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A B S T R A C T   

The use of night-time livestock enclosures, often referred to as “bomas”, “corrals”, or “kraals”, is a common 
practice across African rangelands. Bomas protect livestock from predation by wildlife and potential theft. Due to 
the concentration of animal faeces inside bomas, they not only become nutrient-rich patches that can add to 
biodiversity, but also hotspots for the emission of nitrous oxide (N2O), an important greenhouse gas, especially 
when animals are kept inside for long periods. To provide an accurate estimate of such emissions for wider 
landscapes, bomas need to be accounted for. Moreover, initial experiments indicated that more frequent shifts in 
the boma locations could help to reduce N2O emissions. This stresses the need for better understanding where 
bomas are located, their numbers, as well as when they are actively used. Given the recent advances in satellite 
technology, resulting in high-frequent spectral measurements at fine spatial resolution, solutions to address these 
needs are now within reach. This study is a first effort to map and monitor the appearance of bomas with the use 
of satellite image time series. Our main dataset was a dense times series of 3 m resolution PlanetScope multi-
spectral imagery. In addition, a reference dataset of boma and non-boma locations was created using GPS-collar 
tracking data and 0.5 m resolution Pléiades imagery. The reduction of vegetation cover and increase of organic 
material following boma installation result in typical spectral changes when contrasted against its surroundings. 
Based on these spectral changes we devised an empirical approach to infer approximate boma installation dates 
from PlanetScope's near infrared (NIR) band and used our reference dataset for setting optimal parameter values. 
A NIR spatial difference index resulted in clear temporal patterns, which were more apparent during the wet 
season. At landscape scale our approach reveals clear spatio-temporal patterns of boma installation, which could 
not be revealed from less frequent sub-meter resolution imagery alone. While further improvements are possible, 
we show that small-sized (150–500 m2) temporary surface changes, such as those that occur when pastoralists 
use mobile bomas, can be detected with dense image time series like those offered by the PlanetScope 
constellation. In future, this could lead to better assessment of a) spatio-temporal livestock distribution, b) the 
contribution of bomas to N2O emissions and soil fertility at landscape scale, and c) the uptake of enclosure 
rotation practices at large spatial scales.   

1. Introduction 

Night-time livestock enclosures are commonly used in the pastoral 
areas of Africa. While livestock usually roam freely during the day for 

grazing and drinking, at night the enclosures serve to protect against 
predation by wildlife (Kissui et al., 2019; Lesilau et al., 2018; Loveridge 
et al., 2017) or from livestock theft. The common term for such an 
enclosure in Afrikaans is “kraal”, and in Swahili “boma”, which we will 
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use in this paper. Due to the concentration of manure, bomas are 
important hotspots for the emission of greenhouse gases, particularly of 
nitrous oxide (N2O) (Butterbach-Bahl et al., 2020). Moreover, following 
abandonment, bomas can become nutrient and biodiversity hotspots in 
savanna areas (Blackmore et al., 1990; Porensky and Veblen, 2015; 
Stelfox, 1986; Veblen, 2013), which remain visible in landscapes for 
hundreds of years (Marshall et al., 2018). Traditionally, a single boma 
can be used for >10 years, particularly when located close to a home-
stead; however, when pastoralists migrate with their animals in search 
of forage, a boma can be abandoned within a few days or weeks. Bomas 
remain important N2O emitters after their abandonment, and the 
magnitude and duration of N2O emissions largely depend on nitrogen 
(N) input through livestock excreta, which is directly related to how long 
they have been actively used. Bomas that are used >10 years remain 
N2O emission hotspots for at least 40 years after abandonment (But-
terbach-Bahl et al., 2020). The N and other nutrients that are concen-
trated in the manure layer in the boma are sourced from the surrounding 
grassland, where the livestock graze on the existing vegetation. More 
effective manure practices, for example by reducing the manure accu-
mulation through shortening the active boma lifetime to a few days 
before moving it to a new position (Carbonell et al., 2021; Stelfox, 
1986), could help to better manage grasslands through fertilization and 
reduction of N2O losses (Harris, 2002). While such a rapid boma rotation 
may be cumbersome with the traditional wooden or thorn-bush bomas, 
metal- or canvas-fenced mobile bomas are currently promoted in various 
projects in Eastern and Southern Africa (Conciatore, 2019; Karen Blixen 
Camp Trust, 2021) with potential benefits including a) better protection 
from predation, and b) improved rangeland productivity and palat-
ability at the created nutrient hotspots (Peel and Stalmans, 2018; Por-
ensky and Veblen, 2015). However, improved rangeland and manure 
management is hampered by the lack of data regarding livestock 
numbers in and movement across pastoral landscapes in East Africa. 

Mapping and monitoring the location of bomas within larger land-
scapes is of interest for various reasons. First, monitoring boma rotation 
practices together with vegetation recovery could provide better 
guidelines for optimizing boma use with respect to season, livestock 
density and type, and soil. Second, given the stated benefits of boma 
rotation, the uptake of this practice by pastoralists can be assessed to 
evaluate if its promoted use scales beyond local project initiatives. 
Third, spatial and temporal information on boma occurrence can assist 
in identifying hotspots of N2O emissions and reduce uncertainties in 
large-scale N budgets (Carbonell et al., 2021; Tian et al., 2020). Fourth, 
given that local nutrient enrichment affects plant communities (Veblen, 
2013), understanding the (past) location of bomas helps to better un-
derstand the structure of savanna landscapes. Fifth, data sets on the 
spatial distribution of livestock are currently based on census data and 
spatial modelling (Gilbert et al., 2018), resulting in errors and inaccu-
rate spatial representation at local scales. While large animals with 
sufficient spectral contrast from its surroundings may be directly 
counted from very high resolution aerial photographs or satellite im-
agery (Duporge et al., 2021; Xue et al., 2017), high data (acquisition) 
costs and the difficulty to effectively automate detection for larger-scale 
applications make it hard to perform animal counting for large areas 
(Corcoran et al., 2021; Hollings et al., 2018). Given the larger size of 
bomas (~150–500 m2) with respect to individual animals, the detection 
of active bomas can be an alternative given its lower requirements with 
respect to spatial image resolution, and boma counts can consequently 
serve as a relevant indicator for livestock density. 

However, attempts to map bomas with remote sensing imagery are 
limited. To assess drivers of changing fire characteristics in the 
Serengeti-Mara ecosystem, Probert et al. (2019) used very high resolu-
tion satellite imagery of different years from Google Earth to estimate 
changes in livestock density. Livestock density was estimated through 
counting active bomas, which they visually detected based on spectral 
contrast with boma surroundings and a visible fence around the boma. 
Kriging was used to interpolate boma densities for areas without 

overlapping very high-resolution imagery. While for Alpine areas, ruins 
of ancient stone walled livestock enclosures were automatically detected 
taking advantage of their rectangular shape (Zingman et al., 2016), to 
the best of our knowledge no studies exist that applied automated 
detection approaches for active bomas. Detection can be particularly 
difficult for mobile bomas, whereby a single location is only shortly 
occupied by livestock. 

To effectively detect and monitor mobile bomas from satellites re-
quires imagery of sufficient spatial resolution and short revisit times (i.e. 
less than weekly). Although boma sizes can vary depending on region, 
herd size, and pastoralist choices (e.g., Okello et al., 2014), a typical 
diameter for mobile bomas is 15-25 m. Based on sampling theorem, this 
implies that the image resolution should not exceed 10 m (Woodcock 
and Strahler, 1987). In recent years many public and commercial sat-
ellite missions emerged that combine a high spatial resolution with daily 
to weekly revisit intervals. For example, since 2017 the Sentinel-2 
mission provides freely-available multi-spectral data globally at 10-60 
m resolution every five days (Drusch et al., 2012). The commercial 
PlanetScope fleet consists of approximately 180 small 4-kg satellites, 
which together offer close to daily coverage at 3 m resolution across the 
globe. Despite the fact that cloud cover increases the average time be-
tween consecutive observations of the land surface, these missions allow 
for effective analysis of land surface dynamics, such as vegetation 
phenology (Cheng et al., 2020; Dixon et al., 2021). The objective of this 
study is to explore options for identifying the location and appearance of 
active bomas using multi-temporal PlanetScope time series. 

2. Study area 

Kapiti Research Station is located in southern Kenya (~1.6◦S, 
37.1◦E), approximately 50 km south-east of the capital Nairobi (Fig. 1). 
The 128 km2 station is dominated by savanna vegetation, including 
savanna grasses (Themeda, Panicum, Chloris, Pennisetum, Cenchrus, 
Setaria), shrubs (Acacia), and trees (Acacia, Balanites) (Cheng et al., 
2020). It is property of the International Livestock Research Institute 
and was declared a wildlife conservancy in 2020, acting as a wildlife 
corridor between the Nairobi National Park and the Amboseli and Tsavo 
National Parks. The Research Station is used for research, among others 
on animal health, genetics, and productivity, rangeland ecology, 
greenhouse gas emissions, and climate change. While numbers vary 
depending on season and research needs, the station is home to about 
2500 heads of cattle (most of the local Boran breed, plus a small dairy 
herd of Boran-Friesian crossbreds), 1300 sheep (Red Maasai, Dorper, 
and crossbreds), 450 goats (Gala), and 70 camels (ILRI, 2019). Besides 
livestock, Kapiti also hosts a large variety of wildlife including zebra, 
wildebeest, gazelle and giraffe, as well as predators such as lions and 
hyenas. 

Kapiti has a semi-arid climate with a mean annual precipitation of 
500 mm, which on average is equally spread between the “long rains” 
(March–May) and the “short rains” (October–December). However, 
rainfall amount and timing vary substantially between years; while the 
July–September period is commonly dry, the dry spell between short 
and long rains in January–February is less certain. For example, an 
automatic weather station at Kapiti measured 145 mm of rainfall in the 
normally dry January–February period of 2020. Mean monthly tem-
peratures range between 16.5 ◦C in July to 20.7 ◦C in March (Fick and 
Hijmans, 2017). 

Bomas are present across Kapiti Research Station. Since approxi-
mately 10 years, cattle are predominantly kept in mobile bomas, 
although more permanent structures exist, particularly for dairy cattle, 
goats, and sheep. The mobile bomas consist of metal fences that are 
approximately 1.6 m high with each fence element being 2 m long, and 
which are placed in a circular form. In the afternoon, cattle enter a boma 
around 16:30, and are released in the morning at around 7:30. The 
station is subdivided into grazing paddocks, which are demarcated for 
orientation but not physically separated through fencing, as this would 
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restrict wildlife movement. Grazing management aims at maintaining 
good vegetation condition and quality without over-exploiting an area. 
When forage quality and quantity decrease around a boma area and 
overgrazing occurs, cattle are moved to a different area of the station, 
and the overgrazed areas are allowed to rest. Within the grazing pad-
docks, individual bomas move locations. In 2018, the Kapiti Research 
Station has transitioned from long-rotation bomas, which were kept at 
the same location for weeks up to three months, to short-rotation bomas 
that are moved approximately every three to five days in the wet season 
and every 10–14 days in the dry season. On average, a boma contains 
between 100 and 150 adult animals. At Kapiti, often two to four 
neighbouring bomas are concurrently used (Fig. 2). 

3. Data 

3.1. PlanetScope 

We selected PlanetScope as the main data source for this study due to 
its combination of high spatial resolution and short revisit time, which 
was deemed relevant given the dynamic nature of the relatively small- 
sized mobile bomas. The PlanetScope sensors acquire spectral imagery 
in the blue, green, red, and near infrared (NIR) bands at 3.7–4.1 m 

spatial resolution, which is resampled to 3 m for Planet's data products 
(Huang and Roy, 2021). The constellation achieved an average global 
revisit time for land surfaces of about 1.5 days in 2020 (Roy et al., 2021). 
However, this revisit time is longer around the equator due to the polar 
orbits, and is further reduced due to cloud cover. Scenes are accurately 
co-registered, but the lack of onboard calibration, the different spectral 
response functions of different sensor generations, and the varying 
illumination geometry, result in variations in the retrieved surface 
reflectance. 

We obtained Planet surface reflectance products from the 
PlanetScope-0 and PlanetScope-1 sensor generations (also referred to as 
Dove-Classic and Dove-R) from the Planet Explorer (https://www. 
planet.com/explorer/). These products were atmospherically corrected 
using the 6S radiative transfer model (Kotchenova et al., 2006). We 
considered the full archive for Kapiti Research Station from September 
2018 to December 2020; the time-frame was chosen to focus our ana-
lyses on 2019 and 2020, while our detection approach required the 
spectral information starting several months before (Section 4.3). Using 
the Planet Explorer, we visually selected all images that were at least 
partially cloud-free over the study area, resulting in 1780 individual 
images, including 1374 standard quality and 406 test quality images. 
Images from the same date and orbit were mosaicked, resulting in 698 

Fig. 1. (a) location of Kapiti (red) within Kenya, (b) Kapiti Research Station as imaged by PlanetScope on 13 September 2020 (false colour image: NIR-red-green), (c) 
a Digital Terrain Model obtained through an aerial LIDAR survey, on top of which training points (confirmed boma and random locations) and the automatic weather 
station location are plotted. 

Fig. 2. Photographs of bomas at Kapiti taken in February 2020: (a) four bomas with 477 heads of cattle around 17:00 local time in southern part of Kapiti, (b) two 
active bomas during daytime in northwest part of Kapiti. 
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mosaics that partially covered Kapiti. We note that the reflectance 
values in the overlap area (for same date/orbit imagery) can be slightly 
different, but we observed that for the study area this difference 
generally remains below 0.001 for NIR reflectance and below 0.003 for 
the other spectral bands. Given the small difference we consistently 
retained data from the southern-most image in the mosaics. Same date 
imagery for multiple orbits resulted in different mosaics. For each 
image, Planet provides a “usable data mask” (UDM2), which is based on 
manual labelling and subsequent machine learning to classify pixels into 
clear, snow, shadow, haze, and cloud. In addition, a per-pixel confidence 
in the classification is generated. In this study, we only retained pixels 
classified in the UDM2 layer as ‘clear’ with a 75% confidence. 

3.2. Pléiades imagery 

To obtain visual evidence of boma presence at different moments in 
time, we used 0.5 m resolution Pléiades imagery (Gleyzes et al., 2012). 
All archive Pléiades images within the September 2018 to December 
2020 time frame that covered more than half of the study area with 
<50% cloud cover were ordered through Airbus Defence and Space as 
four-band pansharpened standard ortho-products (Airbus Defence and 
Space, 2021). This resulted in 19 images, out of which 11 were acquired 
in the second half of 2020, and only five before January 2020. The 
Pléiades constellation consists of two identical satellites (1A and 1B) 
that provide imagery in the visible and NIR wavelengths. Fig. 3 illus-
trates a number of these images for a small subset of the study area. 

3.3. GPS tracking and ancillary in-situ observations 

Because temporal information on individual boma locations was not 
collected at the research station, we used an existing GPS tracking 
initiative at Kapiti as a main input to build a reference database on 
location and active use periods of mobile bomas. Four cows were 
collared with a GPS using FlexTrack series GPS collars (Savannah 
Tracking Ltd), which use GSM-based communication for remote data 
transfer, between May 2019 and August 2020. Each of these cows 
formed part of a different herd and their night location represents the 
boma where that herd stayed overnight. One of the trackers fixed a 
location every five minutes. For the other three, at maximum one to two 
fixes per night (from 18:00 to 6:00) were present, caused by the system 
set-up and partial malfunctioning. Nonetheless, even for these trackers 
in several cases a consistent multi-date night location could be linked to 
a boma. 

In addition, a short field survey was performed in February 2020, 
whereby six active and 116 abandoned bomas were visited and their 
location recorded (the active bomas are shown in Fig. 2). However, as 

accurate information on the timing of active use was lacking for the 
abandoned bomas, these were not included in the reference boma 
dataset (Section 4.1). 

To understand the effect of antecedent rainfall on boma detect-
ability, we used total daily rainfall derived from an automated weather 
station (ATMOS 41, Meter Environment, Meter Group AG, Munich, 
Germany) (Fig. 1c). The station contains a drip counter device for 
rainfall detection with a reported accuracy of 5%. It is connected to a 
data logger (ZL6, Meter Environment, Meter Group AG, Munich, Ger-
many), set up to record rainfall rate every five minutes, and is part of the 
Trans-African Hydro-Meteorological Observatory (TAHMO) network. 

4. Methods 

4.1. Constructing a reference boma dataset 

We used the GPS collar data and the Pléiades imagery to construct a 
reference dataset of 107 bomas, consisting of boma location, and start- 
and end-date of herd presence. For the collar data, all the night obser-
vations between 18:00 and 06:00 were retained. A median night coor-
dinate was calculated for collars with multiple fixes during a single 
night. If an individual fix was >30 m away from the median coordinate, 
it was deleted, and the median coordinate was recalculated. Median 
coordinates were then plotted with a date label on top of a Pléiades 
image to visually confirm the presence of a boma at that location. 
Consequently, a multi-date centre coordinate was manually assigned to 
the boma period together with the start- and end-date of herd presence. 
Following this procedure, we identified five boma classes in the refer-
ence dataset (Table 1, class 1 to 5). 

Fig. 3. Time series of Pléiades imagery (red-green-blue bands) for the same location, automatically stretched for each subset. Circular features correspond to bomas, 
whereby dark colours indicate active or recently abandoned bomas, although moisture also affects the appearance. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Boma classes in the reference dataset.  

boma 
class 

description number 

1 visible on Pléiades image acquired simultaneously with 
tracking data that indicates that boma is in active use 

6 

2 adjacent to a class 1 boma and with similar spectral 
appearance on the Pléiades image indicating that it was used 
concurrently with a class 1 boma 

12 

3 Pléiades image confirms boma location, but was acquired 
after the moment when tracking data indicates active use 

56 

4 apparent from Pléiades image that it belongs to the same set 
as a class-3 boma 

28 

5 active bomas observed directly in the field, and visible on 
Pléiades imagery 

5 

6 one of the 1000 randomly distributed points within Kapiti 
that appeared to be a boma based on Pléiades imagery 

4  
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Fig. 4 illustrates the different classes; we note that classes 2 and 4 
were only identified when evidence very clearly points to simultaneous 
use, which we deemed not the case for both 24 February and 7 March 
2020. The right-hand of Fig. 4 shows also the median night-time loca-
tions from which the centre coordinate for the period of herd presence 
was inferred. Fig. 1c shows the location of the bomas in the reference 
dataset, although their clustered nature does not allow to visually 
differentiate all 107 bomas. 

We complemented our reference dataset with a set of 1000 randomly 
distributed points within Kapiti to represent non-boma locations. The 
points were at least 20 m from the 107 bomas, and 250 m from the Kapiti 
boundary. We selected a large number of 1000 points to represent the 
fact that the total boma surface occupies a relatively small fraction of the 
study area. The random selection cannot avoid that existing bomas are 
selected. Given that our algorithm (see subsequent sections) identified a 
few suspicious cases, these were checked against the Pléiades imagery. 
For four random locations, boma presence was clear, and these were 
added as a sixth boma class (Table 1), but without accurate start- and 
end-dates. 

4.2. A spatial difference index from PlanetScope 

To identify the location and appearance of active bomas, time series 
of PlanetScope-derived spectral reflectance for these bomas can be 
plotted. As an example, Fig. 5a shows the average reflectance in a 3 × 3 
window placed within the same boma of Fig. 2a. Fig. 5a provides some 
evidence of a reduction in spectral reflectance during the active boma 
period, particularly for the NIR spectral band. However, this is not very 
apparent as the reduction is not consistent during the period of herd 
presence, nor does the variability differ much from the variability 
outside that period. Reasons for such variation were mentioned in Sec-
tion 3.1 and include differences in observation geometry and spectral 
response of the PlanetScope sensors. In addition, seasonal changes in 
vegetation activity add to this variation (Cheng et al., 2020). 

To reduce the influence of between-scene inconsistencies in surface 
reflectance values of PlanetScope imagery (as a result of different sen-
sors, orbits, and viewing angles), we propose to use a relative index that 
compares the location of interest against its surroundings, which is 
similarly affected by these inconsistencies. The size of the surroundings 
should be large enough to represent ‘normal’ spectral variability to 

effectively discern the spectral change caused by the appearance of an 
individual boma; in fact, multiple active and/or abandoned bomas may 
be present in the vicinity. These may influence the signal of the sur-
rounding, but with a sufficiently large size the ‘normal’ spectral changes 
should be well-represented. At the same time, the size should not be too 
large to avoid discarding a large part of the time series due to cloud 
contamination in the surroundings. We chose a size of 71 × 71 pixels (i. 
e. 213 × 213 m) surrounding the point of interest as a good compromise 
between these contrasting requirements. For the point of interest, we 
averaged within a 3 × 3 pixel window (9 × 9 m) to reduce the effect of 
spectral noise or features smaller than a typical boma to strongly affect 
the difference index. Fig. 6 illustrates these windows for a Pléiades 
image and two PlanetScope acquisitions. In the false colour image, red 
colours indicate green vegetation, while the active bomas show as dark 
green colours. 

Our spatial difference index was then calculated by subtracting the 
mean reflectance within the 3 × 3 window from the mean reflectance in 
the 71 × 71 window. For each point of interest, we only calculated the 
difference index if within the 3 × 3 window all nine pixels were clas-
sified as ‘clear’ with a 75% confidence in the UDM2 layer, and if at least 
80% of the pixels in the larger window were identified as ‘clear’. Fig. 5b 
shows one example of a time series of the difference index. Partially due 
to the larger value range (Fig. 5a), the NIR shows the clearest temporal 
signal. This was confirmed for other bomas (not shown), and we 
consequently proceeded only with the difference index for the NIR band. 
During the period of boma presence, the difference index is relatively 
high due to the (relative) drop in NIR reflectance of the boma itself. 
Single instances of high NIR index values are apparent (e.g. in April and 
October 2019), which are likely caused by ineffective cloud and shadow 
masking in the UDM2 layer for those dates (see also Wang et al., 2021). 
We note that also after abandonment the NIR difference index may 
remain high for several months, which predominantly depends on soil 
moisture conditions during and after the active boma use (as discussed 
later in this paper). 

4.3. A decision rule based on NIR difference index time series 

The basis for automatically identifying the location and appearance 
of active bomas is the presence of an increase in the NIR difference 
index, which remains consistently high for subsequent observations. 

Fig. 4. Locations of the boma reference dataset plotted on top of the Pléiades image of 11 April 2020. The left-hand image shows the different classes (see text), 
together with the start-date of cattle presence according to the tracking data. Bomas with the start-date of 4 February 2020 are the same as in Fig. 2a. The right-hand 
image shows a subset including the median night fix location for 31 March until 12 April 2020 (for April the month is omitted in the labels), and the 5-min fixes only 
for 10 April. 
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Given that boma appearance may differ depending, among others, on 
moisture conditions and period of herd presence, this basis may be 
implemented in different ways to maximize the number of actual bomas 
detected, and minimize the erroneous detection of non-bomas as bomas. 
To implement this rule, we first defined two time windows that we kept 
constant, i.e.:  

1. A 35-day moving window for which a second-order lowess filtering 
(Cleveland, 1979) was applied to the NIR difference index series, 
using five iterations to obtain an optimal fit. The resulted smoothed 
curve allowed to assess if a consistent increase was present. We 
empirically determined that the 35-day window was sufficiently long 
to effectively smooth during data-scarce periods and sufficiently 
short to retain rapid and consistent changes in the NIR difference 
index (as could be caused by boma installation).  

2. A moving window ranging from six months until 10 days before each 
observation, within which we assessed the dispersion of all NIR 
difference index values for each location. Values above the disper-
sion measure, calculated as a percentile value of all observations in 
that window (perc in Table 2), are potential boma candidates. 

Six additional parameters were used to further operationalize the 
decision rule, and multiple values for these parameters were tested to 
achieve optimal boma detection (Table 2). Fig. 7 illustrates a time series 
example of the NIR difference index, together with the lowess fit and the 
six parameters. The approach can be summarized in four steps:  

1. For each observation we assess if its NIR difference index is larger 
than minIndex and perc: positive values and a larger than ‘normal’ 
value in the previous period are indicative of boma presence. In 

Fig. 5. PlanetScope reflectance series: (a) a 3 × 3 pixel window surrounding the centre point of a boma of Fig. 2a (i.e. the class-3 boma of Fig. 4 with start-date 4 
February); (b) the difference between the 71 × 71 and the 3 × 3 pixel window surrounding the same point. 

Fig. 6. Illustration of the spatial difference index: the spectral reflectance in a 3 × 3 pixel window (black square) is subtracted from the average in the larger 71 × 71 
pixel window (blue square and full extent for panel (a)). Panel (a) shows an RGB Pléiades image of 30 March 2020, (b) a false colour PlanetScope image of 7 February 
2020, and (c) a false colour PlanetScope image of 25 February 2020. Active use of the boma was confirmed in the field on 22 February 2020 (same boma as Fig. 2b). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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addition, we evaluate if within the window of width days prior to the 
observation, the maximum slope of the lowess fit exceeds the 
threshold slope. If all these conditions are met, the observation is 
assigned as a candidate boma observation.  

2. Based on the retained candidates, we evaluate if each is within 30 
days before or after another candidate. If not, the candidate is dis-
carded again. Because of variability in observation conditions, short 
gaps may occur for which the conditions under point 1 are not met. 
Therefore, a maximum of two non-candidates in between retained 
candidates are considered part of the same candidate boma period, 
and ‘upgraded’ as boma candidate observations. 

3. We assess if the candidate boma period contains at least the mini-
mum number of original candidate observations (i.e., the candidate 
observations as flagged in point 1). In addition, for the candidate 
boma period we calculate the NIRlength and evaluate if its value is 
above the tested threshold values.  

4. For a single time series, multiple boma periods could be selected. 
This could for example be caused by enhancement of the spectral 
contrast when (abandoned) bomas become moist, or due to errone-
ously identified periods. We retain only a single period; a subsequent 
period is only selected if its slope, number, and NIRlength are greater 
than the corresponding values for the preceding period. 

We then implemented our approach to the reference dataset of 107 
bomas and 1000 random points (with the random points containing also 
four confirmed bomas, see Section 4.1). This implementation was 

repeated for each combination of parameters values (Table 2) in a grid 
search, resulting in 109,824 different runs. For each run, we assessed:  

a) sensitivity: the fraction of actual bomas that were correctly classified 
as such (also: true positive rate, or recall);  

b) specificity: the fraction of non-bomas (random points) that were 
correctly classified as such (also: true negative rate, or precision). 

A boma classification was deemed ‘correct’ if the temporal difference 
between the PlanetScope-derived boma period and the collar-based 
period was <30 days. While for binary classifications, sensitivity and 
specificity can be optimized by averaging or using the F-score (Sokolova 
and Lapalme, 2009), we instead selected the runs that had the highest 
sensitivity when considering various specificity thresholds. This is 
motivated by the fact that a low fraction of false positives may none-
theless translate into a large number of erroneously identified bomas for 
the entire study area. For subsequent analyses we therefore retained the 
relatively high specificity threshold of 0.99. 

4.4. Exploring factors determining boma detectability 

To assess if moisture conditions affect the spectral characteristics, 
and consequently the detectability of actual bomas, we calculated the 
total rainfall from 15, 30, and 45 days before the herd presence (based 
on collar data) up to the end date of the herd presence. We then used 
histograms to identify if a larger fraction of actual bomas is accurately 
identified depending on different moisture conditions. We also calcu-
lated sensitivity by considering only subsets of bomas with rainfall 
amount above a specific threshold. 

Besides rainfall, we performed the same analysis considering the 
length of boma use to identify whether detection accuracy changes in 
case only bomas are considered that have a minimal number of days of 
herd presence. 

4.5. Implementation of decision rule to study area extent 

Based on the retained parameter values, as described in Section 4.3, 
we applied our boma retrieval algorithm to each 3 m pixel of the study 
area. This resulted in a spatial representation of identified boma pres-
ence, and the timing corresponding to this presence for each boma pixel. 
Given that the average diameter range of mobile bomas is ~20 m, each 
boma should be composed of multiple neighbouring pixels. For this 
reason, we added a fifth step to our approach described in Section 4.3; 
using a moving 3 × 3 window, ‘boma pixels’ were iteratively removed if 
they had fewer than three neighbouring boma pixels with identified 

Table 2 
Parameters and their tested values in the grid search.  

parameter Description values (threshold) 

width temporal window prior to observation 
within which slope is evaluated 

15–50 days with 5-day 
step size 

slope minimum threshold for lowess slope that 
should be attained within width window 
to qualify as boma candidate 

0.0008–0.0020 day− 1 

with 0.0001 step size 

perc percentile value considered to assess 
dispersion in window from six month 
until 10 days before observation 

85, 90, 95 

minIndex minimum value for the difference index; 
above this value observation could be 
boma candidate 

none, 0.00–0.03 with 
0.005 step size 

number minimum number of individual boma 
candidate observations within boma 
candidate period 

2, 3, 4, 5 

NIRlength minimum threshold for area between NIR 
difference index values within boma 
candidate period and corresponding 
maximum of perc and minIndex” 

0–0.5 with 0.05 step size  

Fig. 7. Illustration of the various parameters to identify boma appearance in PlanetScope-derived NIR difference time series (data are subset of Fig. 5b).  
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boma start dates within 10 days before or after the start date of the 
centre pixel. Resulting patterns were then visually evaluated and 
compared against very high resolution Pléiades imagery to further assess 
the potential and limitations of our approach. 

5. Results 

The results of the 109,824 algorithm runs, including all combina-
tions of the values for six parameters, are summarized in the received- 
operating characteristic (ROC) curve of Fig. 8. Table 3 summarizes the 
parameters for the run with the optimal F-score and for runs with the 
highest sensitivity given a set specificity threshold. >98% of all runs had 
specificity values above 0.90, indicating that <100 of the 996 non-boma 
random points are erroneously identified as bomas. However, we 
selected a higher specificity threshold of 0.99, given that in the wider 
landscape bomas represent a relatively small surface. Logically, sensi-
tivity drops when increasing the specificity threshold. Based on the 
retained runs in Table 3, values for parameters that put stronger re-
quirements on the clarity of the boma signal (Fig. 7) like minIndex, 
number, and NIRlength increase with increasing specificity threshold. 
The following results are based on the optimal run with the 0.99 spec-
ificity threshold, i.e. the run with the highest sensitivity for this 
threshold. 

Fig. 9 illustrates four examples of NIR difference index time series for 
bomas in the reference dataset. Fig. 9a shows relatively stable index 
values prior to boma installation; after installation index values increase 
providing a clear signal that is accurately picked up by the proposed 
method. The PlanetScope-based start of the boma period does not pre-
cisely coincide with the actual boma installation, among others due to 
limited cloud-free observations. In addition, the PlanetScope-based 
defined period is longer than the actual boma use. This can be ex-
pected given that similar characteristics persist after boma abandon-
ment; bomas remain vegetation-free for weeks up to a few years 
depending on the length of use. Moreover, the persistence might differ 
depending on the season and moisture conditions. In Fig. 9b two 
candidate periods are visible, with the second one corresponding to the 
actual boma. Given the greater slope, number, and NIRlength of the sec-
ond period, the method correctly retains it. Fig. 9c also shows two 
PlanetScope candidate periods, but in this case the wrong period was 
selected, likely because few cloud-free observations are present for 
May–July 2019, resulting in a less steep slope of the lowess curve and 
smaller number of observations for that period. The second increase of 
the NIR difference index may be explained by the fact that moisture 

(Fig. 9e) enhances the spectral contrast of the abandoned boma. While 
for Fig. 9d an appropriate candidate period was identified, it was sub-
sequently discarded as the selected NIRlength for this run was not 
attained. For all examples, it is clear that the PlanetScope-derived length 
of the boma period corresponds to the continued high levels of the NIR 
difference index, but cannot represent the length of actual use. There-
fore, in our mapping results we focus on start dates only to represent 
boma appearance. 

Bomas installed during wet periods have a higher likelihood of ac-
curate detection as compared to those installed during dry conditions 
(Fig. 10). Fig. 10 shows that a larger share of the non-identified bomas 
corresponds to lower rainfall amounts (antecedent + rainfall during 
active boma use). For example, for rainfall of 30 days before installation 
of <100 mm, only 42% of the reference bomas were detected, whereas 
for rainfall >100 mm this was 81% (Fig. 10b). Particularly Fig. 10b and c 
(30 and 45 days prior to boma installation, respectively) show that the 
sensitivity increases with increasing wetness. This suggests that the 
combination of cattle faeces and moisture relates in general to stronger 
spectral contrasts. We note that for most temporal graphs an increase in 
the NIR difference index is apparent even for dry-period bomas, but the 
signal is insufficient to meet the criteria for the selected run. For six 
bomas in our reference set, a period that was two to four months later 
than the herd presence was erroneously identified as the boma period by 
our method, similar to Fig. 9c. All six had <90 mm rainfall during the 
boma period and its 45 preceding days. It illustrates that post-use wet-
ting of high faeces concentrations can still provide a strong spectral 
contrast. While it could be expected that longer periods of herd presence 
result in more faeces and stronger spectral signals, Fig. 11 shows that 
this is not the case. In fact, the lower thresholds on length of boma use 
show an inverse relationship with sensitivity. This can be explained by 
the fact that longer presence periods coincide with the dry season; all 12 
bomas with herd presence of >20 days had <75 mm of rainfall in the 
preceding 45 days. During the dry season, less trampling occurs and 
faeces dry quicker, forming a crust on top of the soil that results in a 
higher NIR reflectance. 

Fig. 12 shows the result of applying our approach, using the the run 
with a 0.99 threshold on specificity, to the entire study area. Bomas were 
identified throughout the study area, with higher concentrations in 
specific areas. This corresponds to the fact that following the Kapiti 
grazing plan, livestock remains up to several months in the same area, 
during which locations of individual bomas are changed frequently 
within that area. In fact, several of these areas with concentrated bomas 
were shown previously in Figs. 3, 4, and 6. For 0.76% of the PlanetScope 
pixels within Kapiti a boma presence was retrieved. However, as ex-
pected: 1) not all actual bomas were detected, as demonstrated also in 
the prior analysis, and 2) other land processes also caused similar tra-
jectories of the NIR difference index, resulting in erroneous detection of 
non-bomas as bomas. Such commission errors are visible in Fig. 12 for 
example as linear elements, including the main Nairobi-Mombasa road 
that cuts through the eastern part of the study area, but also multiple dirt 
roads and ephemeral streams throughout Kapiti. Most likely this is 
caused by continued water presence during several weeks in the rainy 
season. In fact, close to 60% of all identified bomas had an identified 
start date in November 2019 to January 2020; the wettest period in the 
two-year series (Fig. 9). Hence, while we identified that bomas could be 
better detected during moist conditions, this also causes more confusion 
with other land surface elements that experience similar spectral 
changes. 

Despite the commission and omission errors, the PlanetScope re-
trievals of boma start dates also provide an interesting account of the 
shifting of boma locations, which cannot be attained from infrequent 
very high-resolution imagery alone. Fig. 13 shows three detailed views 
of the boma map with corresponding Pléiades imagery. None or very few 
of the bomas within the subsets were part of the training dataset. While 
Fig. 13a illustrates the point made on commission errors for water 
bodies (top right), it also illustrates the gradual moving of the bomas 

Fig. 8. ROC-curve for the 109,824 runs with all combinations of the values for 
the six parameters tested. The run with the optimal F-score, as well as the runs 
with highest sensitivity given the specificity threshold are plotted on top. 
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between February and May 2020 towards the south-east, but south of 
the dirt road, whereas from June to November 2020 bomas move in the 
other direction but north of the road. Although not all individual bomas 
are detected, the dark (active) bomas in the two Pléiades images show 
up on the boma map in the colour corresponding to the Pléaides 
acquisition months. The same is true for Fig. 13b; it is noted that the 
yellow (November) areas are mostly unrelated to boma presence, but 
more likely due to moisture-induced spectral changes (in southwest 
linked to dirt road presence). Fig. 13c shows an area where boma lo-
cations were gradually moved from north to south between May and 
November 2019. The detections in November and December in the 
northeast of the subset are also visible as boma remnants in the April 
Pléiades image. Between the July 2019 and April 2020 no cloud-free 
Pléiades observation is available for this subset; however, the Planet-
Scope gives a clear idea on the boma dynamics during this period. 

6. Discussion 

6.1. Potential of the boma detection approach 

Utilizing a dense series of PlanetScope observations, our study 
highlights the possibility of effectively identifying small-sized and short- 
lived land surface changes as driven by livestock activity. Such changes 
are generally difficult to observe with remote sensing, given the re-
quirements on both spatial and temporal resolution. Recent years have 
seen an increase in satellite missions that can meet these requirements, 
which include the PlanetScope constellation. By analyzing how a pixel's 
reflectance changes with respect to its surrounding, we were able to 
visualize the dynamics of mobile livestock enclosures (bomas) within a 
semi-arid rangeland, which in Kapiti are typically used for three to 15 
days. Depending on cloud-free acquisition density during boma pres-
ence, a good identification of boma installation date could be obtained 
from NIR time series. When selecting the run for which the parameter 
settings limited the false positives to 1% of our reference set (i.e. spec-
ificity of 99%), 64% of the actual bomas in our reference set were 
detected. Although individual bomas were more clearly visible from 
very high resolution (<1 m) imagery than from individual PlanetScope 
scenes, irregular (and expensive) acquisitions only allow to assess which 
bomas are likely in active use during the acquisition moment. As such, 
our method that utilizes PlanetScope series is a promising first attempt 
for assessing boma dynamics. 

We did not attempt to map or identify boma end use dates, which 
could potentially allow to determine the time period during which each 
boma was active. The detection approach provides an indication of 
when the boma signal ceases to be apparent, but this persists beyond the 
period of active use (Fig. 9). This is because the accumulation of dung 
results in spectral changes that persist longer, which also depends on 
moisture conditions. While this is a drawback for the straightforward 
count of active bomas at any instance, the landscape estimation of 
appearance dates still provides useful information on boma dynamics 
that are otherwise hard to assess for larger areas. Despite this drawback, 
field knowledge about the season-dependent length of boma usage 
would potentially allow for reasonable quantification of active boma 
counts. 

6.2. Detection errors and possible solutions 

The higher likelihood of accurate boma detection for those installed 
during wet periods, as compared to dry periods, may be explained by the 
stronger disturbance, because due to trampling the wet topsoil and 
vegetation get mixed with faeces. In addition, during wet periods the 
presence of green vegetation prior to boma installation may result in a 
stronger drop in NIR reflectance, while during dry periods faeces may 
form a crust with higher NIR reflectance (and consequently a lower NIR 
difference index). To partially resolve this, possibly different parameters 
values (Table 2) could be used for bomas in dry versus wet conditions by 
separating the training dataset. 

While wetter conditions aid in detecting actual bomas, they also 
cause more false positives. For example, concentrated water in and 
around the relatively impermeable roads cause a drop in NIR reflectance 
with respect to its surroundings, resulting in clear linear features in the 
output maps (Fig. 12). Similarly, other small depressions in the land-
scape where water temporally accumulates may explain part of the 
scattered identified boma locations. This includes areas around reser-
voirs that get flooded during the rainy season. In fact, many of the 
commission errors could be visually related to the (dirt) road network, 
water bodies, and dams, and predominantly linked to temporal changes 
in moisture and surface water. These cause a decline in NIR reflection, 
which is contrary to (or stronger than) the NIR change of its surround-
ings. Such false positives could potentially be removed using existing 
spatial layers or remote sensing aided detection of roads (Abdollahi 
et al., 2020) and/or surface water (Cooley et al., 2017; Pekel et al., 
2016). Besides optical data, also active microwave observations from 
missions like Sentinel-1 or ICEYE could be used for detecting con-
founding features like temporary small water bodies (e.g., Yang et al., 
2021). 

Because the approach looks at the decrease in NIR surface reflectance 
relative to its surroundings, additional phenomena could result in 
similar decreases and consequently false positives. These include for 
example fires, crop harvesting, and cloud shadows. Fire is common in 
rangelands and frequently used as a management tool to reduce woody 
cover and rejuvenate grasslands, including in East Africa (Probert et al., 
2019; Sankaran et al., 2008). Burned areas (fire scars) typically cause a 
reduction in NIR reflectance that remain visible for some time (Chuvieco 
et al., 2019), similar to bomas. If such areas are small and fragmented, 
our approach may erroneously detect them as potential boma sites. 
However, fires in savannas typically affect larger areas because they 
spread easily when substantial dry fuel load (i.e., grasses) is available. As 
a consequence, the NIR difference index will remain stable for most of 
the burned area, given that the surrounding area is equally affected. 
Exceptions to this could be near the edges of burned areas, particularly 
when these are irregularly shaped. For our study, we found evidence of 
such false positives for a fire that occurred in September 2019 causing an 
elongated fire scar of ~400 ha; here false positives were found for only 
<0.5% of the burned area (data not shown). Potential exists to better 
account for these, taking advantage of the fact that a large area expe-
riences a sudden drop in reflectance. Besides fires, the removal of green 
vegetation as a result of crop harvesting can also cause sudden drops in 
NIR reflectance. Our empirical approach does not account for this, as in 

Table 3 
Parameter values for runs with highest sensitivity given the specified specificity thresholds. The first entry is the one with the optimal F-score.  

Threshold specificity width slope perc minIndex number NIRlength sensitivity specificity F-score 

– 20 0.0009 85 0.000 2 0.15 0.950 0.929 0.939 
0.95 20 0.0011 90 0.000 2 0.15 0.901 0.957 0.928 
0.96 20 0.0009 85 – 2 0.30 0.894 0.960 0.926 
0.97 20 0.0011 95 0.000 2 0.15 0.856 0.971 0.910 
0.98 20 0.0012 85 – 2 0.40 0.769 0.981 0.862 
0.99 35 0.0017 85 – 3 0.50 0.638 0.990 0.776 
0.995 30 0.0019 85 0.005 3 0.50 0.491 0.995 0.657 
1.00 35 0.0010 95 0.020 3 0.50 0.261 1.000 0.414  
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Fig. 9. Examples of PlanetScope-derived NIR difference indices and boma detection using the run with a 0.99 threshold on specificity (Table 3), including correct 
detections (a and b), multiple candidate periods but wrong period retained (c), and candidate correctly identified, but not retained as threshold on NIRlength was not 
met (d). Panel (e) shows corresponding daily rainfall from automatic rain gauge. 
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our study area no crops are grown; in fact, movable bomas are typically 
found in pastoral systems in arid to semi-arid areas with limited crop 
cultivation. Exceptions could be larger irrigated schemes (which can be 
identified easily by remote sensing, but given their size would unlikely 
result in high NIR difference indices) and very small areas of vegetable 
cultivation around homesteads. Finally, shadows of small clouds could 
make the NIR reflectance drop with respect to its surroundings; these 
shadows may not always be accurately represented by PlanetScope's 
UDM2 layer. Although this would affect a single NIR difference index 
within a time series, the dynamic nature of clouds (and their shadows) 
would highly unlikely cause false positives, as our decision rule requires 
the NIR difference index to remain consistently high following an in-
crease (Section 4.3). 

Instead of directly removing false positives, the PlanetScope-based 
analysis could also be spatially confined to specific areas with a higher 
likelihood of boma presence. One example is that, because of drinking 
requirements of the herd, bomas are expected to be near water points of 
known locations, or of locations that could be derived from imagery. 
Another avenue could be to obtain alternative indications of large ani-
mal congregations, and search for bomas specifically in their sur-
roundings. While ECOSTRESS (Fisher et al., 2020) quality and revisit 
times may yet be insufficient, possibly in future systems like the Surface 
Biology and Geology (Cawse-Nicholson et al., 2021) or the Copernicus 
Land Surface Temperature Monitoring mission (Koetz et al., 2018) may 
allow for timely identification of night-time thermal anomalies in the 
landscape caused by herd presence. 

6.3. Further improvements to the method 

Further improvements to our proposed approach can be envisaged. 
One option that may merit further testing is to adapt the spatial window; 
instead of a centre 3 × 3 window (used to avoid spectral noise vis-à-vis 
use of a single central pixel), a circular topology could be used that 
better matches the approximate boma size and shape. For the sur-
rounding window, our current approach is agnostic to the land cover in 
the surroundings. This also implies that recently-abandoned adjacent 
bomas are part of the average reflectance in the 71 × 71 window, thus 
reducing the NIR difference index. Based on our results the surrounding 
window is large enough to obtain good results even when multiple 
adjacent bomas are present; nonetheless, the approach could potentially 
be adjusted by closer integration of its spatial and temporal component, 
for example by discarding pixels with identified recently-abandoned 
bomas when calculating the average NIR reflectance for the 
surrounding. 

A main limiting factor that prevented direct use of a pixel's surface 
reflectance (i.e., instead of comparing it with its surroundings) is the 
poor temporal stability of PlanetScope's surface reflectance product 
(Fig. 5) due to factors described in Section 3.1. We resolved this using a 
spatial difference index, which can be considered an internal calibra-
tion. However, multiple studies demonstrated the possibility to calibrate 
PlanetScope reflectance against data from missions with a stable spectral 
response, such as Sentinel-2 and MODIS (e.g. Houborg and McCabe, 
2018; Li et al., 2021; Sadeh et al., 2021). Possibly, a better calibrated 
PlanetScope reflectance series could reveal a more uniform boma 
spectral signature, offering a valuable additional information layer be-
sides the spatial difference index that could be incorporated in the de-
cision rule. Given that the boma spectral signature itself is also not 
stable, and varies with respect to moisture, dung-soil mixture, time of 
use, and time after abandonment field and laboratory spectral mea-
surements could help in better quantifying the signal and its variability 
vis-à-vis those conditions. Moreover, new cloud and shadow detection 
algorithms (e.g., Wang et al., 2021) could outperform the UDM2 layer 
used in this study, further improving the reliability of the temporal 
signal. 

Whereas in this study we implemented a conceptual idea on boma- 
induced reflectance changes with respect to surrounding, data-driven Fi
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machine learning techniques could potentially reveal additional spatial 
and temporal features from the PlanetScope series that may help 
discerning bomas from non-boma areas, possibly also including a variety 
of spectral indices. A larger training dataset could potentially be con-
structed by purposely incorporating more areas with commission errors 
(non-boma areas). Machine learning techniques that are fed with a large 
amount of training data and features are increasingly being applied in 
classification and detection studies (Ma et al., 2019). In the boma case, 
this could be achieved by splitting up time series into shorter sequences 
labelled as ‘boma appearance’ and ‘boma absence’, and allowing the 
computer to empirically derive which features best explain the 
appearance. A similar approach was used for example for the detection 
of mowing events (Lobert et al., 2021). Potentially, such a machine 
learning approach could also account for different antecedent moisture 
conditions by incorporating rainfall series in the learning. 

6.4. Outlook 

Despite that our results are promising for scaling the monitoring of 
temporary bomas with remote sensing to larger areas, two factors still 
inhibit this. The first is the need to further improve accuracy, particu-
larly by reducing commission errors, as discussed in Section 6.2. The 
second is the cost of the commercial PlanetScope data, which is 
currently about 1.80$/km2 (although pricing models change). Given the 
need for dense time series, the cost could become prohibitive for large 
areas. Fortunately, several initiatives help to reduce costs, such as the 
Planet education and research program, free third-party access through 
the European Space Agency, and deals with Norway's International 
Climate and Forest Initiative for free access to PlanetScope data over the 
tropics. Alternatively, Sentinel-2 series could also be explored as an 
alternative to PlanetScope, despite its longer revisit time and coarser 
spatial resolution. On individual Sentinel-2 imagery active bomas 
cannot visually be discerned, because the largest bomas of 25 m diam-
eter could contain at maximum four pure 10x10m pixels; for this reason, 
we discarded it as a primary data source in this study. Nonetheless, 
future research could reveal that temporal trajectories from Sentinel-2 
surface reflectance may be linked to boma installation, even if these 
changes occur (partially) at sub-pixel level. 

Effective detection of bomas and their dynamics will allow to better 
understand nutrient dislocations in savannas and other pastoral systems, 
which is fundamental for understanding nutrient cycling, structural 
evolution, and biodiversity of these low-intensity managed systems. 
Existing studies underline the large uncertainties involved, but highlight 
the important role that bomas play for ecosystem nutrient cycling 
(Muchiru et al., 2009), as N2O emission hotspots (Butterbach-Bahl et al., 
2020; Carbonell et al., 2021), for plant species composition and nutri-
tional quality (Augustine, 2003; Stelfox, 1986), and for large-scale 
structuring of African grasslands over centuries or millennia (Marshall 
et al., 2018). Notwithstanding the scope for increasing the effectivity of 
our boma detection approach, it constitutes an important step to better 
understand nutrient fluxes in savannas. 

Our approach for detecting short-lived small-scale events could be 
used for detecting other human interventions in the landscape. Dense 
PlanetScope time series are increasingly being used in studies that assess 
land surface dynamics, including vegetation phenology (Cheng et al., 
2020; Dixon et al., 2021), land use change (Pickering et al., 2021), and 
snow cover (Cannistra et al., 2021). Such studies demonstrated the po-
tential to assess fine-scale spatial patterns, for example in green-up of 

Fig. 11. Histograms for length of active boma use, separated for identified and non-identified (missing) bomas using the run with a 0.99 threshold on specificity.  

Fig. 12. Retrieved bomas within Kapiti and their respective start dates indi-
cated by colours. 
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Fig. 13. Detailed view of start dates of PlanetScope-retrieved bomas for three subsets. The crosses are added for better visual comparison and are placed every 100 m. 
The location and extent of each subset within Kapiti is indicated with blue squares on the bottom right inset. For each subset two Pleiades images are shown. The top 
right area of (a) corresponds to surface water behind a dam. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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individual tree crowns. Our present study shows that PlanetScope also 
allows to detect specific temporal trajectories that relate to human- 
induced interventions in the landscape, in our case mobile bomas. 
Other human interventions may cause similar changes; one example is 
the production of charcoal in small (~5-15 m diameter) kilns, which is a 
common (often-illegal) practice throughout Africa causing land degra-
dation. Such kilns usually remain visible for several months or longer 
after their use due to the black ashes and charcoal residues that are left 
on the surface after the charcoal “harvesting”. While sub-meter satellite 
imagery can provide good snapshots of the phenomena (Bolognesi et al., 
2015; Rembold et al., 2013), our approach may be particularly suited to 
provide timely information on charcoal production ‘fronts’, possibly 
allowing for more targeted control. Initial attempts with Sentinel-2 time 
series provided limited success (Nakalema, 2019), but this application 
may prove viable with short-revisit high-resolution PlanetScope series. 

7. Conclusions 

This study demonstrated that dense time series of PlanetScope im-
agery allow for the detection of short-lived mobile bomas. Our auto-
mated approach inferred boma presence from changes in the NIR 
reflectance difference between a boma and its surroundings, thereby 
accounting for temporal instability in PlanetScope's surface reflectance 
product. Although further improvements in accuracy can be envisaged, 
application of this approach at landscape scale revealed spatio-temporal 
dynamics of mobile bomas, which cannot be derived from irregular sub- 
meter resolution imagery alone. The approach provides valuable infor-
mation to improve our understanding of nutrient fluxes within a land-
scape, and may also be suited for the detection of other small-scale 
temporary land surface changes. 
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