisticated landscape is likely due to the fact that the 
Chongón-Colonche Mountains were considered resilient areas to extreme climate changes 
associated with the El Niño–Southern Oscillation (ENSO) during the Medieval Climatic 
Anomaly (MCA, ca. 950–1250 AD) and the Little Ice Age (LIA, ca. 1400–1700 AD) [145]. 

4.2.3. Genesis Indicators of A-LUI—Allmenden 

Allmenden refers to communally used areas that played a central role in pre-modern 
agricultural societies. The term originates from the medieval legal system and referred to 
areas that were not privately owned by individuals but were used jointly by several or all 
members of a village community. In Europe, commons were widespread and were an 
important addition to private farmland, particularly in the three-field economy. In Eng-
land, Germany, and other parts of Europe, numerous commons were privatised in the 
17th–19th centuries, which often caused social tensions. Remnants of historical commons 
have been preserved, for example, in alpine pastures, heathland, or traditional co-opera-
tive forests 

Modern RS methods can be used to effectively record historical field systems and 
commons. The combination of different technologies, including LiDAR (Light Detection 
and Ranging) as well as multispectral and hyperspectral satellite images, is particularly 
powerful. LiDAR has the advantage of being able to penetrate vegetation and detect fine 
ground elevations and structures. This makes it possible to identify relics of earlier land-
forms, vaulted fields, hedge structures, and medieval paths. A practical application exam-
ple is the discovery of former three-field farming areas and commons that are now cov-
ered by woodland or modern agriculture. Medieval plough tracks and plot structures, 
particularly in Great Britain, Germany, and France, can also be detected using this 
method. In addition, multispectral and hyperspectral satellite images make it possible to 
differentiate between different soil types and vegetation cover, allowing conclusions to be 
drawn about historical agricultural use. Deviating vegetation structures also help to iden-
tify historical field boundaries. Former agricultural areas often show characteristic vege-
tation patterns or soil features that can be visualised using these techniques. Hyperspec-
tral analyses also offer the possibility of identifying differences in moisture content, soil 
chemistry, or erosion patterns, which provides additional insights into past land use prac-
tices.  

Edisa Lozić [146] analysed the use of airborne LiDAR data to discover, document, 
and interpret agricultural land use systems in the early medieval microregion of Bled (Slo-



Agriculture 2025, 15, 2233 23 of 84 
 

 

venia). By combining LiDAR data with archaeological, geological, and pedological anal-
yses, significant environmental variations within a microregion were identified. These en-
abled a detailed reconstruction of early medieval settlements and their agricultural use. 
The study by Masini et al. [147] investigated the effectiveness of LiDAR data for recon-
structing the urban form of a medieval village near Matera, southern Italy. The research 
shows how LiDAR data can be used to reconstruct the urban structure and architectural 
features of historical settlements, even in densely forested or difficult to access areas. 

4.2.4. Genesis Indicators of A-LUI—Deforestation 

The recording of deforestation to gain pasture or arable land is an essential indicator 
of A-LUI. It allows a detailed analysis of human interventions in the environment, espe-
cially with regard to changes in the carbon balance, biodiversity loss, resource utilisation, 
and soil changes. Modern RS technologies offer precise methods for measuring these en-
vironmental changes and assessing their ecological consequences over longer periods of 
time. Global deforestation shows significant losses of forest area in different regions of the 
world. The study “Forest Pulse: The Latest on the World’s Forests” describes the latest 
trends in forest loss and deforestation and provides an up-to-date assessment of the global 
state of forests (https://gfr.wri.org/latest-analysis-deforestation-trends accessed on 19 Oc-
tober 2025). According to Smith et al. [148], the global forest cover was around 4.06 billion 
hectares, with approximately 420 million hectares lost between 1990 and 2020, mainly in 
tropical regions. 

Slash-and-burn agriculture plays a significant role in the deforestation process and 
causes serious climate effects, including temperature increases, changes in precipitation 
patterns, and loss of biodiversity [149]. The use of unmanned aerial vehicles (UAVs) to 
analyse land cover during slash-and-burn has shown that multispectral imagery enables 
rapid and accurate assessment of land use change. In the future, this technology could 
serve as a standard method for recording slash-and-burn events [150]. The use of satellite 
imagery has proven to be one of the most efficient methods for the comprehensive and 
regular recording of deforestation. Optical satellites such as Landsat or MODIS provide 
high-resolution images that can be used to detect forest loss [151]. However, they are lim-
ited by weather conditions and cloud cover. RADAR systems such as Sentinel-1, on the 
other hand, work independently of light conditions and atmospheric influences, which 
makes them a reliable alternative for forest monitoring [152,153]. In addition, high-reso-
lution satellite images make it possible to identify smaller deforested areas that are often 
overlooked in large-scale analyses [154]. The combination of different RS technologies can, 
thus, provide a comprehensive analysis of global deforestation and contribute to the de-
velopment of effective conservation measures (see Figure 12). 

Table A4 presents a structured overview of genesis indicators of A-LUI indicators, 
including concrete examples, the corresponding RS sensors, and the representative litera-
ture references. 
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Figure 12. Deforestation events (2006–2016) were identified from Landsat time series (1990–2016) 
by analysing mean and standard deviation of photosynthetic vegetation indices. The example 
demonstrates how RS enables long-term monitoring of land cover change (from Tarazona et al. 
[154]). 

4.3. Monitoring the Structural Indicators of A-LUI with RS 

Structural indicators describe the spatial configuration and arrangement of 
agricultural land, including field size, shape, boundaries, and the presence or loss of semi-
natural elements such as hedgerows, buffer strips, or terraces. These structural properties 
are closely linked to management intensity, as land consolidation, removal of landscape 
elements, and increasing field sizes typically indicate intensification. RS offers powerful 
tools to capture such patterns, ranging from high-resolution optical imagery and LiDAR 
data to radar-based mapping of field boundaries and landscape complexity. By 
quantifying structural diversity and fragmentation, RS enables a systematic assessment of 
how land use intensity reshapes the agricultural landscape. 

4.3.1. Structural A-LUI Indicators—Crop Composition and Configuration 

The quantification of landscape structure and the derivation of structural indicators 
play a decisive role in the monitoring of A-LUI. For example, the extraction of farmland 
boundaries from RS data is a key A-LUI indicator and supports agricultural planning, 
resource conservation, and sustainable development. Field boundaries are defined by 
changes in the type of crops planted, which are visible in RS data as discontinuities in grey 
value, colour, or texture. Wang et al. [88] provide a comprehensive overview of Farmland 
Boundary Extraction using RS data. Spatially high-resolution satellite images (≤1 m) such 
as WorldView-2/-3 (0.3–0.5 m), QuickBird (0.61 m), Pleiades (0.5 m), or GeoEye-1 (0.41 m) 
are particularly suitable for capturing field boundaries, as they allow fine structures such 
as narrow field paths and small plots to be captured. Medium-resolution satellite data (1–
5 m) such as Sentinel-2 (10 m, with super-resolution at 5 m), Landsat 8 and 9 (30 m, for 
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large-scale land use analyses), GF-2 (1 m, Chinese satellite), or RapidEye (5 m, multispec-
tral available) are also suitable for large-scale analyses [88] (see Figure 13). 

RS data enable the quantification of field sizes and their spatial distributions, which 
allow conclusions to be drawn about the degree of A-LUI and its management practices. 
Large, contiguous areas on which a single plant species is cultivated are indicative of in-
dustrial agricultural practices [155]. The arrangement of such monocultures can be easily 
recognised by RS and is a structural characteristic of intensive use. High-resolution satel-
lites (Sentinel-2, WorldView, RapidEye) show that these agricultural areas appear as nu-
merous small, geometric fields that are often separated by paths or hedges. Here, the de-
gree of A-LUI is shown by small, highly parcelled fields, which gives an indication of the 
maximum utilisation of the available land [67]. Kümmerle et al. [31] use the image texture 
of Landsat data to derive the patch size, whereby the texture explained up to 93% of the 
variability of the field sizes in the study area in the border region between Poland, Slo-
vakia, and Ukraine. The patch size (field size) indicator also offers a unique opportunity 
of investigating changes in land use that have occurred due to post-socialist land reform 
strategies, as many large agricultural areas have been parcelled out through privatisation. 
For example, Figure 14 shows a Landsat RS dataset in the 1990s, which clearly shows the 
state border between Saxony-Anhalt and Lower Saxony north of the Harz Mountains due 
to the change in patch size and small-scale parcelling. 

 

Figure 13. (a) Linear threads in farmland, (b) demarcation lines, (c) boundary objects, (d) perimeter 
boundaries of farmland blocks. Such boundary features allow quantification of field size and shape, 
which are indicators of A-LUI (from Wang et al. [88]). 
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Figure 14. State border between the former FRG and GDR (different farming practices) after the fall 
of the Wall is clearly visible due to the shape, size, and small-scale nature of the border between 
Saxony-Anhalt and Lower Saxony north of the Harz Mountains in the 1990s, Germany. 

In the study by Roilo et al. [67], various A-LUI indicators (e.g., field size, LULC_ho-
mogeneity) are used to analyse their effects on biodiversity. To calculate the field size, 
they used the LULC classification (2020, at 20 × 20 m resolution) [156], which was subse-
quently converted into polygons. The problem here is that not all crops could be properly 
classified using Sentinel-2 RS data. Furthermore, no roads and field paths could be in-
cluded in the classification, which meant that the actual field size and the agricultural 
pattern could only be insufficiently quantified. In the study by Martin et al. [84], which 
deals with the effects of farmland heterogeneity on biodiversity, field size is emphasised 
as an important indicator. In order to improve the accuracy of the derivation of field size, 
it is often derived vectorially from aerial image data [82]. In this study, Mohr et al. [83] 
used aerial image data in combination with in situ data and interviews to answer the fol-
lowing question: Why has farming in Europe changed since the 1960s? In the study by 
Baessler and Klotz [157], historical and temporal time series of aerial image data were used 
to analyse changes in agricultural land use on landscape structure and arable weed vege-
tation over the last 50 years. The Interspersion and Juxtaposition Index (IJI) quantifies the 
mixing of different land use types and reflects the heterogeneity of the landscape. Higher 
IJI values indicate a more complex, diversified landscape, which has potentially positive 
effects on biodiversity [158].  

The Shape Index is also used to analyse differences in land use patterns and manage-
ment practices between different regions, such as East and West Germany. Such analyses 
can provide information on the impact of different management practices on landscape 
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structure and function [159]. Furthermore, shape indicators can be used, for example, to 
estimate operational efficiency, to justify the merging of two field plots or to facilitate land 
consolidation projects [160]. In his study, Oksanen [160] uses various shape indicators 
such as convexity, compactness, triangularity, rectangularity, ellipticity, the ratio of prin-
cipal moments, the radius of the inscribed circle, and the kerb index to classify the real 
field plots in order to quantify the operational efficiency (time and distance of the neces-
sary travelling distance). Griffel et al. [161] examine the relationship between field shape 
and size and empirically derived crop efficiency to support assumptions related to the 
prediction of crop costs, greenhouse gas emissions, labour requirements, and other factors 
that affect the willingness to grow energy crops. Salas and Subburayalu [162] used Air-
borne Hyperspectral AVIRIS and HYDICE datasets to assess the potential of an optimised 
shape index to discriminate between tillage types (maize-min and maize-notill) and be-
tween grass/pasture and grass/trees, tree, and grass. 

The indicator homogeneity of agricultural areas is a very good indicator for quanti-
fying the A-LUI. Areas with high A-LUI are characterised by high homogeneity in species 
distribution and homogeneous spectral characteristics in contrast to organically cultivated 
areas with increased diversity of species (no use of pesticides) [163]. Blüthgen et al. [163] 
were able to prove through in situ measurements at 150 grassland sites in the Biodiversity 
Exploratories in three regions in Germany (Alb, Hainich, Schorfheide) that the vascular 
plant diversity in grassland sites in two regions (Alb and Hainich) decreased significantly 
with the A-LUI. Important work on the assessment of homogeneity from RS data of land-
scapes can be found in Rocchini et al. [164], which provides an overview of the current 
state of RS-based techniques for deriving spectral heterogeneity as a proxy of species di-
versity. Based on these approaches, Rocchini et al. [165] developed the Rao’s Q diversity 
index, which is considered a remotely sensed spatial heterogeneity indicator for taxo-
nomic and functional plant species diversity [166]. 

4.3.2. Structural A-LUI Indicators—Surface Roughness of the Vegetation 

Closely related to homogeneity is the surface roughness of the vegetation, which de-
scribes the structural variability of the vegetation surface and provides valuable infor-
mation on plant architecture, stand density, species distribution, cultivation methods, and 
thus, A-LUI. Intensively managed fields with monocultural cultivation generally have 
low roughness (homogeneous stands), while more extensive, more diverse forms of culti-
vation or agroforestry systems have higher roughness. Steele-Dunne et al. [167] provide 
an overview of RADAR RS of agricultural canopies (see Figure 15). RADAR RS technolo-
gies can be used for a variety of applications resulting from the detection of the surface 
roughness of vegetation in agricultural areas. These range from crop classification, vege-
tation dynamics, vegetation phenology, water stress, and soil moisture derivation. Much 
of our understanding of vegetation backscatter from agricultural vegetation plots comes 
from SAR field-scale classification and monitoring studies [167]. Howison et al. [168] used 
Sentinel-1 RADAR data to quantify the spatial dynamics of surface roughness of vegeta-
tion in agricultural landscapes. Herrero-Huerta et al. [169] used the roughness of plant 
features (soya beans) using UAV aerial image data to estimate biomass in agricultural 
systems. Alfieri et al. [170] used the roughness, canopy structure, and configuration of 
vineyards to estimate the evapotranspiration loss required for irrigation and effective uti-
lisation of limited water resources. 
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Figure 15. Normalised thermographic reflectivity profile across three fields (corn, wheat, and bar-
ley) based on RADAR RS data (from Steele-Dunne et al. [167]). 

4.3.3. Structural A-LUI Indicators—Soil Roughness  

Soil roughness is a crucial indicator for A-LUI as it allows direct conclusions on till-
age practices, water balance, erosion processes, and vegetation development. Soil rough-
ness is an inhomogeneous medium consisting of different types of soil textures, different 
shapes and sizes of stones, clods, SM gradients, organic matter, etc. The microwave signal 
incident on this layer is modified, scattered, and attenuated due to the physical and struc-
tural properties of this medium [171]. Soil roughness, thus, reflects various physical and 
agronomic processes. For example, the intensity of soil cultivation (e.g., ploughing, har-
rowing) changes the soil roughness considerably. High roughness often indicates inten-
sive mechanical interventions, while low roughness indicates minimal soil turnover or 
conservation agriculture (see Figures 16 and 17). Different crops and management prac-
tices produce specific roughness patterns. During a vegetation cycle, a gradual smoothing 
of the soil can be observed due to natural processes (rain, wind, biological activity) or 
renewed roughness formation due to agricultural interventions. Furthermore, high soil 
roughness favours water infiltration, as depressions can store water. Too little roughness, 
on the other hand, favours surface runoff and increases the risk of erosion. Heavily tilled 
and, therefore, less rough soils are more susceptible to erosion, especially in dry areas. 
Roughness can, therefore, be used as an indicator for the risk of erosion and the sustaina-
bility of cultivation. Soil roughness influences the temperature and moisture distribution 
on the surface. High roughness can reduce soil warming and influence evaporation rates. 
By monitoring roughness, conclusions can be drawn about plant growth. Heavily culti-
vated soils with low roughness could, for example, indicate a high use of fertilisers and 
irrigation. It can be analysed very well using RS methods such as RADAR and LiDAR 
technologies as well as optical sensors [172]. 
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Figure 16. Field photographs to illustrate the surface roughness conditions in different agricultural 
plots on the Kosi Fan. (a) shows the photograph of a stubble field, (b) harrow field, (c) ploughed 
field, (d) furrow field, (e) surface undulation profile extracted by processing the photographs cap-
tured for the pin-profile using a digital camera in the field (from Singh et al. [171]). 

 

 

Figure 17. (a) Image in the top left shows the location of the Kosi megafan in the Himalayan Fore-
land, (b) spatial distribution of surface roughness prediction from Sentinel-1, Sentinel-2, and Shuttle 
RADAR Topographic Mission (SRTM) data. (from Singh et al. [171]). 

Table A4 presents a structured overview of structural indicators of A-LUI indicators, 
including concrete examples, the corresponding RS sensors, and the representative litera-
ture references. 

4.4. Monitoring the Taxonomic A-LUI Indicators with RS 

Taxonomic indicators capture the land use types within agricultural landscapes. 
They reflect whether farming systems are dominated by monocultures or characterised 
by mixed cropping, rotations, or agroforestry practices. Such diversity strongly influences 
ecological resilience and is a central dimension of land use intensity. RS enables taxonomic 
differentiation by exploiting spectral signatures, multi-temporal observations, and 
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classification algorithms to distinguish crop types, detect rotations, or identify mixed 
stands. 

4.4.1. Taxonomic A-LUI Indicators—Cropping Patterns 

The monitoring of cropping patterns using RS is a key indicator of A-LUI. They ena-
ble precise characterisation of cropping intensity, harvest frequency, diversity, and man-
agement strategies. With the help of RS such as multispectral, hyperspectral, and RADAR 
data, changes can be analysed on a large scale, and long-term trends in agriculture can be 
identified [155,173,174].  

Extensive agriculture shows more variable patterns with longer fallow periods, es-
pecially in semi-arid or mountainous regions, and relies on crop rotation, mixed cropping, 
or agroforestry. Single cropping indicates low intensity, while double/multi-cropping in-
dicates high A-LUI, often under irrigated conditions in tropical and subtropical areas. In-
tercropping increases vegetation variability and is often used in sustainable agricultural 
systems. High A-LUI is associated with short or no fallow periods, while low A-LUI has 
longer fallow periods for soil regeneration. Long-term changes in cropping patterns can 
be indicators of soil degradation, water scarcity, or climate change, which is why the adop-
tion of diversification strategies such as agroforestry and mixed cropping as sustainable 
measures against overexploitation is essential. Mahlayeye et al. [173] give a very good 
overview of the detection of cropping patterns using RS. Optical sensors are most com-
monly used for mapping single cropping, especially those with high spatial resolution, 
such as UAVs. These sensors enable the precise identification of single crop fields but are 
often only suitable for smaller areas. For large-scale (regional/global) analyses, on the 
other hand, medium to coarse resolutions are usually used, such as Spot, Landsat 8, 
MODIS, or Sentinel-2 [175,176]. In addition to optical sensors, microwave sensors with 
high temporal resolution, such as RADARSAT-2 or Sentinel-1 [177], are also used, partic-
ularly for rice cultivation in Asia or maize in Africa. Some studies have combined micro-
wave and optical sensors for more precise crop mapping [178]. In addition, hyperspectral 
or LIDAR sensors are increasingly being used [179–181]. Studies on the mapping of indi-
vidual crops are based on phenology and the spatial distribution of crops. Mapping indi-
vidual crops using single images may be insufficient, as plants change during the growing 
season. Continuous monitoring of plant development is, therefore, necessary. Overall, the 
analysis shows that single crop cultivation can be successfully mapped at both local and 
regional levels with high spatial and temporal resolution [173]. The mapping of multiple 
cropping and sequential cropping systems is carried out at different levels using optical 
sensors with high temporal resolution [173]. MODIS satellite data are frequently used 
[182,183], while Indian RS (IRS) satellites and the Wide Field Sensor (WiFS) [184] and Sen-
tinel-2 [174] are also used in some studies. The detection of triple cropping patterns was 
also carried out [182]. Microwaves (Sentinel-1 C-band time series data) and optical sensors 
enable the creation of detailed temporal profiles of sequential crops [185,186]. Commonly 
mapped crops are maize, rice, wheat, and soybeans, with studies on sequential cropping 
patterns increasingly being conducted in tropical regions characterised by long rainy sea-
sons 

Mapping sequential cropping patterns is more complex than single cropping, as dif-
ferent crops are planted in the same growing season, requiring a longer growing season 
and more continuous ground cover [173]. In particular, high-resolution multispectral and 
hyperspectral imaging provide valuable insights into the structure and dynamics of 
mixed crops. Vegetation indices such as the NDVI (Normalised Difference Vegetation In-
dex) or the EVI (Enhanced Vegetation Index) help to differentiate between different plant 
species based on their spectral reflectance properties, while hyperspectral sensors enable 
even more precise differentiation by analysing specific wavelength ranges. 
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4.4.2. Taxonomic A-LUI Indicators—Crop Classifications  

A study on high-resolution mapping of the German agricultural landscape using RS 
provides detailed insights into parcelling and field structures through crop classification. 
RS-based classifications of agricultural land use for the years 2017–2020 for the German 
agricultural landscape (grid of 10 m × 10 m) provide detailed insights into area size, dis-
tribution, and crop types cultivated (https://ows.geo.hu-berlin.de/webviewer/land-
wirtschaft/index.html accessed on 19 October 2025 [90], see Figure 18. Crop types such as 
rapeseed or sugar beet can be differentiated very well. However, species that are spec-
trally very similar in the course of the growth phases or in their appearance (e.g., winter 
wheat and triticale) or that differ solely in terms of their type of utilisation (e.g., silage 
maize and grain maize) cannot yet be recorded with sufficient accuracy using RS. Patterns 
of land use intensity, such as crop rotation or fallow periods, can be effectively captured 
by time-series RS data, providing insights into the sustainability of agricultural practices. 
Preidl et al. [156] used Sentinel-2A imagery data for crop classification on the national 
scale (Germany). 

 

Figure 18. Results of the wall-to-wall crop type mapping using the benchmark 10-day interval com-
posite of Landsat and Sentinel-2 time series for Germany (from Griffiths et al. [90]). 

The global distribution of A-LUI is crucial for understanding agricultural land use. 
Previous studies used coarse-resolution data, which are unsuitable for heterogeneous 
landscapes. To fill this gap, Zhang et al. [187] developed the global, spatially continuous 
CI dataset GCI30 with 30 m resolution using Landsat 7 ETM+, Landsat 8 OLI, and Senti-
nel-2 MSI time series during 2016–2018. GCI30 captures global patterns and spatial details, 
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with monocultures dominating 81.57% of cropland. Regional differences reflect natural 
and anthropogenic influences [187]. Howison et al. [168] developed a new RADAR-based 
RS technique for large-scale quantification of A-LUI. The method utilises the temporal 
stability of RADAR signals to capture differences in land use and provides more precise 
tracking of A-LUI at the landscape scale. 

4.4.3. Taxonomic A-LUI Indicators—Intensification of Grassland 

The intensification of grassland utilisation (e.g., more frequent mowing, increased 
grazing) significantly impairs biodiversity and ecosystem services. However, detailed in-
formation on utilisation intensity is usually locally limited. Numerous studies show 
[35,188] that mowing events can be mapped over large areas using satellite image time 
series. Time-series phenology can overcome limitations of classification-based mapping 
approaches, especially when characterising grassland use intensity, using the frequency 
and timing of mowing events as important indicators [189]. Lange et al. [188] developed 
a method for the RS-based derivation of grassland intensity for Germany 
(www.ufz.de/land-use-intensity accessed on 19 October 2025). Based on Sentinel-2 time 
series (spatial resolution of 20m) from 2017 to 2018, the NDVI time series data and avail-
able in situ indicators (grazing intensity, mowing frequency, and fertiliser use) of the Bi-
odiversity Exploratories for Germany [190] were used to train and derive a continuous A-
LUI index for grassland for Germany using Convolutional Neural Networks (CNN). An 
overall classification accuracy of up to 66% for grazing intensity, 68% for mowing, and 
85% for fertilisation was achieved. Weber et al. [35] developed a rule-based algorithm for 
mapping mowing and grazing events in Switzerland (2018–2021) based on Sentinel-2 and 
Landsat-8 data. The validation was carried out with time-series data from public 
webcams. The review (2020–2021) showed that ≥78% of the recorded events reflect actual 
management, but up to 57%—especially grazing events at higher altitudes—were not rec-
ognised. Bartold et al. [91] present a comprehensive study on the classification of manage-
ment intensity of grasslands in two different regions of Poland (see Figure 19). By using 
Sentinel-1 and Sentinel-2 data synergistically, different intensity types could be identified, 
allowing conclusions to be drawn about herbicide use. 

Table A4 presents a structured overview of taxonomic indicators of A-LUI indicators, 
including concrete examples, the corresponding RS sensors, and the representative litera-
ture references. 
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Figure 19. Types of grassland management intensity at the Podlaskie study sites: (a) extensive, (b) 
intensive; (c) comparison of spectral curves for intensive and extensive grasslands averaged with 
the loess algorithm (span = 0.35, confidence interval = 0.95) based on Sentinel-2, (from Bartold et al. 
[91]). 

4.5. Monitoring the Functional A-LUI Indicators with RS 

Functional indicators describe the ecological processes and ecosystem services that 
are directly affected by A-LUI. They include aspects such as crop productivity, soil 
fertility, carbon and nutrient cycling, irrigation demand, and greenhouse gas emissions. 
These functions are critical for assessing sustainability, as they link agricultural practices 
to environmental impacts and resource efficiency. RS contributes to functional monitoring 
by providing proxies for biomass production, evapotranspiration, soil moisture, and 
photosynthetic activity. Combined with modelling approaches, RS-derived functional 
indicators allow for large-scale assessments of agricultural performance, efficiency, and 
environmental trade-offs. 

4.5.1. Functional A-LUI Indicators—Plant Density and Biomass Production 

RS for recording plant density and biomass production is essential for analysing veg-
etation structures and assessing the A-LUI, as it reflects the direct effects of management 
practices on vegetation. RS technologies enable the area-wide analysis of vegetation pa-
rameters using the Normalised Difference Vegetation Index (NDVI), the Soil-Adjusted 
Vegetation Index (SAVI) and the Enhanced Vegetation Index (EVI) to minimise soil and 
atmospheric influences in order to determine plant density and biomass production. Re-
cent studies, for example, by Sousa Júnior et al. [191], demonstrate the successful use of 
Landsat 8 to estimate aboveground biomass in agricultural mosaics. The combination of 
different sensor systems, especially optical- and RADAR-based RS technologies, improves 
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the accuracy of biomass estimates [192]. The use of unmanned aerial vehicles (UAVs) of-
fers an efficient alternative due to high spatial resolution and flexibility [193,194]. Da et al. 
[194] combined UAV-derived spectral, textural, and structural features for biomass mon-
itoring of soybean and achieved a model accuracy of R2 = 0.85. Spaceborne RS data are 
also used to assess plant biomass. Breunig et al. [195] used PlanetScope and Sentinel-1 
SAR data to monitor intercrop biomass in Southern Brazil. Hagn et al. [196] analysed Sen-
tinel-2 data to model crop-specific biomass yield potential in precision farming. Their re-
sults showed a strong correlation between relative biomass potential (r = 0.62–0.73) and 
soil properties such as soil organic carbon (SOC) and total nitrogen (TN). However, optical 
satellite systems such as Landsat and Sentinel-2 are weather-dependent and do not collect 
data under cloudy conditions. To overcome this limitation, Planet developed the Biomass 
Proxy product [197], which provides a daily, ready-to-analyse biomass estimate with 10 
m spatial resolution. The Biomass Proxy algorithm fuses Sentinel-1 and Sentinel-2 data 
and enables continuous monitoring of vegetation. This facilitates the early detection of 
growth anomalies, the assessment of crop yields, and the identification of potential envi-
ronmental hazards and supports informed agronomic decision-making. The difference 
map of Aboveground Biomass (AGB) estimates of 18 August 2017 and 26 August 2017 
derived from PlanetScope (PS) optical, Sentinel-1 SAR, and hybrid (optical plus SAR) da-
tasets is shown in Figure 20. 

 

Figure 20. Difference map of Aboveground Biomass (AGB) estimates of 18 August 2017 and 26 Au-
gust 2017 derived from PlanetScope (PS) optical, Sentinel-1 SAR, and hybrid (optical plus SAR) da-
tasets. Reddish tones indicate AG increase and blue tones indicate AGB decrease. White areas indi-
cate low AGB variation (from Breunig et al. [195]). 
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4.5.2. Functional A-LUI Indicators—Pesticide, Herbicide, and Fungicide 

The use of pesticides and herbicides is an important indicator for assessing the A-
LUI. The use of pesticides and herbicides causes vegetation-related changes and stress 
reactions in plant populations, which can be recorded using RS via vegetation anomalies. 
Herbicides specifically influence metabolic processes by disrupting biochemical reactions, 
e.g., triazines (atrazine) lead to the inhibition of photosynthesis, glyphosate to the block-
ing of amino acid synthesis, or auxin analogues (2,4-D) to the impairment of cell growth. 
These effects can be detected in the short term by spectral analyses of RS data 

The RS-based recording of pesticide intensity is a growing field of research with the 
aim of making crop protection more efficient and environmentally friendly, as well as 
being able to detect the use of pesticides and herbicides. The use of satellite images, 
drones, and hyperspectral sensors allows conclusions to be drawn about the use and dis-
tribution of pesticides. While current applications are primarily focussed on laboratory 
analyses with hyperspectral sensors (e.g., ASD, MSV-500) [198–202], space-based RS data 
such as Sentinel-2 are also being used [203]. Spectral reflectance data, particularly in the 
red and near-infrared range, enable the calculation of vegetation indices such as NDVI, 
whose changes indicate herbicide applications and associated stress reactions [203]. Hy-
perspectral RS captures detailed spectral signatures that can identify specific pesticide ap-
plications and their effects [199]. For example, hyperspectral imaging combined with ma-
chine learning has been used to detect herbicide stress early and identify new sites of ac-
tion. Zhang et al. [200] extracted the Physiological Reflectance Index (PRI) and NDVI from 
hyperspectral images and classified glyphosate-induced plant damage using Support 
Vector Machine (SVM). Chu et al. [201] used neural networks to identify different herbi-
cide damage to wheat, finding significant spectral differences in the wavelength ranges 
518–531 nm, 637–675 nm, and at the red edge. Pon Arasan et al. [204] analysed UAV-based 
mapping methods to optimise herbicide use. Bartold et al.[91] combined Sentinel-1 and 
Sentinel-2 data to classify management intensities in Polish grasslands and identified 
herbicide applications. Bautista et al. [91] investigated the efficiency of drone applications 
with cyhalofop-butyl in Spanish rice fields using NDVI analyses with Sentinel-2. Sentinel-
2 and Landsat-8/9 are suitable for general monitoring, while PRISMA and EnMAP enable 
more precise spectral analyses. WorldView-3 offers high spatial resolution for detailed 
field studies. The combination of these satellites allows the monitoring of pesticide and 
herbicide use. Exemplary application of SugarViT (Vision Transformer based model for 
disease severity) for disease severity prediction in sugar beet using UAV multispectral 
data is shown in Figure 21; each prediction is completely independent of its surrounding 
predictions [92]. 
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Figure 21. Exemplary application of SugarViT (Vision Transformer based model for disease sever-
ity) for disease severity prediction in sugar beet using UAV multispectral data. Each prediction is 
completely independent of its surrounding predictions. The model shows a highly consistent pre-
diction behaviour (from Günder et al. [92]). 

4.5.3. Functional A-LUI Indicators—Fertilisation Intensity  

Recording fertilisation intensity using RS is central to precision farming and allows 
conclusions to be drawn about A-LUI. For example, the intensive use of fertilisers and 
pesticides promotes a homogeneous and vital vegetation pattern by increasing plant 
growth and yield quality. Precise nutrient monitoring includes plant traits and nutrient 
information, with imaging spectroscopy as a key method to determine the nutrient status 
of crops and soil availability quickly and non-destructively. However, there are challenges 
as macro- and micronutrients, stress factors, and phenological development stages have 
similar spectral signatures, which favours confusion at different scales.  

Vegetation indices such as the Normalised Difference Vegetation Index (NDVI) 
quantify plant health and density and provide information on fertilisation and manage-
ment practices. NDVI is often used to measure plant vigour and derive fertiliser recom-
mendations. Li et al. [205] demonstrated UAV-based hyperspectral imaging to optimise 
nitrogen stress indices in maize. The Normalised Difference Red Edge Index (NDRE) more 
precisely determines the chlorophyll and nitrogen content of plants, which Li et al. [205] 
confirmed for maize. The chlorophyll index also serves as an indicator for nutrient status, 
whereby hyperspectral data enable an exact determination of the chlorophyll content 
[205]. Yin et al. [206] used ensemble learning models and Sentinel-2 data to quantify the 
nitrogen concentration and aboveground biomass of potato plants with a coefficient of 
determination R2 = 0.74. Almawazreh et al. [207] used UAV to investigate the effects of 
nitrogen fertilisation on the canopy temperature of agricultural crops in Southern India. 
Increased nitrogen applications reduced the leaf temperature of maize by 2.1 °C and finger 
millet by 1.3 °C under sunny conditions. Hossen et al. [208] developed an AI-based, near 
real-time multispectral sensor solution for drones to accurately estimate the nitrogen con-
tent in the soil. 

4.5.4. Functional A-LUI Indicators—Soil Organic Carbon (SOC) 

Soil organic carbon (SOC) is a key component of soil quality and plays a crucial role 
in the global carbon cycle [209]. Higher A-LUI (e.g., heavy fertilisation, frequent tillage) 
generally leads to a decrease in soil organic carbon, as ploughing, erosion, and humus 
decomposition mineralise carbon more quickly and release it as CO₂. Furthermore, A-LUI 
influences plant cover and biomass production, which in turn has an impact on carbon 
storage in the soil. Precise mapping and monitoring of SOC is necessary to develop sus-
tainable agricultural practices and optimise carbon storage in soils. 

RS enables efficient and cost-effective monitoring of large areas, provides data from 
regions that are difficult to access, and allows the continuous recording of SOC dynamics 
with high temporal resolution [210]. Research on satellite-based SOC mapping started in 
the 1990s with Landsat TM data, where first correlations between spectral signatures and 
SOC concentrations were found [211]. These early studies showed promising results, but 
the spatial resolution was limited to 30 m and correlations often only reached R2 values of 
around 0.5, indicating high uncertainties [212]. In the 2000s, high-resolution RS data was 
combined with ground-based measurements to better map the spatial variability of SOC. 
Initial attempts to couple soil chemical properties with the Normalised Difference Vege-
tation Index (NDVI) method from Landsat data demonstrated the importance of vegeta-
tion cover for SOC modelling [213]. Studies show that multispectral, hyperspectral, and 
RADAR sensors on satellite platforms can provide crucial data for SOC mapping [214]. 
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However, optical RS is subject to certain limitations, particularly due to cloud cover. One 
possible solution is to combine optical- and RADAR-based data [215]. With the introduc-
tion of the Sentinel-1 and Sentinel-2 satellites in the 2010s, SOC mapping improved sig-
nificantly. Sentinel-2 provides multispectral images with a resolution of up to 10 m, while 
Sentinel-1 provides RADAR images that can be used regardless of weather conditions 
[215,216]. RADAR data, in particular SAR, has potential for SOC mapping [214,217,218], 
but parameters such as polarisation, band frequency, orbit, and time window significantly 
influence the accuracy of the models [219,220]. For example, SAR signals interact differ-
ently with vegetation layers depending on wavelength, which means that C-band and L-
band systems differ in their applicability. Nevertheless, comprehensive analyses compar-
ing different optical- and RADAR-based sentinel satellites (Sentinel-1/2/3) for SOC map-
ping are still rare. In recent years, deep learning algorithms and hybrid models have 
proven to be particularly promising. Recent studies combine optical (Sentinel-2) and RA-
DAR-based (Sentinel-1) RS data to further improve accuracy [221]. In addition, AI-based 
methods such as Random Forest, Light Gradient Boosting Machine (LGBM), and neural 
networks have been successfully used for SOC mapping [222,223]. Mean SOC content and 
C:N ratio maps predicted by 100 runs of BRT in Model V at a resolution of 100 m and their 
corresponding standard deviation maps (Model V: all available predictors, Sentinel-1-pre-
dictors, Sentinel-2 predictors, Landsat-8 predictors, climate predictors, topography pre-
dictors) [93] (see Figure 22). 

 

Figure 22. Mean SOC content and C:N ratio maps (100 m resolution) predicted by 100 runs of 
boosted regression trees (BRT) using multiple predictors (Sentinel-1, Sentinel-2, Landsat-8, climate, 
and topography). Standard deviation maps indicate model uncertainty (from Zhou et al. [93]). 

Table A4 presents a structured overview of functional indicators of A-LUI indicators, 
including concrete examples, the corresponding RS sensors, and the representative litera-
ture references. 
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5. Examples of Trait–Sensor Linkages 
RS offers the ability to monitor A-LUI through proxies that reflect underlying plant 

and soil traits. While our framework is primarily conceptual, Table A5 provides an illus-
trative subset of trait–sensor linkages to demonstrate how the taxonomy can be operation-
alised. The examples cover biochemical, structural, phenological, and genesis traits that 
respond sensitively to management intensity, and they highlight three key aspects: (1) 
Sensor characteristics. Different traits are best captured by specific RS technologies. For 
example, leaf nitrogen and chlorophyll are well resolved with red-edge indices or hyper-
spectral sensors, while canopy structure is better observed through LiDAR metrics or SAR 
backscatter. Thermal sensors and radar are essential for detecting water status and irriga-
tion practices, whereas taxonomic composition and diversity require multi-temporal op-
tical classification. (2) Expected directionality with intensity. Intensive management prac-
tices such as fertilisation, irrigation, or high sowing density are typically associated with 
increased canopy greenness, higher LAI and biomass, and more frequent disturbance sig-
nals from tillage or harvesting. Conversely, long-term intensive use often leads to declin-
ing soil organic matter or reduced crop diversity. These relationships provide measurable 
signatures of intensity, but their interpretation must be contextualised. (3) Confounding 
factors. Trait–intensity relationships are not deterministic. Cultivar differences, soil fertil-
ity gradients, and climatic variability can mimic or mask management effects. For exam-
ple, high chlorophyll content may reflect either fertiliser application or inherently fertile 
soils; frequent harvest signals may stem from double-cropping systems or from regionally 
specific phenologies. A key research challenge is, therefore, to separate management-
driven intensity signals from background biophysical potential and land cover dynamics. 
This Table A5 is not intended as a complete mapping, but as a demonstration of how 
conceptual trait categories can be translated into implementable RS indicators. Develop-
ing a systematic and validated trait–sensor–management matrix across crop types, agroe-
cological zones, and sensor platforms represents a crucial agenda for subsequent research. 
Such work will require integration with farm records, independent proxy datasets, and 
uncertainty quantification to ensure policy-relevant and globally comparable intensity as-
sessments. 

While Table A5 focuses on traits and their observable RS proxies, a further step is 
needed to explicitly link these to management practices and their broader policy rele-
vance. Table A6 extends the trait-based perspective by integrating concrete management 
actions (e.g., fertiliser application, irrigation, tillage, crop rotation, field consolidation, or 
hedgerow management) with the traits and processes they influence, the corresponding 
RS observables, and the resulting A-LUI indicator categories. In addition, the Table spec-
ifies validation needs—such as ground sampling, farm records, flux tower data, or biodi-
versity field surveys—and highlights the potential for direct policy applications, ranging 
from nutrient efficiency reporting to monitoring compliance with agri-environmental 
schemes or biodiversity conservation targets.  

Together, Tables A5 and A6 illustrate the pathway from plant and soil traits to RS 
observables, and from there to validated A-LUI indicators that are directly relevant for 
management and policy. This integrative perspective underscores the importance of trait-
based frameworks not only for scientific monitoring but also for supporting evidence-
based governance of agricultural intensification. 

6. Linking Management, Traits, and RS to A-LUI Indicators, Validation, 
and Policy 
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The monitoring of A-LUI requires an integrative perspective that connects manage-
ment practices with biophysical responses and policy-relevant indicators. Figure 23 pro-
vides such a schematic overview, linking management inputs (e.g., fertiliser, irrigation, 
crop protection, tillage, crop rotations) to plant and soil traits, which serve as the central 
mediators between human interventions and the biophysical signals recorded by RS. 
These traits—biophysical, biochemical, and structural properties—can either be measured 
in situ or derived indirectly from RS data. RS observables and indices such as vegetation 
indices (NDVI, EVI), solar-induced chlorophyll fluorescence (SIF), soil moisture, or can-
opy structural metrics derived from LiDAR represent the quantifiable expressions of these 
traits. 

 

Figure 23. The diagram illustrates the conceptual flow: from management practices (e.g., fertilisa-
tion, irrigation, tillage) through trait responses (leaf nitrogen, canopy structure, phenology, root 
traits, soil organic matter) to RS observables (spectral indices, SIF, SAR, thermal, LiDAR). These feed 
into the five proposed A-LUI indicator categories (trait, genesis, structural, taxonomic, functional), 
which can be validated against in situ and administrative data and aligned with policy frameworks 
(e.g., SDGs, CAP indicators, IPCC inventories). 

The framework illustrates how RS-derived observables feed into the five categories 
of A-LUI indicators: trait, genesis, structural, taxonomic, and functional indicators. Each 
category addresses a distinct dimension of A-LUI, ranging from biochemical leaf proper-
ties (trait indicators) to temporal dynamics (genesis indicators), landscape configuration 
(structural indicators), crop and species composition (taxonomic indicators), and ecosys-
tem processes (functional indicators). However, RS alone cannot fully capture the under-
lying causes of change. Hence, the integration of validation datasets—such as ground-
based measurements, experimental phenotyping, and farmer-reported management 
data—is essential to calibrate and verify RS products. 

7. From Inputs–Outputs–Impacts to A-LUI Indicators: Advancing the 
Framework 

To better position our proposed A-LUI taxonomy against prior syntheses, we provide 
a cross-walk between established frameworks of LUI and our five indicator categories. 
Earlier frameworks have typically emphasised the three-pillar structure of inputs, out-
puts, and system-level impacts, with some extensions towards land use change intensity, 
efficiency measures, and socioeconomic drivers. While these approaches provide a solid 
foundation, they often remain generic and do not explicitly capture the specific opportu-
nities and challenges of RS-based monitoring.  

Our new definition (trait, genesis, structure, taxonomic, function) builds on these es-
tablished dimensions but introduces several novel contributions. In particular, the struc-
tural and taxonomic categories add an explicit consideration of field geometry and crop 
diversity, dimensions often overlooked in previous frameworks. The genesis category 
uniquely accounts for temporal trajectories of land use intensity, such as crop rotations, 
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multiple harvests, or abandonment, which are central for RS time-series analysis. Moreo-
ver, the taxonomy operationalises agricultural management metrics (e.g., irrigation, ferti-
lisation) through RS proxies, thereby making input intensity directly observable. Finally, 
by providing a structured indicator appendix and a bridging analysis between challenges, 
framework categories, and RS/AI solutions, the taxonomy explicitly addresses operational 
and policy readiness. Table 1 highlights both the conceptual overlaps and the distinct ad-
vances of our framework, clarifying how the proposed taxonomy extends beyond previ-
ous reviews and offers a more operational and policy-relevant structure for monitoring 
agricultural land use intensity 

Table 1. Cross-walk between established A-LUI frameworks and the proposed A-LUI indicator tax-
onomy, highlighting overlaps and novel contributions. 

Established LUI 
Framework  

Typical Dimen-
sions/Indicators 

Corresponding 
A-LUI Indica-
tor Categories 

Conceptual Overlap 
Novel Contributions in This 
Study 

Inputs (fertiliser, irriga-
tion, energy, labour, 
pesticides) 

Input intensity, 
chemical/energy 
flows 

Trait; Func-
tional 

Inputs affect plant/soil 
traits measurable by RS 
(leaf N, chlorophyll, soil 
moisture) 

Operationalisation of inputs 
through RS proxies (e.g., irriga-
tion from Sentinel-1, N status 
from hyperspectral) 

Outputs (yield, produc-
tion, harvested bio-
mass) 

Productivity, out-
put per hectare 

Functional Yield proxies and bio-
mass reflect outputs 

Explicit RS yield models, link to 
SDG indicators, inclusion of un-
certainty quantification 

System-level impacts 
(biodiversity, soil qual-
ity, GHG emissions) 

Ecosystem ser-
vices, species di-
versity, carbon bal-
ance 

Structural; Tax-
onomic; Func-
tional 

Impacts partly ad-
dressed via land cover, 
diversity, ecological 
functions 

New explicit categories: Struc-
tural (field geometry, fragmenta-
tion) and Taxonomic (crop diver-
sity mapping via RS) 

Land use/cover change 
intensity 

Expansion, aban-
donment, conver-
sion rates 

Genesis Sometimes treated as 
part of ‘impacts’ 

New focus on temporal dynamics 
and trajectories (e.g., crop rota-
tions, double cropping, abandon-
ment) 

Efficiency measures 

Output per input 
(yield per fertiliser, 
water use effi-
ciency) 

Trait; Func-
tional 

Implied in productivity 
frameworks 

Potential to derive efficiency met-
rics from RS (e.g., biomass per 
water unit via evapotranspiration 
modelling) 

Socioeconomic drivers 
(markets, subsidies, 
governance) 

Institutional and 
policy-related in-
tensity factors 

Not directly 
covered 

Socioeconomic context 
linked indirectly 

RS–policy linkages highlighted; 
positioned as future integration 
pathway 

Cross-scale integration 
(local–regional–global) 

Aggregated indica-
tors for monitoring 

All categories + 
indicator ap-
pendix 

Often missing in prior 
reviews 

Indicator appendix as reference 
tool; bridging table (challenges → 
solutions) for operational uptake 

8. New Approaches for the Quantification and Evaluation of A-LUI Us-
ing RS 
8.1. RS and AI for Recording A-LUI 

The precise recording of A-LUI is central to quantifying the impact of agricultural 
management on ecosystems and developing sustainable strategies. Recently, RS and arti-
ficial intelligence (AI) have established themselves as key technologies for recording agri-
cultural utilisation intensities on a large scale, promptly and objectively [224]. RS data and 
its time series such as Sentinel-2, Landsat-8, MODIS, or WorldView-3 provide high-reso-
lution information on vegetation, soil surface, and hydrology, allowing numerous indica-
tors to be derived (see Table A7), which are closely related to agronomic interventions 
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such as fertilisation, tillage, detection of crop rotations, harvest cycles, and tillage patterns 
or multiple harvests per year as characteristics of A-LUI [225,226]. 

A critical step in interpreting these data are the integration of AI methods, in partic-
ular machine learning and deep learning, which can recognise complex, non-linear pat-
terns in large, heterogeneous datasets. AI models such as Convolutional Neural Networks 
(CNNs), Support Vector Machines (SVMs), or Random Forests (RF) have been success-
fully used many times in the literature to quantify characteristics such as nutrient availa-
bility, plant health, or management practices [226–228]. For example, Castaldi et al. [229] 
used Sentinel-2 data to derive soil organic carbon, indicating many years of intensive use. 
Shi et al. [230] combined RGB images with Backpropagation Neural Networks (BPNN) to 
estimate nitrogen accumulation and biomass in rice fields. This allows conclusions to be 
drawn about fertiliser intensity and growth potential. Sahabiev et al. [231] extended these 
approaches by incorporating soil characteristics (e.g., organic carbon, soil texture) into ML 
models for the spatial prediction of nutrient distributions. A particularly relevant example 
in the context of utilisation intensity is the use of CNNs to detect crop cycles, which is 
made possible by the time series of satellite images (e.g., Sentinel-2 or MODIS). The de-
tection of multiple harvests or intensive crop rotations is possible by analysing NDVI time 
histories [232,233]. In this context, Wang et al. [226] demonstrated that a combined LSTM-
CNN model, trained with weather and soil data, was able to provide very precise predic-
tions of the winter wheat harvest in China—a direct measure of output intensity. Various 
methods have also been established for nutrient intensity. Jaihuni et al. [234] used deep 
learning to estimate the spatio-temporal distribution of nitrogen, potassium, and phos-
phorus.  

Despite these successes, challenges remain: The technical complexity of RS data pro-
cessing requires specialised expertise and high-performance infrastructures [224]. High-
resolution data material, such as UAV-based hyperspectral images, is often only available 
locally. There is a lack of standardised definitions and indicators for deriving A-LUI, 
which makes comparability between regions difficult [235]. In addition, many deep learn-
ing models are difficult to interpret—a problem that recent work on Explainable AI (XAI) 
aims to counteract. 

Nevertheless, future prospects are extremely promising. New architectures such as 
edge cloud computing or the edge cloud continuum make it possible to process large 
amounts of data in a decentralised manner on sensors and drones [224]. At the same time, 
methods such as transfer learning or few-shot learning allow models to be adapted for 
new regions with little training data [226,236]. This could make globally standardised, AI-
supported maps of land use intensity a reality—a valuable tool for agricultural policy, 
climate protection, and sustainable land use worldwide [224]. 

8.2. Semantic Web and Linked Open Data for the Monitoring of A-LUI 

Semantic web integration (SWI) and linked open data (LOD) approaches are de-
signed to make heterogeneous datasets interoperable, machine-readable, and reusable 
across institutions and platforms. For A-LUI monitoring, this is highly relevant because 
RS-derived indicators, in situ measurements, farm management records, and policy data 
often exist in separate silos and use inconsistent terminologies. Semantic technologies pro-
vide a way to bridge these gaps by assigning shared vocabularies and ontologies to dif-
ferent data sources [237,238]. At their core, semantic technologies such as RDF (Resource 
Description Framework), OWL (Web Ontology Language), and SPARQL (a query lan-
guage) create a common structure that allows datasets to be linked through concepts ra-
ther than file formats. For example, different databases may store information on “crop 
type,” “fertilisation,” or “irrigation.” Through a shared ontology, these concepts can be 
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harmonised, enabling automated queries and reasoning across datasets. For A-LUI mon-
itoring, the main advantage is the ability to connect three layers of information: (1) RS 
indicators (e.g., crop type maps, soil moisture, vegetation indices, yield proxies). (2) Farm 
and management data (e.g., fertiliser application, irrigation logs, crop rotations). (3) Policy 
and sustainability frameworks (e.g., SDG 2.4.1 on sustainable agriculture, FAO agri-envi-
ronmental indicators). This integration allows complex questions to be addressed consist-
ently, such as “Which wheat fields in Region X received irrigation in 2023 and show high 
biomass in Sentinel-2 indices?” or “How do RS-derived nitrogen proxies correspond to 
reported fertilisation levels in regional statistics?” A practical example illustrates this po-
tential. RS-derived crop classification maps (e.g., from Sentinel-2) can be linked to farm 
irrigation and fertilisation records. Using an ontology that defines shared concepts like 
“crop type” and “management practice”, a query could identify all irrigated maize fields 
with high NDVI values in a given season. The semantic web layer then produces a har-
monised map or table that combines RS and farm data into a single, policy-relevant prod-
uct. For practitioners, this means that information which today is scattered across agencies 
(satellite data at space agencies, farm logs at agricultural offices, policy indicators at sta-
tistical bureaus) could be accessed in one place, with automated links ensuring con-
sistency. For researchers, this enhances reproducibility and data transparency, as datasets 
can be cited and queried through open standards. At present, such applications remain in 
pilot and prototyping stages, with operational deployment still limited. Therefore, we pre-
sent semantic web and linked open data approaches as a future prospect for A-LUI mon-
itoring. Their adoption could greatly enhance the integration of RS and management data, 
improve cross-scale comparability, and facilitate alignment with international monitoring 
frameworks (Figure 24). 

 

 

Figure 24. (a) Semantic data integration for assessing A-LUI. Integration of diverse data sources 
(satellite data, soil data, agricultural statistics, research databases, socioeconomic information, 
model data) linked open data (LOD), AGROVOC (AGRO = Agriculture, VOC = Vocabulary of the 
FAO). (b) A schematic figure visualise this concept for practitioners: RS data (satellite imagery → 
crop type map), Farm records (fertiliser log, irrigation schedule), Ontology layer: Shared concepts 
like “crop type,” “management practice,” “season” represented as semantic links, SPARQL query 
box: Example query: “Select all irrigated maize fields with NDVI > 0.7 in 2023.”, Output: harmonised 
map or table showing linked information. 

9. Conclusions and Further Research 
This review synthesised current concepts, definitions, and methodological ap-

proaches for monitoring A-LUI with a particular focus on RS- and trait-based indicators. 
By proposing a structured taxonomy that distinguishes trait, genesis, structural, taxo-
nomic, and functional indicators, we aimed to bring conceptual clarity and to align RS-
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derived measures more explicitly with established A-LUI dimensions. The review high-
lights how traits can serve as a common denominator between in situ measurements and 
RS proxies, and how linking traits to measurable observables helps to bridge methodo-
logical and disciplinary gaps. 

At the same time, our synthesis demonstrates the limitations and uncertainties inher-
ent in RS-based monitoring of A-LUI. Cultivar-specific differences, mixed pixels, sensor 
saturation, and phenological variation can bias indicator derivation and interpretation. 
While we have outlined representative examples and conceptual solutions, systematic 
validation strategies remain a major research need. Future work should, therefore, prior-
itise long-term, multi-scale validation efforts that combine ground measurements, pheno-
typing infrastructures, and RS observations. 

Another frontier is the development of operational frameworks that can integrate 
existing datasets (e.g., FAO, OECD, Eurostat) with Earth Observation-derived indicators 
in a transparent and standardised manner. Progress in open-source data infrastructures 
and community repositories provides promising entry points, but dedicated projects are 
needed to ensure consistency, accessibility, and long-term comparability. 

Looking ahead, further research should address the following: 

The design of multi-scale validation protocols to quantify uncertainty and improve indi-
cator robustness. 
The integration of hyperspectral, thermal, and radar missions with AI-based approaches 
for trait retrieval and intensity mapping. 
The differentiation of management intensity signals from biophysical potential and land 
cover dynamics through coupled RS–model frameworks. 
The systematic assessment of smallholder and heterogeneous landscapes, where high-
resolution data and advanced image analysis are crucial. 
The establishment of specialised studies focusing on cultivar-specific effects, phenological 
corrections, and management practices that cannot yet be robustly inferred from RS 
alone. 

In conclusion, while significant progress has been made in conceptualising and op-
erationalising RS-based A-LUI monitoring, a globally consistent and validated framework 
is still in development. By clarifying definitions, structuring indicator categories, and 
highlighting limitations, this review provides a foundation for subsequent studies to ad-
dress these open challenges and to move towards an integrated, transparent, and scalable 
monitoring of agricultural land use intensity. 
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A-LUI Agricultural Land-Use Intensity 
AGROVOC Agricultural Vocabulary (FAO controlled vocabulary) 
AI Artificial Intelligence 
CHIME Copernicus Hyperspectral Imaging Mission for the Environment 
EnMAP Environmental Mapping and Analysis Programme 
ET Evapotranspiration 
EUROSTAT Statistical Office of the European Union 
EVI Enhanced Vegetation Index 
FAO Food and Agriculture Organisation of the United Nations 
FLEX Fluorescence Explorer 
GEDI Global Ecosystem Dynamics Investigation 
GHG Greenhouse Gas 
GIS Geographic Information System 
GLAD Global Land Analysis and Discovery 
GLC Global Land Cover 
GPP Gross Primary Productivity 
HISUI Hyperspectral Imager Suite 
HyspIRI Hyperspectral Infrared Imager 
IACS Integrated Administration and Control System 
IPCC Intergovernmental Panel on Climate Change 
LAI Leaf Area Index 
Landsat Land Satellite (USGS/NASA Earth observation programme) 
LiDAR Light Detection and Ranging 
LUCAS Land Use/Cover Area Frame Survey 
ML Machine Learning 
MODIS Moderate Resolution Imaging Spectroradiometer 
NDVI Normalised Difference Vegetation Index 
OECD Organisation for Economic Co-operation and Development 
PlanetScope High-resolution satellite constellation operated by Planet Labs 
PRISMA PRecursore IperSpettrale della Missione Applicativa 
RS Remote Sensing 
SAR Synthetic Aperture Radar 
SDG Sustainable Development Goal 
Sentinel-1 C-band Synthetic Aperture Radar mission (Copernicus) 
Sentinel-2 Multispectral optical imaging mission (Copernicus) 
Sentinel-3 Ocean and land monitoring mission (Copernicus) 
Sentinel-5P Tropospheric monitoring mission (Copernicus) 
SHALOM Spaceborne Hyperspectral Applicative Land and Ocean Mission 
SIF Solar-Induced Fluorescence 
SOC Soil Organic Carbon 
UAV Unmanned Aerial Vehicle 
World Bank World Bank (International Financial Institution) 
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Appendix A 

 

 

Figure A1. Monitoring the five characteristics of A-LUI using RS. These are traits of A-LUI, genesis 
traits of A-LUI, structural traits of A-LUI, taxonomic traits of A-LUI, functional traits of A-LUI with 
examples. 

Table A1. Geographical area of monitoring, temporal availability of indicators, link, and selected 
examples of indicators for measuring and monitoring A-LUI; carried out by the FAO, OECD, World 
Bank and EUROSTAT. 

 FAO OECD World Bank EUROSTAT 

Geographical area 
of monitoring 

● Worldwide cov-
erage, with a spe-
cial focus on de-
veloping coun-
tries 

● Primarily OECD 
member countries, 
focus on highly de-
veloped industrial-
ised nations 

● Developing 
countries and 
emerging mar-
kets 

● European Union (EU) 
and some enlarge-
ment countries 

Time availability 
of the indicators 

● Indicators of land 
use intensity 
have been availa-
ble since the 
1960s, 

● Increased surveil-
lance since the 
1990s 

● Data and analyses 
on land use intensity 
since the 1980s,  

● Regular reports 
since the early 2000s. 

● Data on land use 
intensity since 
the 1990s,  

● Comprehensive 
database (WDI) 
since the 2000s. 

● Harmonised data on 
agriculture and land 
use since the 1990s, 

● Regular (every three 
to five years) surveys 
since the 1990s 

Link 

● FAO database 
FAOSTAT  

● https://www.fao.
org/statis-
tics/data-dissemi-
nation/agrifood-

● OECD 
● https://www.oecd.or

g/, (data access: 11 
July 2024) 

● World Develop-
ment Indicators 
(WDI) 

● https://data-
bank.worldbank.
org/source/world

● Farm Structure Sur-
veys (FSS) 

● https://ec.eu-
ropa.eu/euro-
stat/web/micro-
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systems/en, (data 
access: 11 July 
2024) 

-development-, 
(data access: 11 
July 2024) 

data/farm-statis-
tics?utm_source=chat
gpt.com (data access: 
22 October 2025) 

Indicators (selective examples) 
Indicator FAO OECD World Bank Eurostat 

Agricultural area 

Total area for agricul-
ture (arable land, per-

manent grassland, 
permanent crops) 

Agricultural land, includ-
ing arable land, perma-

nent crops, and pastures 

Agricultural land (sq. 
km) 

Utilised agricultural area 
(UAA) 

Arable land 

Land for crops, in-
cluding repeatedly 
cultivated soils and 

fallow land 

Arable land, including 
temporary crops and fal-

low land 
Arable land (hectares) Arable land 

Permanent grass-
land 

Land for perennial 
grasses and forage 

plants 

Permanent pastures and 
meadows 

Permanent meadows 
and pastures (hec-

tares) 
Permanent grassland 

Permanent crops 
Land for perennial 
crops such as fruit 

trees and vineyards 

Permanent crops, such as 
orchards and vineyards 

Permanent crops (hec-
tares) 

Permanent crops 

Harvest yields Amount of crop per 
unit area 

Crop yields, measured by 
specific crop outputs per 

hectare 

Cereal yield (kg per 
hectare) 

Crop production per unit 
area 

Use of fertilisers Amount of fertiliser 
per hectare 

Fertiliser consumption 
(kg per hectare of arable 

land) 

Fertiliser consumption 
(kg per hectare of ara-

ble land) 

Consumption of fertilisers 
per unit area of agricul-

tural land 

Pesticide use Amount of pesticides 
per hectare 

Pesticide sales and usage 
Pesticide consumption
(kg per hectare of ara-

ble land) 

Pesticide sales and con-
sumption 

Irrigated area 
Proportion of artifi-
cially irrigated agri-

cultural land 

Area equipped for irriga-
tion (hectares) 

Irrigated land (% of 
total agricultural land) Irrigated area 

Machine inven-
tory 

Number and type of 
machines per unit 

area 

Agricultural machinery, 
such as tractors per hec-

tare 

Agricultural machin-
ery (tractors per 100 

sq. km of arable land) 

Number of tractors and 
other agricultural machin-
ery per unit area of agricul-

tural land 

Labour input 
Labour hours per unit 

area 

Labour input in agricul-
ture, measured by hours 

worked per hectare 

Employment in agri-
culture (% of total em-

ployment) 
Labour force in agriculture 

Livestock density 
Number of animals 
per unit area of pas-

tureland 

Livestock density, meas-
ured as livestock units 
per hectare of pasture 

land 

Livestock production 
index 

Livestock density per unit 
area of pasture land 

Carbon sequestra-
tion in the soil 

Amount of carbon se-
questered in the soil 

Soil organic carbon con-
tent 

Soil organic carbon 
content Soil organic carbon content 

Ground cover 
Type and extent of 

ground cover 
Land cover types and 

changes 
Land cover (% of land 

area) Land cover and land use 

Erosion risk Risk of soil erosion 
due to water or wind Soil erosion rates Soil erosion rates Soil erosion and degrada-

tion risk 

Biodiversity 
Diversity of plant and 

animal species on 
farmland land (e.g., 

Farmland biodiversity in-
dices (e.g., Farmland 

Agricultural biodiver-
sity indices (e.g., 

Biodiversity indicators in 
agricultural landscapes 
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Farmland birds, polli-
nators, butterflies) 

birds, pollinators, butter-
flies) 

Farmland birds, polli-
nators, butterflies) 

(e.g., Farmland birds, polli-
nators, butterflies) 

Water consump-
tion in agriculture 

Amount of water used 
for irrigation 

Agricultural water with-
drawal 

Agricultural water 
withdrawal (% of total 

water withdrawal) 
Water use in agriculture 

Agricultural pro-
duction per unit of 

input 

Efficiency of the 
means of production 

in agriculture 

Total factor productivity 
in agriculture 

Agricultural value 
added per worker 

Output per hectare of agri-
cultural land 

Energy consump-
tion in agriculture 

Energy consumption 
in agriculture 

Energy use in agriculture Energy use in agricul-
ture 

Energy consumption in ag-
riculture 

Sustainability in-
dicators 

Sustainability of agri-
cultural practices 

Sustainable agriculture 
practices indicators 

Sustainable land man-
agement indicators 

Sustainable farming prac-
tices 

Climate impact of 
agriculture 

Greenhouse gas emis-
sions from agriculture 

Greenhouse gas emis-
sions from agriculture 

Agricultural methane 
emissions (kt of CO2 

equivalent) 

Greenhouse gas emissions 
from agriculture 

Nutrient balance 
in the soil 

Balance of nitrogen 
and phosphorus in the 

soil 

Nitrogen and phospho-
rus balance Soil nutrient balance 

Nutrient balance in agri-
cultural soils 

Bioproductivity 
Productivity of bio-

logical systems on ag-
ricultural land 

Biological productivity of 
agricultural systems 

Agricultural produc-
tivity indexes 

Biological productivity of 
agricultural lands 

Plant protection 
measures 

Measures to combat 
pests and diseases 

Pest and disease control 
practices 

Pest and disease con-
trol indicators 

Plant protection measures 
and their impact 

Energy efficiency 
in agriculture 

Efficiency of energy 
consumption in agri-

culture 

Energy efficiency in agri-
cultural practices 

Energy productivity 
in agriculture 

Energy efficiency indica-
tors in farming 

Utilisation of ge-
netic resources 

Utilisation and con-
servation of genetic 
resources in agricul-

ture 

Use and conservation of 
genetic resources 

Genetic resource man-
agement indicators 

Conservation and use of 
agricultural genetic re-

sources 

Landscape diver-
sity 

Diversity of land-
scapes and agroeco-

systems 

Landscape diversity and 
heterogeneity 

Landscape diversity 
indicators 

Landscape heterogeneity 
and diversity in agricul-

tural areas 

Soil compaction 
Degree of soil com-

paction caused by ag-
ricultural machinery 

Soil compaction indica-
tors 

Soil compaction risk Soil compaction due to ag-
ricultural practices 

Waste manage-
ment in agricul-

ture 

Handling agricultural 
waste 

Agricultural waste man-
agement practices 

Waste management in 
agriculture 

Management and recycling 
of agricultural waste 

Soil moisture Moisture content of 
the soil 

Soil moisture levels Soil moisture content 
indicators 

Soil moisture monitoring 
in agricultural lands 

Landscape frag-
mentation 

Fragmentation of nat-
ural and agricultural 

landscapes 

Landscape fragmentation 
and its impact on agricul-

ture 

Landscape fragmenta-
tion indexes 

Impact of landscape frag-
mentation on agriculture 

Sustainable land 
use practices 

Spreading sustainable 
agricultural practices 

Adoption of sustainable 
agricultural practices 

Sustainable land man-
agement practices 

Implementation of sustain-
able farming practices 

Water utilisation 
efficiency 

Efficiency of water 
utilisation in agricul-

ture 

Water use efficiency in 
agricultural practices 

Agricultural water 
productivity 

Water use efficiency in irri-
gated agriculture 

Agroecological in-
dicators 

Indicators for the as-
sessment of agroeco-

logical systems 

Agroecological assess-
ment indicators 

Agroecological prac-
tices 

Assessment of agroecologi-
cal systems 
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Erosion due to 
wind 

Loss of topsoil due to 
wind erosion 

Wind erosion rates Wind erosion indica-
tors 

Impact of wind erosion on 
agricultural land 

Soil fertility 
Level of soil fertility 

and its changes Soil fertility levels Soil fertility indicators Changes in soil fertility 

Land use changes 
Changes in the utilisa-

tion of agricultural 
land 

Changes in agricultural 
land use 

Land use change indi-
cators 

Agricultural land use 
changes 

Irrigation effi-
ciency 

Efficiency of irrigation 
methods 

Irrigation efficiency Efficiency of irrigation 
systems 

Efficiency of water use in 
irrigation systems 

Climate adapta-
tion measures 

Measures to adapt to 
climate change 

Climate adaptation prac-
tices in agriculture 

Climate resilience in-
dicators 

Implementation of climate 
adaptation measures in ag-

riculture 
Resource utilisa-

tion efficiency 
Efficient use of natural 

resources 
Resource use efficiency in 

agriculture 
Resource productivity 

indicators 
Efficiency of resource use 

in agriculture 

Soil acidification Degree of soil acidifi-
cation and its causes 

Soil acidification levels Soil pH indicators Impact of acidification on 
agricultural soils 

Soil salinisation Level of soil salinisa-
tion and its effects 

Soil salinisation rates Soil salinity indicators Effects of salinisation on 
agricultural productivity 

Utilisation of re-
newable energies 

Share of renewable 
energies in agriculture 

Renewable energy use in 
agricultural practices 

Share of renewable 
energy in agriculture 

Use of renewable energy 
sources in farming 

Environmentally 
friendly cultiva-

tion methods 

Spreading environ-
mentally friendly cul-

tivation methods 

Adoption of eco-friendly 
farming practices 

Eco-friendly agricul-
tural practices 

Implementation of envi-
ronmentally friendly farm-

ing methods 
Economic sustain-

ability 
Economic viability of 

farms 
Economic sustainability 
of agricultural holdings 

Economic viability in-
dicators 

Economic sustainability of 
farms 

Social sustainabil-
ity 

Social aspects of agri-
cultural practice 

Social sustainability in 
agriculture 

Social indicators in ru-
ral areas 

Social impacts of agricul-
tural practices 

Productivity per 
unit area 

Productivity of agri-
cultural land 

Land productivity indica-
tors 

Productivity of agri-
cultural land 

Output per unit of agricul-
tural area 

Water quality in-
dicators 

Impact of agriculture 
on water quality 

Impact of agriculture on 
water quality 

Water quality in agri-
cultural areas 

Effects of agricultural run-
off on water quality 

Infrastructure for 
agriculture 

Availability and qual-
ity of agricultural in-

frastructure 

Agricultural infrastruc-
ture development 

Infrastructure invest-
ment in agriculture 

Quality and accessibility of 
agricultural infrastructure 

Innovation in ag-
riculture 

Implementation of 
new technologies and 

processes 

Agricultural innovation 
and technology adoption 

Innovation indicators 
in agriculture 

Adoption of new agricul-
tural techn 

Table A2. High spatial resolution satellite missions, sensor/type, spatial resolution, spectral 
bands/type, availability, launch date and operator. 

Satellite/Mis-
sion 

Sensor/Type Spatial  
Resolution 

Spectral 
Bands/Sensor Type 

Availability Start Date Operator of the 
Satellite Mission 

WorldView-3 
Visible 

(PAN+MS+SWI
R) 

0.31 m (PAN), 
1.24 m (MS) 

Panchromatic 
Multispectral SWIR Commercial 2014 Maxar 

WorldView-2 Optically 0.46 m (PAN), 
1.84 m (MS) 

Panchromatic 
Multispectral Commercial 2009 Maxar 

GeoEye-1 Optically 0.41 m (PAN), 
1.65 m (MS) 

Panchromatic 
Multispectral Commercial 2008 Maxar 

Pleiades Neo Optically 0.3 m (PAN), 
1.2 m (MS) 

Panchromatic 
Multispectral 

Commercial 2021+ Airbus 
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Pleiades 1A/1B Optically 0.5 m (PAN), 
2.0 m (MS) 

Panchromatic 
Multispectral 

Commercial 2011/2012 Airbus 

SkySat Optically + 
Video 

0.5–0.8 m 
(PAN), 1–2 m 

(MS) 
RGB, NIR, Video Commercial 2013+ Planet 

BJ-3B (Super-
View-2) 

Optically 0.3 m (PAN), 
1.2 m (MS) 

Panchromatic 
Multispectral 

Commercial 2022 21AT (China) 

Capella Space RADAR (X-
Band SAR) 

0.3–0.5 m 
(Spotlight) 

SAR  Commercial 2018+ Capella Space 
(USA) 

ICEYE 
RADAR (X-
Band SAR) 0.25–1 m SAR Commercial 2018+ ICEYE (Finland) 

TerraSAR-X 
RADAR (X-
Band SAR) 

bis 1 m (Spot-
light-Modus) SAR 

Commercial/Sci-
entifically free 2007 DLR/Airbus 

PAZ RADAR (SAR) 1 m SAR (X-Band) Commercial 2018 Hisdesat (Spain) 

Sentinel-1A/B 
RADAR (C-
Band SAR) 10 m SAR Freely available 2014/2016 ESA/Copernicus 

Drohnen/UAV Optically + 
Multispectral 

<0.1 m 
RGB, Multispectral, 
Hyperspectral, Li-

DAR 
Own operation  User-based 

Aerial photos Optically 0.20 cm 
Orthophotos (DOP) 
True Orthophotos, 

RGB, CIR  

Commercial/Au-
thorities and 

partly scientific 
free 

 

Federal states, 
Federal Agency 
for Cartography 

and Geodesy 

Table A3. Linking key challenges of monitoring agricultural land use intensity (A-LUI) with RS to 
the proposed indicator framework categories and potential RS/AI-based solutions. 

Challenge Relevant Frame-
work Category 

Possible RS/AI Solution Example Application 

Distinguishing intensive vs. 
extensive cultivation (e.g., 
organic vs. conventional) 

Trait indicators 
Hyperspectral indices (red-

edge, SIF) combined with AI 
crop classification 

Separation of organic vs. conventional 
wheat fields using Sentinel-2 red-edge 

indices 

Seasonal dynamics and 
multiple harvests Genesis indicators 

Multi-temporal analysis 
(Sentinel-1/2, SAR–optical 

fusion); AI-based phenology 
detection 

Identification of double-cropping sys-
tems in India 

Irrigation and water man-
agement 

Functional indica-
tors 

Radar-derived soil moisture 
(Sentinel-1), thermal RS for 

evapotranspiration, AI sepa-
ration of natural vs. man-

aged water stress 

Mapping irrigation events in Mediterra-
nean orchards 

Fertiliser and pesticide ap-
plication (not directly visi-

ble in RS) 

Trait and func-
tional indicators 

Indirect proxies: leaf N con-
tent, chlorophyll indices, 

stress detection; ML calibra-
tion with in situ records 

Estimating nitrogen application in maize 
with UAV hyperspectral imaging 

Small-scale heterogeneous 
fields 

Structural indica-
tors 

High-resolution UAV/Planet 
imagery; OBIA; deep learn-
ing for parcel boundary de-

lineation 

Smallholder mapping in Sub-Saharan 
Africa using PlanetScope + CNN 

Agroforestry and mixed 
cropping 

Taxonomic indica-
tors 

Hyperspectral UAV imag-
ing and AI spectral unmix-

ing 

Differentiating coffee under shade trees 
in agroforestry systems 
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Limited spectral resolution 
of standard satellites 

Trait and func-
tional indicators 

Integration of hyperspectral 
missions (EnMAP, PRISMA, 
CHIME); AI-based spectral 

downscaling 

Improved stress detection in crops using 
EnMAP data 

Climate and topographic 
confounding effects 

Genesis & Func-
tional indicators 

AI domain adaptation, topo-
graphic correction, normali-

sation with weather/soil 
data 

Adjusting RS-based yield intensity esti-
mates in mountainous regions 

Table A4. Various indicators for measuring A-LUI that can be detected using RS. Here is a compre-
hensive table summarising the various indicators for measuring A-LUI and landscape structure that 
can be measured using RS. 

Indicators Satellites References 
Trait diversity of A-LUI 

Chlorophyll-a/b Content 
Leaf chlorophyll content (LCC) 

Chlorophyllgehalt (Cab) 
Canopy Chlorophyll Content (CCC) 

Carotinoide, anthocyanin 
Anthocyanin reflectance index (ARI) 
Carotenoid reflectance index (CRI) 

Sentinel-1 1, Sentinel-2 1, Landsat 8 1, 
CRIME 1, 

EnMAP1, Airborne hyperspectral CASI 2, 
Airborne Visible/Infrared Imaging Spec-
trometer AVIRIS 2, Airborne HyMap 2, 

UAV-(HSP,MSP) 3, Handheld portable hy-
perspectral camera (Specim IQ) ASD 4, La-

boratory spectroscopy 5 

[86,96,102,105,118,239–251] 

Foliar Nitrogen, Phosphorus, Potas-
sium—NPK  

UAV (LiDAR, MSP) 3, SVC HR-1024i 
spectrometer ASD 4 [86,252,253] 

Solar-induced chlorophyll fluorescence 
(SIF), 

Photosynthesis activity 

Sentinel-3 1, GOSIF data 1, AS-SpecFOM 
(ground-based) 6, FluoSpec2 system 

(ground-based)  
[72,107,254–257] 

Leaf nitrogen content (LNC) 
Nitrogen use efficiency, 
Nitrogen nutrition index 

Sentinel-2 1, CRIME 1, PRISMA 1,Airborne 
micro-hyperspec NIR-100 camera 2, UAV [86,96,98,119,120,258,259] 

Plant water content 
Leaf water content 
Plant water stress 

Cropland water-use efficiency 
Crop Water Productivity 

GLASS 1, Landsat 1, Sentinel-2 1,  
UAV (MSP, HSP) 3, mmWave RADAR 

(Tower) 6, Cropland ecosystem flux sites 6, 
Local TIR Sensor 6, 

[260–268] 

Land Surface Temperature 
Crop surface temperature 

Landsat 1, High Spatio-Temporal Resolu-
tion Land Surface Temperature Monitoring 

(LSTM) Mission 1, 
UAV (TIR, RGB, MSP) 3 

[264,269–273] 

Evapotranspriration (ET) 
Crop evapotranspiration (ETc) 

MODIS 1, DEIMOS-1 is a commercial task-
ing EO satellite 1, Landsat 1, Sentinel-2 1, Su-

perDove satellites (PlanetScope) 1, UAV-
(RGB, MSP, TIR) 3 

[274–282] 

Soil moisture 

MODIS-Terra 1, Landsat 1, AMSR-2 1, 
AMSR-E 1, NISAR 1, Sentinel-1 1, Sentinel-2 
1, SMAP 1, Airborne hyperspectral (DAIS) 2, 

Airborne hyperspectral (AISA Eagle, 
Hawk) 2 

[283–291] 

Irrigation 
Irrigation Efficiency 

Water Productivity and Efficiency 
Irrigation patterns 

MODIS 1, Landsat 1, Sentinel-2 1, UAV 
(MSP) 3, 
ASD 4, 

[292–303] 
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Water-Ferilizer use efficency 
Water Stress 

Soil Water Deficit 
Soil water stress 

LAI (Leaf Area Index)  
MODIS 1, Landsat 1, Sentinel-2 1, UAV-

(HSP, TIR, LiDAR) 3, Ocean Optics 
USB2000 (Tower) 6 

[247,248,304–306] 

Genesis Trait Diversity of A-LUI 

Subsurface drainage systems, 
Drainage density 

RADAR (SAR) 1, Landsat 1, Senitnel-2 1, 
Airborne LiDAR 2, Airborne data 2, UAV–

RGB, CIR, TIR 3 
[132–136,307,308] 

Terrace mapping 
Landsat 1, Sentinel-1 1, Sentinel-2 1, GF-2 sat-
ellite image 1, WorldView-1 1, WorldView-3 

1, Airborne LiDAR 2, UAV-LiDAR 3 
[87,137,138,143–145] 

Allmenden Airborne LiDAR 3 [146,147] 

Deforestation 
MODIS 1, ALOS PALSAR data 1, 

RADARSAT-2 1, Landsat 1, Sentinel-1 1, 
Sentinel-2 1, UAV (RGB, NIR, IRT) 3 

[150–154,309–312] 

Polder and single-polder systems Google Earth RS data 1, Corona spy satellite 
imagery 1 

[313,314] 

DEM (Digital Elevation Model) 
DSM (Digital Surface Model) 

SRTM 1, TerraSAR-X 1, TanDEM-X 1, 
Sentinel-1 1, Sentinel-3 1, ALOS-2 PALSAR-2 

1, ALOS PRISM 1, Terra ASTER 1, ICESat 
GLAS 1, Airborne LiDAR 2, UAV (SAR, 

RGB) 3 

[61,315–327] 

Soil Topography 
Farmland microtopography feature 

Landsat 1, Sentinel-1 1, Sentinel-2 1, CO-
RONA KH-4B 1, Gaofen-7 satellite 1, Air-

borne LiDAR 2 
[171,328–332] 

Soil metagenomics data UAV (MSP, LiDAR) 3 [333] 
Structural traits of A-LUI 

Soil, crop vegetation composition and 
configuration (e.g., patch size, distribu-

tion 
Field size, Interspersion and Juxtaposi-

tion Index, Proximity Index, 
Edge Density, Edge Contrast Index, Con-
tagion Index, Core Area Index, Shape In-

dex, Cropland Extent, Fragmentation, 
Homogeneity, Isolation, land use inten-

sity patterns, Canopy structure 
Farmland Boundary Extraction, 

Cropland extent, Cropland area, Har-
vested Area Fraction, Structural Connec-

tivity Index, 
Vegetation Coherence Index, Crop Rich-
ness, Crop Evenness, Crop Simpson’s Di-
versity Index, Fractal Dimension Index, 

Entropy Index, Clumping Index,  
Grassland plant species diversity  

Plant density 

MODIS 1, Landsat 1, Spot 1, Sentinel-2 1, 
WorldView-2/-3 1, QuickBird 1, Pleiades 1, 

GeoEye 1, GF-2 1, RapidEye 1, PlanetScope 1, 
Airborne Hyperspectral AVIRIS and 

HYDICE 2, Airborne data 2, UAV (RGB, 
MSP, HSP) 3 

[31,33,67,88,161,162,258,334–
349] 

Vertical Vegetation Structure, 
Vegetation height, Plant height 

GEDI LiDAR 1, ICESat-2 1, 
UAV (RGB, LiDAR) [350–355] 
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3D-structures, 3D mapping Phenotyping robot “MARS-PhenoBot” 6, 6-
DOT robot 6, RGB-Camera 6, Terrestrial Li-

DAR 6 
Surface roughness  
Canopy roughness 

Sentinel-1 1, MODIS 1, UAV (RGB) 3 [167–169] 

Spektraler Heterogenität, 
Rao’s Q diversity index, 
Plant Species Richness 

Spatiotemporal variability 

MODIS 1, Landsat 1, Sentinel-2 1 [165,166,356] 

Homogeneity Index,  
Grassland Homogeneity Index 

Crop homogeneity 
Sentinel-1 1, Sentinel-2 1, GF-2 1 [357–359] 

Soil Roughness, 
Soil texture, 

Farmland microtopography 

Landsat 1, Sentinel-1 1, Sentinel-2 1, 
AHSI/ZY1-02D satellite 1, SRTM 1, Airborne 

LiDAR 2, ASD Handspectometer 4, 
Smartphone-captured digital images 6 

[171,172,332,360–368] 

Taxonomic A-LUI 
Cropping patterns 

(single cropping, multiple cropping, se-
quential cropping, inter-cropping) 

MODIS 1, Spot 1, Landsat 1, Sentinel-1 1, Sen-
tinel-2 1, IRS 1, WiFS 1, Airborne AVIRIS 2, 

RADARSAT-2 1, Airborne LiDAR 2 
[155,173–183,186,369,370] 

Crop classification, 
Crop type classification 

Crop type mapping 

MODIS 1, Landsat 1, Sentinel-1 1, Sentinel-2 1, 
Sentinel-3 1, Airborne AVIRIS 2, UAV (HSP) 

3 
[90,142,156,371–377] 

Classification of grassland community 
types Landsat 1, Sentinel-1 1, Sentinel-2 1 [378–380] 

Cropping frequency (single crop-
ping/double cropping/triple cropping) 

Crop rotation 
Multi-cropping frequency (MCF)  

Cropping intensity 
Cropping intensity index 
Change Detection crops 

MODIS 1, Gaofen-1 1, GF-1 1, Landsat 1, Senti-
nel-1 1, Sentinel-2 1 [174,187,341,370,381–390] 

Crop residue cover mapping 
Landsat 1, Sentinel-2 1, Google Earth Engine 

1, UAV 3, 
FieldSpec Pro 4, Photo analysis surveys 6 

[391–396] 

Crop burning residue MODIS 1, AVHRR 1, LISS-III 1, LISS-IV 1, 
UAV 3  [397–399] 

Classification between 
cultivated and fallow fields  

MODIS 1, Landsat 1, Sentinel-2 1 [369,381,400–402] 

Organic, conventional farming 
Organic and non-organic farming 

Landsat 1, Spot 1, Sentinel-2 1, KOMPSAT-2 1, 
WorldView-2 1, UAV (RGB) 3, Hyperspectral 

ASD 4  
[403–406] 

Phenotyping,  
Phenology, 

Phenology-Stadien (BBCH-Scale) 

UAV (RGB, MSP, HSP, TIR, LiDAR) 3, UAV 
(RGB, VIS, NIR, TIR, LiDAR) 3, Labour-

Hyperspectral–AISA-EAGLE 5 
[244,304,327,407–412] 

Crop growth duration (GDa), 
MODIS 1, Landsat 1, Gaofen-1 1, Sentinel-2 1, 

RapidEye 1, UAV (SAR) 2 [387,413–416] 

Hedgerow map classifications, 
Hedgerows and field margins 

TerraSAR-X 1, Spot 1, IKONOS 1, Airborne 
MSP 2, Aerial photographs 2, UAV (RGB, 

MSP) 3 
[89,417–421] 
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Flower strip mapping 
Flower Mapping 

Airborne Hyperspectral (HySPEX, RGB, 
TIR) 2, Airborne Hyperspectral (AISA-Ea-
gle) 2, Airborne MSP 2, UAV (MSP, HSP) 3 

[421–426] 

Buffer Zone Efficiency 
Agricultural Pesticides Drift zones 

Landsat 1, Sentinel-2 1 [427] 

Classification of agroforestry systems RapidEye 1, PlantetScope 1, LISS IV 1, Senti-
nel-2 1 

[428–432] 

Plastic-covered greenhouses 
Plasticulture detection 

Plastic greenhouses (PGs) and Plastic-
mulched farmland (PMF) 

Landsat 1, Sentinel-1 1, Sentinel-2 1, GF-2 [433–437] 

Crop yield predictions 
Grain Yield,  

Protein estimation 

MODIS 1, Landsat 1, Sentinel-2 1, UAV–
(MSP, HSP) 3 [258,438–447] 

Hop cultivation classification UAV (MSP) 3, Mobile phone camera 6 [448,449] 
Functional traits of A-LUI 

Crop biomass, 
Aboveground biomass (AGB), 

Relative biomass potential (rel. BMP) 

MODIS 1, Landsat 1, Sentinel-1 1, Sentinel-2 1, 
PlanetScope 1, UAV (MSP, RGB) 3, 

Smartphone 6 
[191–197,293,450] 

Plant Nitrogen Concentration (PNC) 
Leaf Nitrogen Content 
Fertilisation Gradient 

Sentinel-2 1, UAV (MSP, TIR) 3 [102,205–207,451–453] 

Soil organic carbon (SOC) 
Soil organic matter (SOM)  

ALOS-2 1, PALSAR-2 1, Landsat 1, Spot 4/5 1, 
GF-1 1, RADAR (PLAS) 1, Sentinel-1 1, Senti-
nel-2 1, Sentinel-3 1, Airborne hyperspectral 
(DAIS) 2, Airborne hyperspectral (AISA Ea-
gle, Hawk) 2, Hyperspectral APEX 2, UAV 
(SAR) 3, VIS–NIR spectroscopy (Field) 1, 

[93,210,215,216,221,223,291,454–
466] 

Clay content 
Landsat 1, Aster 1, Sentinel-2 1, Airborne hy-

perspectral (AISA Eagle, Hawk) 2 [368,467–473] 

Soil total nitrogen (TN) 
N-Monitoring 

Total soil nitrogen (TSN) 
Nutritional Status 

Soil Total Nitrogen  
Soil Nutrients Contents 

Sentinel-1 1, Sentinel-2 1, GF-1 1, UAV (HSP, 
MSP, TIR) 3, ASD (Field) 4 

[208,215,461,472,474–480] 

C:N ratio soil Landsat 1, Sentinel-1 1, Sentinel-2 1, Sentinel-
3 1 

[93,460,481–484] 

Carbon use efficiency (CUE) MODIS 1, Landsat 1, Sentinel-2 1 [485–488] 

Silt content GF-1 1, Airborne hyperspectral (AISA Eagle, 
Hawk) 2, 

[368,489] 

Sand content 
Landsat 1, Sentinel-2 1, Aster 1, GF-1 1, 

Planet/NICFI 1, Airborne hyperspectral 
(AISA Eagle, Hawk) 2 

[368,473,489–493] 

Potassium content PRISMA 1, UAV (MSP) 3  [476,477] 

Phosphorus content (P) 
MODIS 1, Landsat 1, Sentinel-2 1, PRISMA 1, 

UAV (MSP, LiDAR) 3, ASD 4 [333,476–479,494] 

Pestizide, Herbizide, Fungizide 
Pest management 

Sentinel-2 1, UAV 3, Local hyperspectral 
camera 6, ASD—LeafSpec hyperspectral 

images 4 
[198–203,495,496] 
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Plant Disease Detection,  
Crop vegetation health 

Plant health 

Sentinel-1 1, Sentinel-2 1, UAV (RGB, MSP, 
VIS, NIR, TIR, LiDAR) 3, ASD FieldSpec Pro 

FR 4 
[92,105,404,409,497–508] 

CSR-Plant Strategy Types 
Plant functional groups (PFGs) 

Ellenberg Indicator Species 

Landsat 1, Sentinel-2 1, Airborne hyperspec-
tral data (AISA dual) 2, Airborne AISA Fe-

nix 2, Airborne imaging spectrometer APEX 

2, Airborne hyperspectral HySpex 2 

[509–516] 

Gross Primary Production (GPP) 
Dynamic of carbon emissions, 

Carbon Fluxes 

MODIS 1, Meris 1, Landsat 1, Sentinel-1 1, 
Sentinel-2 1, Sentinel-3 1, Hyperspectral 

Ocean Optics USB2000 (Tower) 6, LEDAPS-
Aerosol Robotic Network (AERONET) 6 

[246,485,517–524] 

Cropland NPP  MODIS 1, Landsat 1, UAV (MSP) 3 [306,347,485,525–530] 
HANPP (Human Appropriation of Net 

Primary Production) MODIS 1, Landsat 1, Sentinel-2 1 [531–535] 

Water use efficiency (WUE) MODIS 1, Landsat 1, Sentinel-1 1, Sentinel-2 1 [485,536–540] 

Yield and Quality Landsat 1, Sentinel-1 1, Sentinel-2 1, UAV 
(MSP) 3 

[196,523,541–548] 

Harvest Index 
MODIS 1, HJ-1 satellite 1, Sentinel-2 1, UAV 
(HSP) 3, FieldSpec HandHeld Spectroradi-

ometer (ASD) 4 
[549–552] 

Soil quality index (SQI) Landsat 1, Sentinel-2 1, Airborne hyperspec-
tral (AISA) 2 

[330,553,554] 

Soil productivity potential MODIS 1, Landsat 1, Sentinel-2 1, ASD Field-
Spec 4 

[302,472,555–557] 

Soil Crust 

KOMPSAT-2 satellite 1, Airborne hyper-
spectral (DAIS) 2, Airborne hyperspectral 
(AISA Eagle, Hawk) 2, UAV (RGB, MSP, 

HSP) 3, ASD Fieldspec 4 

[291,558–564] 

Soil infiltration 

Airborne hyperspectral (DAIS) 2, Airborne 
hyperspectral (AISA Eagle, Hawk) 2, Air-
borne CASI-1500 2, SASI-600 2, Airborne 
TASI-600 hyperspectral sensors 2, UAV 

(HSP, Cubert UHD-185) 3 

[291,565,566] 

Soil pH value 
PALSAR-1/2 1, SRTM 1, Landsat 1, 

PlantetScope 1, Sentinel-1 1, Sentinel-2 1, 
UAV (MSP) 3, ASD FieldSpec 4 

[290,361,547,567–577] 

Soil salinity 
Soil salinisation 

Landsat 1, RADAR 1, Airborne LiDAR 2, HJ-1 
Hyperspectral Imager Data 2 [290,578–585] 

Land degradation,  
Soil degradation,  

Soil erosion 
Desertification 

Landsat 1, SRTM 1, Sentinel-1 1, Sentinel-2 1, 
RapidEye 1, Airborne hyperspectral (DAIS) 

2, Airborne hyperspectral (AISA Eagle, 
Hawk) 2, UAV (RGB) 3 

[291,586–591] 

Soil compaction 
Soil Compaction Index 

Soil aggregation 
Soil penetration resistance 

Landsat 1, GoogleEarth aerial imagery 1, 
Sentinel-2 1, RapidEye 1, Airborne hyper-

spectral (CASI) 2, UAV (RGB, SAR, LiDAR, 
MSP, TIR) 3 

[587,592–599] 

Cattle intensification, 
Spatial distribution of cattle 

Sentinel-1 1, Sentinel-2 1 [600] 

Grassland use intensity 
Grassland management intensity 

Landsat 1, Sentinel-1 1, Sentinel-2 1, 
RapidEye 1,  

[91,188,601–605] 

Grassland fire MODIS 1, Sentinel-1 1, Sentinel-2 1, GF-6 
WFV 1, UAV 3 

[606–610] 
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Grassland cut detection SAR 1, Sentinel-1 1, Sentinel-2 1 [611–613] 

Different Water quality indicators 
All RS Sensors with all RS characteristics 

(MSP, HSP, TIR, RADAR, LiDAR) [63] 

The sensor is used on the RS platform: 1—spaceborne RS platforms, 2—airborne RS platform, 3—
UAV, 4—Handheld portable hyperspectral camera (Specim IQ) ASD, 5—Laboratory spectroscopy, 
6—Tower, Smartphone, ground-based. 

Table A5. Illustrative examples linking plant and soil traits to RS observables, intensity signals, and 
key confounders. 

Trait/Process RS Sensor/Modality Directionality  
with Intensity 

Key Confounders  
(Non-Management) 

Leaf N/chloro-
phyll content 

Red-edge indices (Sentinel-2), hyper-
spectral (EnMAP, CHIME), solar-in-

duced fluorescence (FLEX) 

↑ with higher fertilisation 
and improved management 

Cultivar-specific pigment 
traits; background soil reflec-
tance; cloud/shadow effects 

Canopy structure 
(LAI, height, bio-

mass) 

Multispectral VIs (NDVI, EVI), LiDAR 
metrics (GEDI, UAV-LiDAR), SAR 

backscatter (Sentinel-1) 

↑ with higher input inten-
sity, dense sowing, irriga-

tion 

Natural soil fertility; precipita-
tion regime; lodging events 

Phenology (tim-
ing, cropping fre-

quency) 

Time series (Sentinel-1 coherence for 
tillage/harvest; Sentinel-2 optical indi-

ces; PlanetScope) 

More frequent harvests or 
longer growing season → ↑ 

intensity 

Climate-driven shifts in grow-
ing season; interannual 

weather variability 

Root traits (wa-
ter/nutrient up-

take) 

Thermal (ET proxies), SAR soil mois-
ture (Sentinel-1), hyperspectral water 

stress proxies 

Intensive irrigation/fertilisa-
tion → ↑ water use effi-

ciency or altered root activ-
ity 

Soil texture; groundwater 
availability; drought stress in-

dependent of management 

Canopy tempera-
ture/water status 

Thermal sensors (ECOSTRESS, UAV-
TIR), ET modelling with optical+ther-

mal fusion 

↓ canopy temperature and ↑ 
ET with irrigation intensity 

Heat waves, VPD variability, 
soil hydraulic properties 

Structural diver-
sity (field size, 

edges, hedgerows) 

High-res optical (PlanetScope, UAV), 
LiDAR for vertical structure, OBIA 

↑ intensity often linked to 
larger fields, reduced edge 

density 

Historical land consolidation, 
topography, land tenure 

Crop type diver-
sity (taxonomic 
composition) 

Multi-temporal Sentinel-2/Landsat, hy-
perspectral UAV, classification algo-

rithms 

↑ intensity often → ↓ diver-
sity, monocropping 

Regional crop rotations, policy 
incentives, cultural practices 

Soil organic mat-
ter/C:N ratio 

Hyperspectral reflectance (VNIR-
SWIR), SAR + optical fusion, regres-

sion models 

↓ SOM with long-term in-
tensive use, ↑ mineral N in-

puts → altered C:N 

Parent material, drainage, cli-
mate-driven decomposition 

Harvest/tillage 
events 

SAR coherence (Sentinel-1), time-series 
change detection, UAV imagery 

↑ intensity = more frequent 
disturbance signals per sea-

son 

Weather-induced soil rough-
ness, cloud cover gaps 

Pest/disease stress 
signals 

Hyperspectral indices (red-edge, PRI), 
fluorescence (SIF), UAV multispectral 

Intensive management may 
↓ visible stress due to pesti-

cide control 

Pathogen pressure, local out-
break dynamics, cultivar re-

sistance 
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Table A6. Integrative framework linking management practices, traits, RS proxies, A-LUI indicator 
categories, validation needs, and policy relevance. The table highlights how RS-derived observables 
can serve as bridges between field management, biophysical processes, and policy-relevant indica-
tors of agricultural land use intensity. 

Management 
Practice 

Trait/Process 
Affected 

RS Proxy/Ob-
servable 

A-LUI Indicator 
Category Validation Needs Policy Relevance 

Fertiliser appli-
cation 

Leaf nitrogen, 
canopy chloro-
phyll 

Red-edge indi-
ces (Sentinel-2), 
hyperspectral 
retrievals 

Trait/Functional 
Ground sampling, 
cultivar comparisons 

Nutrient efficiency, sustain-
ability reporting 

Irrigation 
Soil moisture, 
evapotranspira-
tion 

SAR backscatter 
(Sentinel-1), 
thermal RS, ET 
models 

Functional Flux tower data, ly-
simeter validation 

Water use efficiency, water 
policy compliance 

Tillage/harvest 
Soil disturbance, 
residue cover 

SAR coherence, 
optical time se-
ries 

Genesis/Struc-
tural 

In situ soil disturb-
ance surveys 

Soil conservation, monitor-
ing sustainable practices 

Crop rotation 
Temporal diver-
sity, phenology 

Multi-temporal 
NDVI/EVI, crop 
classification 

Genesis/Taxo-
nomic 

Farm records, pheno-
logical ground obs. 

Agri-environmental 
schemes, crop diversifica-
tion targets 

Field consolida-
tion 

Landscape het-
erogeneity, field 
size 

High-res optical 
imagery, LiDAR 
boundaries 

Structural 
Field surveys, cadas-
tral data 

Land consolidation moni-
toring, biodiversity impacts 

Intensified crop-
ping cycles 

Aboveground 
biomass, multi-
ple harvests 

Time series 
(MODIS, Senti-
nel-2), SIF 
(FLEX, OCO-2) 

Genesis/Func-
tional 

Yield data, harvest 
records 

Productivity vs. sustainabil-
ity trade-offs 

Hedgerow re-
moval/addition 

Semi-natural 
habitat, species 
richness 

High-res im-
agery (UAV, 
Planet), land-
scape metrics 

Structural/Taxo-
nomic 

Biodiversity field sur-
veys 

CAP greening measures, 
landscape conservation 

Table A7. Sensors and emerging technologies for A-LUI monitoring. 

Technology/Ap-
proach 

Example Missions or 
Tools 

Indicator Cate-
gories Ad-

dressed 

Spatial/Tem-
poral Resolu-

tion 

Development 
Stage 

Added Value 

Multispectral 
optical 

Landsat, Sentinel-2, 
PlanetScope 

Trait (NDVI, 
chlorophyll, 
phenology) 

10–30 m/5–16 d Operational Long time series, global 
coverage 

Hyperspectral EnMAP, CHIME, 
PRISMA 

Trait (chloro-
phyll, N, stress 

proxies) 
20–30 m/<30 d Opera-

tional/new 
Detailed biochemical in-

formation 

Thermal infra-
red 

ECOSTRESS, Landsat 
TIRS, MODIS 

Functional 
(evapotranspira-
tion, irrigation) 

70–1000 
m/daily–16 d Operational Direct link to water/en-

ergy fluxes 

Radar (SAR) 
Sentinel-1, RADAR-
SAT, ALOS PALSAR 

Structure (till-
age, harvest, soil 

moisture) 
10–30 m/6–12 d Operational 

All-weather, soil and can-
opy penetration 

LiDAR 
GEDI, ICESat-2, air-

borne LiDAR 

Structure (can-
opy height, bio-
mass, terraces) 

1–25 m/cam-
paign-based 

Opera-
tional/campaign 

3D structure, fine-scale 
terrain 
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UAV-based plat-
forms 

Multispectral & ther-
mal drones 

Trait & Struc-
ture (field scale) 

cm–dm/flexible Operational Ultra-high resolution, flex-
ible timing 

Solar-Induced 
Fluorescence 

(SIF) 

OCO-2, FLEX (upcom-
ing) 

Functional (pho-
tosynthesis, 

GPP) 

300 m–2 
km/daily 

Research/up-
coming 

Direct proxy for photosyn-
thesis 

Multi-sensor fu-
sion 

Sentinel-1 + Sentinel-2, 
optical + thermal 

All categories Depends on 
data 

Research & op-
erational 

Improves robustness & ac-
curacy 

AI/ML ap-
proaches 

Deep learning, data fu-
sion methods 

All categories Depends on 
training data 

Research & early 
operational 

Enhanced pattern recogni-
tion 

Semantic web 
and linked data 

RDF/OWL/SPARQL 
ontologies Data integration N/A Conceptual 

Harmonisation across da-
tasets 
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